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It is shown that the inclusive cross section for production of a single soft, neutral vector
meson in pp scattering vanishes like 1/s at p~~ /p~~, „—-0 in the center-of-mass system for
mesons radiated from the external nucleon legs. Comparison of the resulting single-pion
distribution with the. CERN Intersecting Storage Rings data makes it unlikely that present
data in the pionization region can be understood in a conventional bremsstrahlung picture.

I. INTRODUCTION

Feynman has pointed out' that scaling of inclu-
sive cross sections is suggested by the analogy to
bremsstrahlung in quantum electrodynamics. In
the present paper we verify this idea in a particu-
lar hadronic bremsstrahlung model of PP scatter-
ing in which the radiated vector mesons are pic-
tured as neutral p or ~ particles that subsequently
decay into pions. We find, however, that the
scaling function vanishes like X4 as the center-of-
mass ratio P~~/k~~ = X goes to zero; that is, there
is no pionization in a pure bremsstrahlung picture.
We believe this vanishing of the bremsstrahlung
single-particle distribution to be independent of
any detailed feature of the model, although the
way in which it approaches zero as X-0 may de-
pend on specific model approximations. Compari-
son of the model distributions with the CERN In-
tersecting Storage Rings (ISR) data' suggests that
conventional bremsstrahlung from external proton
legs is not the dominant production mechanism
near X =0.

This aspect of inelastic production is the first
we have treated in which a prediction of the ele-
mentary bremsstrahlung model is qualitatively at
variance with the experimental data, and clearly
signals the need for inclusion of graphs of the
multiperipheral type. The latter are contained
within the framework of an N-po plus p, -m inter-
action, but are not studied in this paper. In Sec.
II we review the approximations necessary to ob-
tain the soft-vector-meson (SVM) model expres-
sion for the production amplitudes in PP scatter-
ing. We then write down the resulting expressions
for the total cross section and the proton and SVM
inclusive cross sections and show that the single
SVM distribution vanishes like 1/s at %=0, given
certain reasonable (and experimentally verified)

assumptions. We next estimate, in Sec. III, how
fast the SVM distribution vanishes at X =0. In
Sec. IV we take into account the decay of the p'
into two pions in the manner suggested by Brink,
Cottingham, and Nussinov' (BCN) and compare
the resulting single-pion distribution with the ISR-
data. ' We discuss the modifications to the BCN
results due to a finite width for the p transverse-
momentum distribution, and in the Conclusion
briefly discuss p, emission in the multiperipheral
manner, to produce proper pionization. An ap-
pendix is included to derive the general (and vast-
ly more complicated) forms which appear when
the narrow-width approximation is not made.

II. THE SINGLE-VECTOR-MESON
DISTRIBUTION AT X=0

The amplitude for the emission of n soft vector
mesons (SVM) each with polarization vector e~&~(X;)

1s

I„=g" m, (p„p„p„p,) g V~„'le~„*~(~,.),
4=x

where I, is the full amplitude for P,P, -P3P4
without emission of SVM's (but including all ex-
changes of hard and soft vector mesons) and

y(a) — P Z + P2 P3 P4
P3'&- P4 &

P
~ ~

~

g is a pNN coupling constant.
The assumptions that go into the derivation of

the factorized form (1) for M„are identical with
those made in the soft-photon-emission problem
for fermion-fermion scattering. Their validity
must, however, be reexamined in the present case
in which the neutral vector meson has mass, so
that the statement of "softness" is no longer frame-
independent. In the numerator of any Feynman
graph one neglects terms linear in k, relative to
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P, where P is any one of the incoming or out-
going proton momenta. In the denominator it is
necessary to neglect all k, ~ A,. terms relative to
k P for all of the k's and P's. These conditions
are satisfied to an accuracy -m jets when k,. is
nearly at rest in the center-of-mass frame' ("wee"
X) provided the outgoing protons retain a finite
fraction of the incident proton energy. For small
X (X«1 but SVM energy &u» p) terms of order
X' are neglected relative to terms of order X.
We therefore expect the results based on E{l. (1)
to be a good approximation to SVM emission from
external proton legs for the small-X and wee-X
regions.

We emphasize that such SVM emission, which
may in principle refer to pp or ~, and thence to

pion production, defines the model, one which has
been moderately successful in reproducing various
aspects of different high-energy processes. '
Apart from complicating details of the SVM-pion
decay, discussed in the Appendix, such a model
picture falls within the catalog of "uncorrelated
jet" models. ' Within this particular bremsstrah-
lung context, arithmetic complexities shall force
certain aPP~oximations, which we shall make
every attempt to justify. We make no a Priori ef-
fort to justify the model, but merely direct the
reader's attention to its previous, qualitative
successes.

The cross section for the emission of n SVM's
(averaged over initial and summed over final po-
larizations) is

m' 2 )n

where the subscript "av" denotes the appropriate spin averaging.
In order to construct the total cross sections and the various inclusive distributions one would like to

sum do„over an infinite number of emitted SVM's. In the soft photon case this is trivial since the soft-
photon-emission factors decouple from

~ Mo) in momentum space in the limit (photon four-momentum) -0.
We cannot here neglect the gk, in the {) function because at any finite energy only a finite number of mas-
sive mesons, however soft, can be emitted. We therefore write an exponential representation for the 5
function and find

g..(,„,, ) ( (." {&'( g. ..~.(q))"
Eq J E» E~E2 ~ V~ 2 ( 4){ „(2r) n! (2') J 2{()

The factor —,'1/n! comes from the identical particles in the final state. Thus

+ tot +n
n= p

" d ps " d p» m d x,„.{p&+p2-g-p») Idol av {KE, „E, E,E,)V»(. (2m)» 4~'

(see Ref. 8) where

" d'0
K(x)=- (,, e '"'*V'(k, p, ,p», s) .

Similarly, we find for the single SVM distribution

2p(ki ~ k((, s) = 2{d
do'

(4)

n=l

Clan2' d3~

'() ( ()j
The single-proton distribution is

do m d p»
I

dx g{p+p p pt)~~M ~o
d'p' E,E,[V»j & E, g (2z)' 4n'

To estimate p(k~, k((=0, s) we note that for p, ~, p»~, k~-m, and E, , E,» m
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Vs(k) J. PslP4J. . (6)(mp'+ ki')' Es E4

Thus if the dominant contributions to the integral (6) come from regions where the transverse momenta
are small and the proton elasticities large (as is experimentally the case) one can replace ki, P„,P„,
E, , and Ea by their average values and bring the factor V'(k) j„ooutside the integral in Eq. (6). The fac-
tor

d'x e'"'~'1'»-"-'4-") exp {K(x)}

is assumed to provide the strong damping of transverse momenta and of small E, and E4.' Then, since on
the average in the center-of-mass system E,E4~ s, we find

m4 d3 ~ d3 d' l~ I 2

(k k =0 s)oo — ' 4 t ei"'(&i+as as sa «-) I -o-l av {K( )}i (9)

At ks =0, e "' + 4 " e " i+ s s 4 so that the remaining integral ln Eq. (9) is seen to be propor-
tional to the total cross section. Equation (9) can thus be stated as

k~2 s &~.t(PP)
p(ks =0, ki, s) =const, »„&Psipai&g

(mp +ki ) S
(10)

III. APPROXIMATE EVALUATION OF p(X,kj. )

To exhibit scaling in the model and to learn how fast the single-particle distribution vanishes as X goes
to zero we must approximate the coordinate integral in Eq. (6) while retaining energy conservation. To
accomplish this in a simple way we make the replacement

where g is the leading nucleon elasticity. The weighted sum over unobserved SVM energy theri becomes
an integral over q with weight P(ri), the probability that the leading nucleon center-of-mass energy is a
fraction si of E With th. e notation K=-K(0) we then have

p(k„ks, s) —, ' ' dq 22
s",

2
„V'(k)exp{K}6s(ps+p,+k)6(E, -slE)P(rl) . (12)

If we use the three-momentum 6 function in Eq. (12) to do the d'P, integration we can regroup the factors
to get

1 e 1-X g 2

p(k„ki, , s)-, de P(q) - 6(Es siE)dEs, d-0,
i M, is,„exp{K}, „V'(k)

4 p XJ + 40 4

provided we assume' that large transverse momenta and small E, are strongly damped by the factor
(Moi',v exp{K} in the integrand.

Since fdQsiMoi s, /E' has the form of an elastic total cross section, which has little or no s dependence,
we approximate the dQs integral in (13) by neglecting the transverse-momentum dependence in V (k) (it is
a weak, I/P is dependence) and writing

m4
s 22 s dflslMol avexP{K}—f(k ).

Then

4

, e'"'ia&' s as sa a)exP{K(x)} +6s(Ps+Pa+k)6(2E-Es-Ea-u&a e)ex-P{K(0)}J 7l

in the center-of-mass frame, where p, +p, =0 and E, =E, =E. c is an average total center-of-mass energy
carried off by the unobserved SVM's -their total three-momentum is, for simplicity, assumed to be zero
in the c.m. frame —and p denotes a weighted sum over e. For definiteness we assume ps„and ks are in
the same direction (X'& 0); then for small, bounded transverse momenta and for ks» mz the 6 functions
on the right-hand side of (11)become

s e(1-X-n)~ (psz+pai+ki)6( IPas I IPss I KP)~(Es nE)

(14)
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where V'(k) is to be evaluated with

p, q
= (0, 0,p; iE), p, q

——(0, 0, —p; iE), p~q ——(0, 0,p, ; igE),

P,„=(0,0,P„i(7}+X)Z), and P, =-P, —k, .
With these assumptions one finds that V'(k) =h(X, q), which depends on kg and s only through the ratio
X' = 2k~~ /Ws . Explicitly,

(15)),4m'(I -q')'mp~' 1
(m '+ X'm')'[m '+ (X'/7l')m']' '

where mz~
———(m&'+k~')'~' is the transverse p mass. Insertion of the expression (15) into Eq. (14) provides

an explicit form for the scaling function p(X, k~) within the model. "
The function P(7i) in Eq. (14) can be determined experimentally from the ISR PP -P + anything data' by

starting with Eq. (I) for the single-proton distribution and making the same sequence of approximations
that led from Eq. (6) to Eq. (14). We take

& d'x f~

, e'&~~'~2 ~3 ~4'"exp(K(x)) ——,
'

dg 6'(p, +p, )6(Z, res)P-(rl) .
0 p

(16)

In Eq. (16) (I -ri) is the fraction of the total center-
of-mass energy that goes into SVM production,
and the average total SVM three-momentum is as-
sumed to be zero in the center-of-mass system.
After using the momentum 5 function to do the
d'p4 integration in Eq. (I) and 6 (E, —qE) = (I/&)
x 5(g E,/E) fo-r the g integration, one has

do' 1 apl P(E'/Z)
, —

4 ~M, ~'„explK]

adequate for our purposes, is

P(ri) =q+Brp with B-5 for k~'=0. 16oeV'.

Figure 1 is a plot of the single SVM distribution
[Eqs. (14) and (15)] with P(q) =7I+5g' and
Ii= m'/m~~'= ~. —The shape of the single SVM
spectrum is independent of B for B between 5 and
30 and its maximum varies only from 0.35 to 0.4
as A'decreases from & to 1."

Equation (17) scales if (~ M, ~
'»/E ) exp(K) de-

pends only on p~" and E'/E. This is a reasonable
assumption, at least for small p~', since
(~ M, ~

',„/E') there has the form of an elastic,
forward do/dt, which is approximately energy-
independent. %e assume

B, d „P(B'/B)
dSP I El/B

for fixed k~' and determine P(E'/E) from the ISR
data. ' A very crude parametrization, which is

IV. SINGLE-PION SPECTRUM

Before one can compare the results of the pre-
ceding section with the ISH data it is necessary to
take into account the decay of the SVM into pions
in order to predict a single-pion spectrum, which
is what is experimentally observed. For small
transverse momentum and pion production via
p-2n the analysis is very simple. It has been
discussed by Brink, Cottingham, and Nussinov'
in a calculation which shows that

( 2X~ 2X~, (18)~(1- y( cosa ( 1+ y~ cose~

C)
I

fV

x IX

Q

cl
lKI-
CQ
lK .I .P. .5 .4 .5 .6 .7 .8 .9 l.O

FIG. 1. Single SVM distribution function for positive
values of the Feynman variable X.

1
q~ = —,m& y sm8, (19)

where q~ is the transverse momentum of the pion.
Equation (18) holds in the simple case where the
p meson has no transverse momentum, and the
simple relation between the pion scaling function

p, (X,) and the SVM scaling function p(X) assumes
q„» m~. (At ISR energies. 2m~/Ws - rd. ) As
written here Eq. (18) also neglects the correlation

where y =—(1-4m„'/m&')' '-0.93 and 8 is the angle
of the decay pion in the p rest system relative to
the beam direction. Thus
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between p spin and pion decay distribution. The
first term in Eq. (18) is associated with backward
and the second with forward pions from the p me-
son in its rest system. For q~& —,'mp y- 0.35 GeV
it is perhaps reasonable to use the simple form,
Eq. (18), since the p-meson transverse momenta
are presumably strongly damped and most small

q~ pions come from SVM's with negligible trans-
verse momenta. For larger q~ for given values of
q~ and q„one must integrate Eq. (18) over all pos-
sible parent SVM momenta with appropriate
weighting, thus smearing out the sharp echo effect
present in Eq. (18). [In visualizing the effect of
Eq. (18) it is helpful to remember that the function
p(X) vanishes when its argument exceeds unity.
Thus the first term in Eq. (18) shrinks the scaling
function p(X) by a scale factor &2 and produces a
low X, echo of p(X) in the pion scaling function

p, (X',).] We now proceed to find the single-pion
spectrum for general q, taking account of the p
spin. If M e(r) is the amplitude for producing a
p of polarization v and anything else, then

M e(r)-g M e(~)e(r) ~ (q-q') k2+ mp2- irmp

'~r
P P

where q and q' denote pion momenta, k=q+q' is
the p momentum, F is the p width and g, a pion
coupling constant. The second step in Eq. (20)
follows from the observation that k. e =0. In the
narrow-resonance approximation one neglects
cross terms between amplitudes in which a given
pion pair come from the same p meson and in
which they come from different p mesons. (The
modifications required when the narrow-resonance
approximation is not made are discussed in the
Appendix. ) The single-pion distribution is ob-
tained from Eq. (6) by the repla. cement

2 q
( ) ( q) (k2 2)2 F2m2

P

and integration over the unobserved pion momen-
tum q'." In the narrow-resonance approximation,
one finds

m4 " d p~ d~p4 ' d q' ~MO~

E,E, ~ V, ~ . E, E 2&v' 4n'

"d4X . . g2
x 8'" ~~~'~2 ~~ ~4 '~ (V q)'A6(k'+m ')e. xp(K(x))p

(2m')4 (2w)~ P

(21)
where I =- limr, (vg, '/I'mz) =const since g,'~ I'. One can show by a simple calculation that

(V q)'I„,=.= g(q„p...p„) —,

for E„E4»m and q~, p», and p4~=0(m). The basic result of the paper, Eq. (10), thus continues to hold,
with, however, a different dependence on transverse momenta in the coefficient of o„,(pp)/s.

Following the same series of kinematic simplifications that lead from Eq. (6) to Eq. (14) we find

d'g P(1)[q ' V(k)l lk=q+q';x=x +Ip„(q~, qll s) 4A,
(

S, l 6(k'+ m~')f (k~')
4 p

The function k(X X~, 7})=—[q. V(k)]' scales and has the explicit form

(22)

X m2(X'p, 2-m, 2X,')(I-q') '
( ) 'lr r q) X (m 2+ m2X2)(~2m 2+ m2X2) (»)

7l' p P

It is assumed that f (k~ ) provides the strong damping, and we have neglected p„and p4, and k, in writing
Eq. (23). p, is the transverse pion mass. The comments of Ref. 8 apply also to Eq. (22). The integral
over d'q' in Eq. (22) can be replaced by an integral over d'k (Ref. 11) to obtain

2A.g' " d'k t' ' qd7I
p, (x, , q )- 2, 6((k —q)'+m, )f(k ) P(~)k(X, X, , 7l).

27f „(d ~o ~+

For f(k~') =5(k~') we have

(24)

g2 1

p„(X„q,) =2, —5((k- q)'+ m, ')
7l Q p

We can write dkll/(d = dX/X in (25) all the way to X = 0 since k(X, X, , q) ~ X'/X, ' near X' = 0. For k~ = 0
(and X not "wee")
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6((k - q) + tS~ }=6(tPlp + 2qllkll - 2(0)I(d4)

ms y(cosa( 1-ylcosll 1+ylcosel) (26)

P(1))ll(K, K„l))), (2&)g+XM 0

and we retrieve the result of Ref. 3 [see Eq. (18) above]. The explicit form of the result in this model is
obtained by inserting E(I. (26) into Eq. (25) to obtain (for q~ & ym~/2- 0.35 GeV)

gg' 1 "' x+ @dep„(X,qi) = », , P(rl)k(X, , X', , g)+

where X', =- 2X„/(I+ y( cosl))(). It can be shown that

X, 4, X,' 'cos'8 (1 —q')'
X, (1+ZX„')' (@2+ZX, ')2

so that p, (X, , q~) ()(: X„4(1/X,)' " for small X, ,
where P(q) -I7" for small )7 and n &3. We see that
unless n & -j., a possibility clearly ruled out by
the PP -P+ anything data, the pion scaling func-
tion vanishes at X = 0. (Recall that n = 0 corre-
sponds to a flat proton spectrum, and the data'
indicate n - 1.)

We have used E(I. (27) with P(q) = const and
y(cosII(=0. 77, corresponding to q~=0.2 GeV, to
compare this model with the q~'=0. 04 GeV'

PP -m++ anything data of Hef. 2. The form of the
results (see solid line at q~ =0.04 in Fig. 2) is not
sensitive to the form of P(g) for 0 & n &3, nor is
it sensitive to the details of the spin dependence
under the same conditions.

To obtain the prediction of the model for q~
~ —,'m y - 0.35 GeV one must carry out the inte-
gration in Eq. (24) for k~x0. The kl, integral can
be performed as before using the 5 function. The
resulting X, now depend on (k~( and the angle P
between q~ and k~. The remaining (k~( and Q in-
tegration region is determined by energy-momen-
tum conservation and (cos8(& 1. For q~»(mz/2)y
one can assume that the dominant contribution to
the integral comes from k~ = k~;„-q~ because of
the damping factor f (k~) One can thu. s replace
(k~( by ((I~( everywhere in the integrand except in

f (kJ) and carry out the (k~( integration. Further-
more, for large q~ and k~ the opening angle is
small and we can approximate the P integral by
setting P =0 everywhere in the integrand. This
gives (neglecting spin)

p, (X', , q, =0.8 GeV)- const [p(X,)+p(1.8X,)],
(28)

which illustrates the smearing out of the Brink,
Cottingham, and Nussinov' effect at large q~. This
estimate is compared with the q~' =0.64 GeV' data
in Fig. 2. The data at q~=0. 4 GeV-(m&/2)y are
in an intermediate range that requires a more
exact evaluation of Eq. (24) than is warranted in
the present case.

t i f I )
l

0 l2~24GeY-
500 Gev

=Q.O4 o IIOK GeV
& l500 GeV

0
E o

(3

IO--

Pi =O. I6

I i I I I i I ~ I

.I .2 .3 .4 .5

I I
/ NIA X

FIG. 2. Comparison of a simple po bremsstrahlung
model (solid lines) with the ISR data for pp 7t+ + any-
thing (Ref. 2j. The dashed lines show the shape of the
single-pion distribution resulting from multiperipherally
produced p mesons (see text).

The results of the comparison of the model with
experiment in Fig. 2 indicate that the pure brems-
strahlung picture bears little resemblance to the
data even when one takes account of the kinematic
bunching of backward decay pions pointed out in
Hef. 2. Qne can also carry out a similar analysis
for cu - 3m. In this case, even when the trans-
verse momentum of the co vanishes, the Brink-
Cottingham-Nussinov effect is smeared out by the
three final pions. Furthermore, because of the
smaller phase space available to each pion, the
pion distribution reproduces the SVM distribution
more closely than in the p - 2n case. The inclu-
sion of the v among the produced SVM's therefore
cannot remove the dip at X„=O.

For comparison we have also plotted p (X„) cor-
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responding to a multiperipheral-type form for the
p-meson scaling function. These are the dashed
lines in Fig. 2. The "multiperipheral" p-distribu-
tion, pMpM(X), was made artificially by using
p„pM(X) =p(X) when X&X (where the behavior
is presumably dominated by phase space) and
setting pMp„(X) =p(X ) for X&X,„. X is the
location of the maximum of p(X). The results,
though extremely crude, bear some resemblance
to the data in that one sees a peaking for small X
at small q~ that is washed out at large q~ as one
would expect if pions are produced via p's. A de-
tailed investigation of single-pion distributions
using specific multiperipheral models for p pro-
duction would be desirable.

V. CONCLUSION

The analysis presented here suggests that the
simplest bremsstrahlung model of inelastic p,
-w'+v production (Fig. 3) must be amended in
order to produce one-particle pion distribution in
agreement with the small-X ISB experiments.
This conclusion is reinforced by recent single-y
experiments at ISH." Assuming most photons
come from w' decay, this experiment measures
the single n' distribution, and the data at 90'
clearly show p 0(X=0)c0. It is reasonable to as-
sume that the charged pion distribution is similar
at X =0. Vfe emphasize again that the basic pre-
diction of the model,

p(X=0)~
S

is independent of any kinematic approximations.
It follows directly from the assumption that all
meson emission is due to the bremsstrahlung of
soft, neutral vector mesons from the external nu-
cleon legs. Within the context of the basic inter-
actions of the model, however, graphs involving
multiperipheral p, production, such as those pic-
tured in Fig. 4, should be considered and may be
expected to yield proper pionization distributions. "

It is interesting to speculate on the form which
experimental results will take as k~ is measured

at larger and larger values. On the basis of past
experience, one has the intuitive feeling that the
bremsstrahlung model should be relevant when
large transverse momenta are involved, an effect
which would be indicated by a dip in p(k~ » m, x-0).
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APPENDIX

%e here present a functional formulation of the
amplitudes, cross sections, and multiplicities of
this problem in order to develop a compact way of
exhibiting the complexities which are present when
the narrow-width approximation is not made.
These finite-width corrections have their physical
origin in the necessary symmetrization of the in-
elastic, final-state pions. There are other ob-
vious advantages to the functional formulation,
which tend to become apparent with each sequence
of simplifying approximations.

The fundamental field-theoretic interaction
adopted is

g'=iggy„A„g+ig, A„(II" 8 II-8 Iit II)

(Al)

in which we have retained only the coupling of p,
field (A„) to nucleon fields (g, P) and pion fields
(II, Iit), and for clarity have differentiated the cor-
responding coupling constants, g and g, . The gen-
erating functional of this problem is defined by'

s(j„,k, kt, q, g j

~

expi (j„A„+k~H+H~k+ jig+qg)) )
(A2)

I

I

I%VI
I

FIG. 3. A graph of the simplest bremsstrahlung type.
FIG. 4. A multiperipheral-type graph that is included

within the general framework of the SVM model.
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written in terms of the c-number sources j„, k, k~,

Because g, 10, and the physical masses of
p and m

' are such that every po produced must

rapidly decay into a pion pair, we write the S ma-
trix in the form"

(A3)

where Sz{k,k ) denotes an effective, fermion S matrix expressed in terms of fictitious external sources
k, k~,

S (k, k~] =:exp ] Z„-'I'g,.„u ———5y,.„:S(j, k, k', q, gj (A4}

We are not interested in details of the pion self-energy structure, and will subsequently make appropriate
approximations such that the Z, 'I' factor of (A3) may be replaced by unity. The operator 11[„(x)contains
creation and destruction operators corresponding to the destruction of a n and creation of a r, while
II;„(x) may destroy a n and create a v+ .

The formal solution for the generating functional is given by

NS=e p x—i I
—-gy ~ —. = —i —[g(8„,5/5j„)] t exp f IjS,q+-,'~' j„h.j„+i 0 D,k),

g j g

(A5)

with A (8„,B)C=-AB(8 „C) —(8 „A)BC, and where S„6&„A„and D, denote (bare) massive propagators for
nucleon, p meson, and pion, respectively; the gauge structure of the p propagator is quite irrelevant to
the present discussion, and it is simplest to adopt the Feynman gauge. The normalization constant N is
given by the vacuum-to-vacuum phase factor (S), and does not enter into any expressions for cross sec-
tions. A most convenient transformation of (A5) leads to the form"

NS =exp i qG —.—.q+L —. —. exp i k~D, ~ —.k+A ~ —.
~

exp —,i j,h, j„~,g5 g5 . "
~
— ~g& g

i5j i5j „' i 5j z 5j ) ' „' '")'
where

G[gA]=[m+y ~ (s -igA)] ', D, [g,A]=[m, ' —s'+ig, (A„, s„)]-',
L[gA]=Trln(1 —i gy ~ AS, ), A[g A]=-Trln[1 —ig, (B„,A„)D,] .

An alternate and frequently convenient representation of (A6) is

(A6)

N& =exp —,'~ jA,j exp --,'~ &,—exp i &G gA '&+I- pA +g '; k D gyA k+ g,A
5A ' 5A 4

(A V)

where A (x) now denotes the c-number source jh, (x-y)j„(y)d4y.
We now perform a sequence of approximations on the exact expression (A7) in order to generate those

graphs entering into the simplest bremsstrahlung model. The functional L[gA] may be recognized as the
source of all closed-fermion-loop graphs, which contribute to p-propagator structure and related pro-
cesses; and it is dropped, I [gA]-0. The functional A[g,A], on the other hand, contains closed-pion-
loop graphs contributing, among other things, that part of the p-propagator structure responsible for
p -n' decay. In the context of subsequent eikonal approximations for G(A), it is instructive to expand

A[g, A] to its quadratic A dependence, so that all functional operations upon the A sources may be per-
formed exactly, with the corresponding self-energy structure everywhere inserted into d, explicitly ex-
hibited. Here, we shall simply drop A[g, A], but replace 6, by 6,', written in Breit-Wigner form, with

a width F proportional to g, . Since we are not interested in processes with p mesons in initial or final
states, the factor

exp —,
' i ja,' j

of (AV) may be discarded; and the phase fa,ctor N shall also be omitted.
An amplitude containing two initial (P, ,p2) and final (ps, p, ) protons is obtained by performing functional
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differentiation with respect to a pair of g and g sources, bringing down the symmetrized factors

G(s„«,l&)G(x. «. I&}—G(x„«.l&)~(s. «.I&).

With g =q = 0, one then calculates the amputated, mass shell, Fourier transforms with respect to these
nucleon coordinates, using the nucleon four-moments, of the problem [as in (A12}below]. Either small-
or large-momentum-transfer techniques may then be followed, with the first leading to a standard eikonal
form, "and the second generating the appropriate wide-angle eikonal approximation. " The crucial step of
either procedure is the extraction, from the product of G(A} factors, of soft-vector-meson (SVM} depen-
dence in the form exp(i gf (p„A „},with

OO

d$[p,"6(w —«, +$p, )+p,"6(N) —«, +$p, )+p,"6(w —y, —$p,)+p,"6(to —y, —gp, )] .
4 0

[In the small-angle f/s-0 limit of elastic scattering one passes to the limit of P, —PS-0, P, —P4-0 in

P„(w).] With the sources k, k set equal to zero, and upon application of the functional operations of (A'l),

this A-dependence provides the necessary damping of the elastic nucleon scattering amplitude, and de-
pends upon g, through the finite width of the A,' propagator (e.g., as written by Yao" in a related context).
Inelastic pion amplitudes are obtained by functional differentiation with respect to an appropriate number
of k, k sources, before the latter are allowed to vanish; suppressing these operations, and the calculation
of all Fourier transforms, etc. , the general amplitude for PP scattering plus arbitrary pion production
may be written as

5
M(k, k )-exp(--,'(J —A.' —exp (q P„A„exp ( i k ( P]AAk

4 ( A=0
(A8)

where the tilde in (A8) denotes all the multiplicative, transform, and parametric integral dependence fa-
miliar from previous work. "'"

The functional operations of (A8) may be written in terms of self-linkages of each of the right-hand side
factors, together with the cross linkages between them,

M(k, k )- exp -e k', exp —'( e,'. exp iq q A,)
5x exp —,'i b,,' —exp i ktD, [g„A,] k

~
(A9)

-exp —,'i J„h,,'5„exp i k~D, g,g 6,'W k
4

(A 10)

where VM self-linkages of the exp(i f ktD, [g,A] k) factor of (A9) have been omitted in the passage to (A10),
since they correspond either to initial pions combining to form virtual p mesons, or to final-state pion in-
teractions of the same form, together with pion self-energy effects. The first term on the right-hand side
of (A10) contains linkages which define the elastic eikonal models, and is absorbed into the M, of (1). The
remaining k~, k dependence of (A10) displays the factors needed for inelastic pion emission, and shall be
written below as exp(i f k~D, [gA] k), where, henceforth, A„(«) =—gf b,,'(«- y)F„(y)d'y. The final approxi-
mation which remains to be made is the replacement of D, [g,A] by its linear A„dependence, thereby
generating all graphs of the simplest bremsstrahlung form, as pictured in Fig. 3.

With these preliminaries, we are now in a position to discuss multiple pion emission. From (AS) and
(A4), the probability amplitude for the process p, +p, -p, +p, + Q ", , (q, + (f,'), where q; and q,'. denote 7)'

and z four-momenta, respectively, is given by (all states are in-states)

q'. ,P, ,P, IP(lP„P, ) =(q, e. , q,
' q(: exP (P,,qq e

—P,.„q(—}:O) M(k, k ),

(A11)

with

~(k, k't) =(p„p,(S~Jk, ktf~ p„p,). (A12)

In the context of the present application, we have approximated the j, k, kt dependence of (A12) by (A10).
Only the negative frequency part of the 11;„, II;„operators survives in the matrix element of (A11), con-
necting the pion vacuum to a state of nv' and nm [from Eq. (A16) below it is obvious that the number of n'
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and n produced must be the same]; and we shall denote these operators by (II;„)i ) and (Iit„)t ) .Thus an
alternate statement of (All) is

(-)K P x & ...p II, (-)K 0 (A13)

which leads to a convenient expression for the probability of emitting nm',

6'„=gg &p,p, l s I p,p„q, ~ .q„, q,
' ~ ~ q„'& &q, ~ q„, q,

' ~ q„',p,p, l sip, p, &

~n &n

0 "
rr,.„('&K ~, q, "-q„q," q„ II',.„(-&K ~, 0

X — 0 — in K gl % ' '&n &1
'''

&n ~iiI
&n

x M*(k', k')M(k, k')
a = n~ =a'=a~ ' = o

(A14)

where the Q& and g& denote summations over m and nn-part'icle phase space; with this notation, the
&n &n

closure statement reads

Z Zlq, "q.&&q.".q„l= Z Zlq, '"q„'&&q,'" q„'l=l.
n=o ~n n=o Tn

One may now invoke closure, and the simple commutation property of the in-fields, to rewrite (A14) in the
form

2 n n

5 ~ 0
(A15)

where it is understood that the Klein-Gordon operators K —= p,
' —8' act upon the coordinates freed by the

functional differentiation. Inserting the pion source dependence of (A10), one obtains

D(+) ' K
~k~

i
~~~

K D(+)

xexp i ktD, [g,A] k —i I
kt' D, [g,A] k'

V 0
(A16)

suppressing dependence upon all other coordinates (including the Fourier integrals over nucleon coordi-
nates which provide four-momentum conservation in M and M*), as in the replacement of (A12) by (A10).

From (A16) it is a straightforward matter to calculate pion cross sections and their inclusive moments.
A simple representation of the quantities of (A16) yields

dz, "dz . " 5 tt'n =
2

~ ~ n+1 ~ n+y eXP &Zy 5k
K ' D(+~K k~

+ iZ2&~l &kg I K ' D(+) K
5kITS „Zl g Z2 4

x exp i k~D, g,A k —i k~'D,* g,A k'
4 0

(A1V)

where the z,~, contours of (A17) circle the origin. This is a convenient form, for the functional differen-
tiation operations may be performed exactly, "

where

dz "dz t' 2F
~ . +y t~ +y exp -»ln & -z,z, =2— d e '" exp -Trln 1 -e

7T Jo
(A18)

Q=-D(+) KD, [g,A]K D(,)' KD,*[g,A]K,
and the superscript T denotes transpose, & xl D&+) ly& =D&+)(y —x). A slightly more convenient represen-
tation for 6'„ is obtained by introducing fictitious sources y»(cv),

( . ;exp[-Tr ln(1 — 'e~Q)]=ex pli Q exp i e'~ t p, q, (A19)
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and expanding the right-hand-side exponent of (A19}, so that

1 / . 6 6
(P„=—

t
exp( i-Q (i y, p,nt ( ~ &p. ~y. ' '

~, ,=0

2
—Og X-0

or

n

exp l -T»n(1-&Q)]
I g=. . (A20}

From (A20) all pion-pair quantities may be
(formally} obtained; e.g., I'0 =1, representing
elastic proton scattering, while

and

(P, = Tr(Q) (A21)

(A22)

Q (P„=exp[ —Tr ln(1 —Q) ]
n=0.

(A23)

The second term of (A22) corresponds to the cross
terms obtained when calculating the

~
amplitude~'

for two emitted pairs of n' and n, and is re-
quired by the boson symmetry of the amplitude
under interchange of the two n', or of the two n. .
Such terms will perforce appear in all higher P„,
in addition to the "Poisson" terms, (I/n! )(Tr[Q])",
for the latter are statements of independent pro-
duction of nn', and of nm . Important averages
computed from (A20) are

neglecting, in the exp[-Trln(1 —Q)] factor of
(A23) and (A24), the nucleon configuration space
coordinates as they appear in Q; but one then en-
forces four-momentum conservation in the inte-
grals over the remaining nucleon coordinates,
suppressed in (A23) and (A24), but needed when
computing specific cross sections. Thus the "dif-
ferential multiplicity" ( v) defined" as the ratio
of (A24) to (A23), and representing the number of
m n pairs emitted for specified final proton mo-
menta P„P4 is approximated by the same ratio
omitting the exp[ -Tr ln(1 —Q)] factors. A further
but similar approximation neglects the nucleon
configuration coordinates in Tr[Q/(1 —Q)], but
"by hand" allows P, +P, —P, —P, 0, thereby rep-
resenting in a model-dependent way the missing
four-momentum taken up by pion production. This
approximation is too convenient to be resisted,
and we shall adopt it in order to display the re-
sulting approximation for ( v),

(v)-Tr Q (A25)

1
Q n(P„= Tr Q
n=l

exp[-Tr ln(1- Q)] .

(A24)

It must be stressed that expressions such as
(A23) and (A24) are defined for specified final pro-
ton four-momenta (and spins), and remain to be
integrated over the suppressed, dummy configura-
tion-space nucleon coordinates, which serve to
express over-all conservation of four-momentum.
One can trace this dependence to the nucleon x, y
coordinates of F„, which then appear in A„and
hence in Q. In a true soft-photon description,
such dependence disappears in the infrared limit
k& - 0, but for nonzero VM mass this is not pos-
sible. All the arithmetic complications of the
simple bremsstrahlung model stem from our in-
ability to conserve four-momentum in a simple
way, viz. , the discussion of Sec. III, and the av-
eraging approximation of Ref. 20. In either case,
one settles upon the simplest approximation of

an expression which depends only on the actual
(experimentally measured) proton momenta p„
p, , p„p, appearing in Q. Equation (A25) shall
be compared (see below) with the corresponding
prediction, made in the same spirit, of Ref. 20
[Eq. (11) of Ref. 20]:

( v) = -2 y Q e (,E(t„).
There is a simple, exact way of obtaining the

one-pion (e.g., w+) distribution function from
(A24). When integrated over the phase space of
both final nucleons (including spin summations
and exact four-momentum conservation), (A24)
defines a one-pion inclusive cross section o,

(A26)

c=g no„= bing„,
n=l 4 n

where f denotes all final-state proton summations,
with appropriate care taken in the passage frord.
probability to cross section. Considering D&+& and
D&~+& in Q as distinct functions, one sees that
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gn(P„ is given by a sum over all powers of inte-
grals over D&+&(k),

gn(P„= d4ko((k) D(, ) (k)

gn(P„= o.(k)+2 d4k'a(k, k')D(+)(k')+' '
(+) 4

(A27)

However, it is clear that

j) -
( )

Qn&P„c Pn(P„,

and therefore [5/5D&+)(k)] [+no'„] cannot be iden-
tified with 2~do/d'k. Inspection shows that the
correct definition may be g&ven by

(A28)

for the parametric A. integral just restores the
correct counting. With the aid of (A24) and (A25),
one easily obtains

do " 52~, = - exp[-Tr ln(1- Q) ] (A29)
4 (+)

or

do
d'k 5D, (k)

(A30)

+ d4k, d4k, o.(k, , k, )D(+)(k,)D(+)(k, )+ ~ ~

4

d3k "dk, dk
o, (k)+ ' ' o, (k, , k, )+ ~ .

260 2(d~ „2co 2

and hence

servation that the exclusive nm' cross section o„
is proportional to an n-fold integration over
D&,&(k,) ~ ~ D&,)(k„); hence the right-hand side of
(A30), when integrated over the exhibited momen-
tum coordinate k, must yield Q„no„, thereby iden-
tifying d&r/d'k I.t must be noted that (A30) is cor-
rect as it stands only if the linear A approximation
to D, (g,A) is made, so that Q depends only upon
the D&, &

(and D&,)) factor exhibited in (A18). If this
approximation is not made, internal D&, ) (and D(, &)

dependence, contained in the virtual pion lines of
D, (gA) [and D,*(g,A)] will be present, in which
ease the right-hand side of (A30) must be replaced
by the "partial" functional derivative with respect
to the explicit D&, ) (or D&, &) dependence of Q.

The complexity of expressions of form (A29),
even with a model-dependent way of handling ener-
gy-momentum conservation, is so great that one
may well despair at the problem of evaluating the
multiple meson integrals contained in (A24), not
to mention the final proton summations involved
in passing to the one-pion-inclusive cross section
of (A29). Fortunately, a marked simplification
occurs in the narrow-resonance limit, F ~x gy 0,
where all Tr[Q"], n~ 2, vanish. This ean be un-
derstood physically by recognizing that the origin
of these terms lies in the symmetrization of final-
state pion amplitudes; in the limit of stable p, all
such cross-term contributions must vanish, for
the pions emitted (and the formalism forces pion
emission) from a long-lived p, are, in principle,
distinguishable. With (A18), and retaining only
the linear A dependence of D,[g,A] (appropriate to
the simple bremsstrahlung model, since every p,
emitted by a nucleon can then only decay directly
into a pair of pions), it is easy to show that

where o„, = g„",o„ is the total cross section ob-
tained by final proton summation over (A23).

A somewhat simpler derivation of (A30), which
emphasizes its generality, proceeds from the ob-

2

TrQ = ', d~k A„(k)A, (k)g„,(k),

where

(A31)

and

q, (q)= f q'qq)~, ~(.q, ) f q'qq)i. i(q)(q -q).(q. -q), q(q-q -q) (A32)

A k =' ' k+m -;rm
P P

e-ik x~ 1 3 + e-fk x2
k P, kP, q

k ~ P2 k'P4 (A33)

For the purpose of illustrating how momentum conservation is in principle maintained, nucleon coordi-
nates appropriate to the simplest eikonal model (x, = y„x,=y, ) have been temporarily included in (A33).
The expression for A„(k) is similar, except that the configuration coordinates of (A33) should be replaced
by another set of dummy variables, x,' „which enter into the integrals of M*. The xy 2 dependence of
(A33) contributes both to the over-all four-momentum conserving 5 function of M, and to the shift of nu-
cleon momenta on internal lines [e.g., the replacement of M,(p„p„p„p,) of (1) by Mo(p„p„p, +k, p, ), if
the VM is emitted from nucleon leg P„etc.]; this latter effect is neglected in the simple (soft) brems-
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strahlung model. For example, an eikonal amplitude containing a single VM emitted from a nucleon (and
subsequently decaying into a pion pair) will require the integrals

J) d'x, JI d x, exp[ix, (p, -p, )+ix, (p, -p, )]T(x,—x,)A„(k)

=(»)'5(P, +P2-P3-P4-k)
k

' -k.' ~(Pl-P3-k)+ k.'P -k.'P T(pl-P3)

= (2v)'5(PP —k) V,(k)f'(P, —P,)

in the soft VM limit. More complicated x dependence can easily be constructed, but the essential property
of these integrals will always be to provide the necessary 5(QP -gk) multiplying, in the SVM limit, prod-
ucts of factors V„(k). If one adopts the most convenient approximation of neglecting the x dependence of
A~(k), and simply writing

Aq(k) =gV„(k)(m p'+k' —iI'mp)

one must face up to the problem of providing an alternate way of generating, "by hand, " the necessary mo-
mentum conservation.

In this spirit, as in (A25), the evaluation of (t„,(k) is easily accomplished by an appeal to covariance; for
k~)„„(k)= 0, and hence the function y(k') of the expression (f„„=5„„$(k')+k„k„y(k') is given by y = -(1/k') (j).
Note, however, that y does not enter into the expression for Tr[Q]. The calculation of (j) is simplest when
the pion mass vanishes, and one finds (II)(k') ~„=,= -vs'8(-k'), a positive quantity restricted to timelike k„.
To complete the evaluation of (A31),

2g2
~

d kp(k )Q„V„(k)V„(-k)
(2v)6 J (m 2+k&)2+m 2I2

we refer to a previous calculation [result (11) of Ref. 20], which yielded

(A34)

,
~

d'kv„(k)V„(-k)
J k +

where e;,-=+1 and

= -iy(M') Q ~„F(t„), (A35)

Pe;~F(t; ) =F(t„)+F(t„)+F(u„)+F(u„)-F(4m' —s„)—F(4m' —s„).
Here, y(M') =(g'/8v')In(1+p, '/M'), F(z) =-1n(1+0.4~x~), and the t», t„, u„, u», s», s„denote appro-
priate nucleon invariants, while p,, represents a simple covariant cutoff limiting the magnitude of the SVM
momenta. The absorptive part of (A35) yields

—', g'(2w) ' f d')'5(k'+I') P V~()) ('„(-k) = -y(M')Q s;;)P(t ~),

and permits (A34) to be rewritten as

(A36)

TrQ= — ', Q e;;F(t,,) f d('(j)(-&')y($')[(m ' —(')'+I'm ']
0

(A37)

In the narrow-resonance approximation, I [x'+ I'm p'] '~r, —(v/m~)5(x), and hence (A37) becomes

TrQ =™,[-2y(mp')P e;,F(t;„)], (A38)

where A,
=—lim(vg, '/m pl ) ~z,. With a redefinition of coupling constant, (A38) is just (A26).

With the continued neglect of all Tr[Q"], n ~ 2, one may apply the techniques of the previous two para-
graphs to obtain, from (A23) and (A24), exactly the distributions (3), (4), (6), (7); e.g., (A23) is replaced
by exp[TrQ], and &z„„becomes f exp[TrQ], where f again denotes summation over all appropriate nucleon
parameters, including the configuration coordinates which produce exact four-momentum conservation,
These statements are valid in the narrow-resonance limit, where it is not difficult to show that every
term Tr[Q"], n~ 2, vanishes. For example, Tr[Q'] may be written in the form
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2 2

f d'k, ~ d'k, k«(k, )A„"(k,)k«(k, )A;(k,)k«, « (A39)

where

k«„«.(k„.. . , k, )=~(k'k'n„&(k') "jk'k'D()(q')(k' —k')«(k —k'). (k, —k')«(k' —k').

x 5(k, —q, —q, )5(k, —q, —q, )5(k, —q, —q,)5(k, —q, —q, ) .

Because the simple reality structure, A„(k)A„*(k), of (A34) is not present here, counting powers of I' and

g,
' shows that (A39) vanishes with these quantities (one must also assume that expressions of form

lim~ o(1/g)[z5(z)) =0); and the same property is generally true for n&2.
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