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A calculation of the reciprocal bootstrap of N and N* is carried out, using a nonpolynomial
Lagrangian given by Weinberg. We include the multipion intermediate states in the static
Bethe-Salpeter equation and the N/D equations, and obtain results free from cutoff parame-
ters. It is found that the asymptotic behavior of the AN scattering amplitude depends only on
the minor coupling constant and decreases exponentially. The dynamical parameters calculat-
ed are y~~ =3f =0.23, y~g~ =0.12, and m~*-m~=1.5m, as compared to the correspond-
ing experimental numbers of 0.24, 0.12, and 2.1m

I. INTRODUCTION

We begin with the following observations:
(I) Nonpolynomial Lagrangians seem to pro-

vide' ' a source of finite field theories without
ghosts. ' So far, however, the interest has been

. primarily of a formal nature, dealing with the
finiteness of the calculations for various orders
in the major coupling constant, the nature of sin-
gularities, and unitarity.

(2) One disturbing feature in connection with
nonpolynomial Lagrangians is "that the self-en-
ergy terms in different orders of the major cou-
pling constant diverge exponentially as the energy
increases. A cautious hope has been expressed
in this regard that the summing up of the ladder
terms of different orders in the major coupling
constant can overcome" this difficulty.

(3) In a different context, ~ a nonpolynomial
Lagrangian was used in the tree approximation as
a chiral realization of the soft-pion results. Wein-
berg4 has written down a Lagrangian for the nN

interaction which gives the correct mN scattering
lengths in the soft-pion limit. However, no seri-
ous attempt has been made to calculate any other
parameters of mN scattering.

(4) It is well knowne that N and N* can be
shown to evolve together in a self-consistent re-
ciprocal bootstrap framework of a static theory.
This has been demonstrated in the N/D method, '
as well as in the static Bethe-Salpeter equation. '
But these calculations have the drawback that they
need a cutoff so that one can calculate only the
ratio of N and N* coupling to the mN system but
not the individual couplings or the masses. It
may be that the need for a cutoff is a consequence
of confining the intermediate states in these cal-
culations to the elastic channel or introducing only
one inelastic channel. Many-particle intermediate
states have been avoided due to technical difficul-
ties.

Our contention is that the Weinberg Lagrangian4
should be taken seriously for a more detailed de-
scription of at least the low-energy mN interaction,
such as N and N* masses and their coupling con-
stants. We have performed a static-model calcu-
lation of mN scattering in the I =-,', —,

' and J =-,', —,
'

channels, including the multipion intermediate
states within the framework of the nonpolynomial
Lagrangian of Weinberg. We find that the sum-
ming up of ladder terms in the major coupling, by
the use of the static N/D method or the Bethe-
Salpeter equation, converts an exponentially di-
verging amplitude into an exponentially decreasing
amplitude. As a consequence of including the
multipion intermediate states, our theory does
not require any cutoff, and hence allows us to
calculate all the low-energy parameters of mN

scattering. Specifically we obtain

and

m„*—m„= 1.5m

in addition to the well-known result'

These results compare very satisfactorily with
the experimental numbers y„„-0.24, m„+ —m~
= 2.1m„, and y„~~„=0.12. These calculations are
applicable to other systems such as w~ and ww, as
well as baryons with higher symmetries and spin,
but will be reported elsewhere.

II. BETHE-SALPETER EQUATION

FOR (nm)N~(mn')N

The wN interaction Hamiltonian suggested by
Weinberg' is

f—
H,„,= v4w Nyqy, TN' Imr +
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where f'= 0.08 and a =1/E, = 0.8/m, . This differs
from the usual interaction by the factor (1+a2{P2) '.
The term s„T{)will create or annihilate a p-wave
pion, while the a2{P2 terms create or annihilate
s-wave pions. The static Bethe-Salpeter equation
for

FIG. 1. The particle-exchange potential for Eq. (3).

N+ )IQ+ (2r'))I, + (2p') ){2+(2n'))I2- 't(t+ )IQ+(2r))I, + (2p))I2+ (2n)))2,

i.e., one p-wave pion and 2(r'+p'+n') pions in the s wave going to one p-wave pion and 2(r+ p+n) in the
s wave, is given by

(2)
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(m„+g(Q',. +Q{d',.' —E)(E —QQ)',.' —m)

(3)
where m„ is the mass of the exchanged particle,

E( rp, )n=, [(2:){(2p) {(2n))]'""""'"'(r+ p+ n)!

p.(~.")= q,"',
11

Pl( t )
(2 )2

(&tt2 m 2)(I2

xr =~II'~JJ'rl'Jtt

(4)

{). and p being the conventional IIÃ static-model crossing matrices for isotopic spin and spin, respectively.
The summation convention is not used for the indices X, I, or J, and I and 8' take values —,

' or -,'depending
on the exchanged particle. For the potential, we have taken terms corresponding to Fig. 1, the choice of
which was motivated by the corresponding term for the elastic static Bethe-Salpeter equation. For sim-
plifying Eq. (3), we take E = (0+m, and define

p((); = (t) p((); —= (() t a-=m -mx

I
( Q t 1 t t %2{r p n )t Qt 1 t ~ t (02( +p+ )t E) =- S((t)', r', p', n'; ((), r, p, n)F(r', p', n')E(r, p, n)

so that

S((d', r', p', n'; (t), r, p, n)=,+ —Q p (0(('()))p(((()'(')p(((()2{„,P,N))d(()0 d(d(' ~ ~ ~ d(()~~N, P,N)++ R, P, N

E(A, z, N)z(z z, //)

We use the representation

(6)

1 = — d{d" dt exp[it(Q 0); —0) )],2 7T
P ~ Qo

in terms of which (6) can be rewritten as



2576 S. H. PATIL AND S. K. SHARMA

4+ ~' 2g' (6+ (d + (d —(d)((d
R, P, N P

X dt eXP iI' u' —&" duo d(d," . d&@~,P,»

x E'(R& P& N)po((uo)p, (u)x') pi(~uz+p+~&). (6)

We notice that S is independent of the indices r, p, n, etc. , so that we can write

d& S(&, &)p(& )
6+ QP 7f

&
(6+(d + (d —(d)((d —(d)

1 ",, &, , [(R+P+ N)!]'(2R)!(2P)!(2N)!„, , „,(e,~,~)

R, P, N

(10)

where

g,o)= f q,'e"'qq~„

1
g,(t)=, qe" &d(u, .

(2m
'

This equation is very similar to the elastic static Bethe-Salpeter equation, except that the phase space
p(&o") instead of being q"' is given by (10).

Now, though g, (t) is not well defined, we can formally sum up the series by noting that

[(R +P + N)!]'(2R)!(2P)!(2N)!
[R!P!N~ ]'

z, P, N=o n=0

Q8
2 dzl.

1 —xu (12)

Hence

p(oo") =— dte " "g,(t)
27' 1 —u'a'[ g, (t)]' (13)

III. ANALYTIC CONTINUATION

In order to give meaning to (13), let us redefine

go(t)=lim ) qo'e" oe " 'o odcuo,
tp o p,

g(t)=lim —,! q, e" &e " 'o &d~, ,
o

4m'

where tp is a constant. Furthermore we take p, =0, for simplification, which leads to

6
go(t) 1lm

]
gl( ) 4 2(t ' 1/2t )2to~ 0

We interchange the order of integration, and define

p(oo") = lim p((u", t,),
to~ 0

3 tt(d
p((u", t,)= — ue "du

(
. „, ), ,

( (2 ), .

(15)

(16)

It should be noted that the summation in (12) and (13) is legitimate, provided to&a/2v. This is reflected by
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(17)

where 5 = (a/2m)u'/'. With this expression for p(&u", t,), we analytically continue Eq. (9) to obtain

the amplitude having a branch point at t, =a/2m with the branch cut along the real axis for t,&a/2m. There-
fore, there is an ambiguity in continuation to to=0. For the choice of the proper branch, we are guided by
the knowledge that S((d, ur) is real for &o & p, .

The t integration in (16) yields, for (d" & 0,
8 (d fgQ

S/2

0

s(~', (u)=, + i p, s((d, ar) e((d)6+ (d 6+ co

y" „f S((u", (u)p, (ur") S(-(o", u))p, (((/")
(18)

where p.v. stands for principal-value integral and

OO g

p, ((u") =-2, (2 sin(u" 5+ e "~)dm,
0 (19)

p, (~")= -'.

gQe
e dQ.

Asymptotically, the phase-space functions p,.(&u") go as I/e", so that our integral equation (18) does not
need any cutoff. In a general sort of way, (2w/a) acts as an in-built cutoff parameter. It may be noted
that the lowest-order iterations of (18) agree with the direct calculation of the diagrams.

IV. SOLUTION TO THE EQUATION

For solving the integral equation (18), we use the Noyes' method. I,et us write

S((u', (u) =f(&u', (d)S((d),

which leads to

S(~) = d '(~),

(20)

(21)

iy*p((d) y" „ f((d" &)p((&") f( &" ~)P2—(~")
6+ M 7/ 0 (E+ ((/ )((d —(d) (6 —(d )((d +(d)

a+ (d y" " „ f((u", (u)p, ((d") 1 4+ (df (d, (d I + p.v.c++' w
' ', v" —e a+td" +v' —v (Law')(a++"))

f(-~",~)p.(~") 1 &+ ~
+ N + —(d + (d —(d (4+ (d )(t( —(d )

(22)

(23)

It is easy to see that, as ~- ~,

2 ( /2 )3 -uP(a/2%) /4

S(~)
Q) ~ OQ r

which is independent of the major coupling y" and
goes to zero rapidly. The amplitude is well be-
haved for ~- , unlike the exponentially divergent
terms of perturbation diagrams.

As a first approximation for solving (23), let us
use the determinantal approximation,

(25)

locate the poles of S((d) and analyze the residues.
I.et us first consider the mN scattering in the

(2, —,') channel. The forces in this channel are pro-
vided primarily by the N exchange. From the
crossing matrix one has

(26)

and A =m„—m=0, where y is related to @AN cou-
pling. The study of the zeros of d((d) then gives
the N* mass and coupling constant as a function of
y. The relations, for the linearized d(&u) = 1+ cu&,

are particularly simple:

With this approximation, d(~) is evaluated and we
look for the zeros of the d(&u). This allows one to y(m~g- m„)= 2.7(a/2w),

(27)
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16 y»(» (28)

and A =mN~ —m„. The zero in the linearized d((d)
= l+ b((d+~) gives

16 y2I(

5m
'-6yn'(m n, —m ) ——2(m n

—mN) = l." 3a N

(29)

We solve (27) and (29) to obtain

where y* is the N*Nw coupling constant mN+ is the
mass of N~.

For a complete bootstrap of the N, N~ system,
we repeat the calculations for wN scattering in the

(—,', —,') channel. The forces in this channel are pro-
vided by the N* exchange. From the crossing
ma. trix, one has

y= 2y*

Sl N
r 1n 5m 7f 2

y= 0.23 .
(30)

These results should be compared with the exper-
imental numbers, y= 0.24, y*= 0.12, and AN +—mN
= 2.1m 2.» The first of the relations (30) is the well-
known Chew result. ' The other two results are
new and are obtained since we do not require a
cutoff in our theory. We feel that the agreement
with the experimental numbers is encouraging and
leads us to believe that the nonpolynomial Lagran-
gian approach allows us to perform meaningful cal-
culations in the domain of strong interaction.

One may improve the approximation (25) by tak-
ing the next iteration or using one of the more com-
plicated approximations such as the Ball,zs" meth-
od. However, this introduces unnecessary com-
plications without changing the qualitative nature
of the results, and we do not consider them here.

V. THEN/D METHOD

The analysis of the reciprocal bootstrap can be carried out by using the f(t/D method. Here, we start
with the unitarity relation

I I Ifm~ (+0» ~1» ~ ~ t +2(r'+(+ »)t +n0» lt ' ' ' t 2(t+P+n))

~ &I(;/ I I ~ 11 11 11(+0 t +& t ' ' ' t +2(r'+(t'+6')t +0 t +1 t ' ' t ~2(R+P N))+g, P, N

~3 11 ~3 11 ~ ~ ~ &3 II II2R/ 11 11 ~ ~ ~ 11

y g/ II II 11 )d q0 d q( ' ' 'd q2(R+P+N)(d0 5((d0+(d) +' ' '+ (d~R+P+N) —(d)
0 ~ 1 ~

' ' ' ~ 2(R+P+N)~ 0~ 1& ' ' '
& 2(r+P+fl)~

As before in (15), we define

7 (~o t +1» ~ t +2( '+(r'+n'&t +0» +1»» ~2( +p=n&): S(~)F(+ t P t + )F(+» Pt &&) t

where F(r, P, n) is defined in (4) and

(31)

(32)

CO = (d = (d

Then the phase space can be written in a factorizable form by using the representation

5((d +(d +'''+(d —(d)=—0 1 2n
exp [-it((d —(d0 —&d, —~ ~ ~ —(d, )]gt . (34)

The "l-particle" phase space is given by

d'q, d'q, (Pq&(d„25((d„+ &d, + ~ ~ ~ + (d, (d)
(2(d0) (2&d, ) ~ ~ ~ (2&d, )(2&()2(

4 (de

a.(t)[~,(t)j'« . (35)

The index-free amplitude S(&d) then satisfies the
unitar ity relation

Ims(&d) =
I s((d) I 'p((d),

where p(&d) is defined in (10). We now define

S((d) = N(&d)/D((d), (36)

)
1 J»rrrt, (ru')n(ru')

t
&d —&d

(37)

where N((d) has only the left-hand singularities
while D(&d) has the right-hand singularities.
S, ((d) describes the left-hand singularities of S(&d),
we can write
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(d —&d
t

P((d )N((d )dM

W 0 ((d —&d)((d —(d —i 6)

(38)

where ~ is the subtraction point. As for the Bethe-
Salpeter equation, the p(&u) as defined in (10) is not
well defined. We, therefore, redefine g, (t) as in

(14) which leads us to the definition (16) of p(~").
Finally one analytically continues Eq. (38) from
t, & a/2m to t, =0. The proper choice of the branch
leads to

ImS, ((u') = -x(-,'y) 5((u') .

If we further take co=0, we get

(40)

(41)

and the D(~) is identical to the d(e) in (22) with
the determinantal approximation (25). The linear-
ization of D(u&) therefore leads to the relations (27).
Similarly for the wN scattering in the (-,', —,') chan-
nel, the dominant contribution from the N* ex-
change gives

ImS, ((o') = —w('g' y*)6(ur'+ m„g —m„) .

For this, we take the subtraction point at ~
=-(m„~ —m„), which leads to

16

N((u) =
(d+ mgg —m~

(42)

(43)

The D(&u) is identical to the d(~) of the Bethe-Sal-
peter equation with the determinantal approxima-
tion. The linearized D(~) leads to the relations
(29). The combined reciprocal bootstrap leads to

D((u) = 1 —ip((u)N((u) g((u)

N(~ )p, (~')
p.v. ct(d

W o ((d' —(d) ((d' —(d)

N(-~')P. (~')
(39)(~'+ &u)(~'+ ~)

The dispersion relations (37) and (39) allow us to
calculate the scattering amplitude, once S,(cu') is
known.

For wN scattering in the (—,', —,') channel, the dom-
inant contribution to S,(v) comes from the nucleon
exchange, which can be approximated as

the results (30). One may therefore regard the
results of N/D method as a particular case of the
Bethe-Salpeter equation in this case. The asymp-
totic behavior of S(~) is once again given by (24),
which is quite acceptable.

VI. DISCUSSION

We have carried out a dynamical reciprocal boot-
strap calculation of N and N*, using a nonpolyno-
mial mN interaction given by Weinberg. In sum-
ming up the ladder terms using the Bethe-Salpeter
equation or the N/D method, the inclusion of the

multipion intermediate state allows us to do a pa-
rameter-free calculation. We find that the asymp-
totic behavior of the scattering amplitude is given

by

i2(a/2m)'e ""'" /4
3w'"

an exponentially decreasing behavior in contrast to
the exponentially increasing behavior for the in-
dividual perturbation terms. The asymptotic be-
havior is governed by only the minor coupling con-
stant a, but independent of the major coupling con-
stant. This opens up a possibility of the low-ener-

gy and the high-energy dynamics being dictated by
differing strengths of interactions.

The results of our bootstrap calculations are
y„„~=3f'=0.23, y„~„,= 0.12, and m„~ —m„
= 1.5m, which should be compared with the corre-
sponding experimental numbers of 0.24, 0.12, and

2.1m„. We consider the agreement as encourag-
ing. One can extend these results to SU(3) and
higher -spin baryon resonances.

The above calculations were made within the
framework of the static model, taking the pion
mass to be zero. The effect of taking nonzero
pion mass may be estimated from the conventional
static theory with a cutoff. With a fixed cutoff of
about 8m„we find that increasing the mass of
pion from zero to m„ increases m„~ —m„by about
30/o and decreases f' by about 10%, which further
improves the agreement. It is hoped that our cal-
culations are only a prelude to a relativistic cal-
culation and that the nice features would survive
such an exten ion.
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