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Using the simple multi-Regge model of Chew and Pignotti, we obtain an acceptable fit to
the bulk ofPp annihilation data. The parameters of the fit are consistent with 0'

p
—o.

pp~s~

I. INTRODUCTION

Let op'p' and o"' denote the total PP and pp cross
sections. The difference Op@ Qpp is well known
to be positive at nonasymptotic energies. "A

Regge analysis of imaginary part of the forward
elastic amplitude, including the usual neglect of
isospin dependence and assumptions concerning
exchange degeneracy, leads one to the conclusion'

&tot tot~ +~ (0) (1)
PP PP

The data'' also indicate that ap'p' -ap'p'=crpp, where
o'r =g„,v» „, Tin.g' has argued on the basis
of the generalized multi-Hegge model (MRM) devel-
oped by Chew, Goldberger, and Low' (CGL) that
the annihilation channels constructed from baryon-
exchange diagrams (Fig. 1) can generate the differ-
ence (1) via unitarity. However, it remains to
show this explicitly. That is, can a set of ampli-
tudes such as shown in Fig. 1 both fit the annihila-
tion data and sum to give the result (I)'P This is
our concern in this paper.

II. THE MODEL

For simplicity, we adopt the Chew-Pignotti' ap-
proximations to the MRM, and write down the
cross-section formulas for the annihilation pro-
cesses PP-mw mm'kn'. To start with, we assume
that only one B= 1, I= —,

' trajectory with intercept
o.~ is present. We also assume duality, so that
only pions are considered present in the final state.
For k=0 (no v"s), only a single graph contributes:
the one in which the charged and neutral Reggeons
form alternate links in the multiperipheral chain.

For k ~0, one must add all the permutations re-
sulting from a distribution of the m' vertices along
the chain. The result is that there are (2m+k)!/
(2m)!k! graphs. The "strong ordering" approxi-
mation '" says that these amplitudes do not inter-
fere.

Next introduce the SU(2)-invariant internal cou-
plings, (-', )' 'g (for m') and (-,')' 'g (for v'), and the
end couplings (—',)' 'G and (—,')' 'C'. The kinematic
approximations of Ref. 6 lead to the cross section

formula

2 y)2m+ k-2
G4e(2 exp -2)r (g )

( )0 ( )2m
(2m+ k —2)!

(2m + k)!
k! (2m)! (2)

where I'=In(s/M'). In Eq. (2) the first bracket
represents the cross section due to each graph,
the second bracket the number of graphs.

We can also sum over k to find an expression for
the topological cross section

cm= Z +Tp m(m w+)a~a'
A'= 0

The result is
(2g 2y')2&it-2 4 (2 g2y)2%-&

9 (2m —2)! 9 (2m —1)!
(2 g 2y')2m

9 (2m)!

The total annihilation cross section is
4 ( 2 Og -2+ g 2) F

m=g
(4)

ignoring terms of O(e ('~'!~'").
Finally, the charged and neutral average multi-

plicities may be obtained from Eqs. (2) and (3):

(n~) = Q(2m)cr„/(r~

2 g2y+ 4

(n,)= Q Qka„,/(y~
m=o k=o

g 2p+

(5a)

(5b)

III. FITTING OF THE TOPOLOGICAL DATA

The extreme relativistic approximations inherent
in the formulas (2)-(5) suggest that comparison
with experiment be done at the highest energies
available. If we also require that there exist topo-
logical data with good statistics at the energies
considered, we are inevitably led to confront our
model with the data at 3.28 GeV/c, ' 5.70 GeV/c,
and 6.94 GeV/c. "'" We deal with two types of
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FIG. 1. The process pp pions with multi-baryon
exchange.

o.s = o.„„(0)= -0.38 .

If we then also impose v ~~ s"~ ' ', the con-
straint

2os —1+g'= o. (0) =0.4 (7)

follows from Eq. (4). The constraints (6) and (7)
fix g ' = 2.16. This attempt ended when the "best"
fit obtained through varying G~ gave a X' = 81 for
8 degrees of freedom (d.f.).

Solution l. As a next step, the "bootstrap" con-
straint [Eq. (7)] was relaxed, but Eq. (6) was re-
tained. A best fit was obtained for g'= 1.76
(y /d. f. =10.9/7). This leads to o~m~ s ', badly
violating the bootstrap.

data in this work: (1) topological cross sections
as defined above, and (2) constrained cross sec-
tions [pp- m(w s'), which is quadruply constrained
("4c"), or pp-m(s w')+s', which is singly con-
strained ("lc")]. Since we are interested in seeing
whether the annihilation process can indeed gener-
ate the s "~'" ' behavior of o~~'-o~~', we would
like to compare our formulas with the data repre-
senting the bulk of the annihilation cross section.
Our procedure has been to obtain the parameters
which provide a best fit to the topological cross
sections, and then to compare the resulting pre-
dictions for the constrained cross sections with
experiment.

Given three energies and four topological cross
sections (m =1, 2, 3, 4), there are a prior"i twelve
data points. However, the 8-prong data at 3.28
and 5.70 GeV/c were not included for want of suffi-
cient statistics, and the 2-prong data at 6.94 GeV/c
were eliminated because of possible contamination
by the presence of an nn pair in the final state. "
Thus our fitting is done to nine data points.

In an initial attempt, z~ was fixed by identifying
the baryon trajectory with the N, which is domin-
ant in the two-body reactions mp- pm and PP- m w'.
A linear extrapolation (from the nucleon) of the N„
trajectory gives"

m=4

0 I I I

4 5 6

p b(GeV/c)

I I I

4 5 6

P1 b
Gev/c)

FIG. 2. Fit to topological cross sections o.

Q~-p ogp (+ +$p+p. The solid curve is solution. 2.

Solution Z. We then relaxed the "intercept" con-
dition (6) but retained the "bootstrap" constraint
(7). The resulting best fit, with parameters g'
= 1.68, o.~ = -0.14, and G = 240, is also acceptable
(X'/d. f. = 13.0/7).

A graphic comparison of solution 2 with the ex-
perimental topological cross sections' is presented
in Fig. 2. The agreement is pleasing, especially
when one considers the order-of-magnitude varia-
tion in the cross section, and that the MHM curves
follow pretty well the very different qualititative
behavior of the different topologies.

IV. CONSTRAINED REACTIONS

Substituting the parameters for solutions 1 and
2 into Eq. (2) with k =0, 1 leads to predictions for
the constrained reactions. " These are shown in
Fig. 3 for solution 2. There is good quantitative
agreement with three of the larger cross sections
(o, , and o, , at 3.29 GeV/c, and o, , at 6.94
GeV/c). There is also qualitative agreement with
the consistent dominance of v, over o,. [From
Eq. (2), o„,/o„, =-,'g'F for mR 3.]

Since the present work is concerned with the
gross properties of the annihilation cross section,
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FIG. 3 . Constrained cross sections resulting from
solution 2.

and the constrained cross sections account for less
than —,

' of cr~&~, we do not at this time concern our-
selve s with the lack of ove r-all quantitative agree-
ment for o p and 0.

~

MU LTIPLICITY

The average charged multiplicity may be calcu-
lated from Eq. (5a). For solution 2, the calculated
multiplicities are 3.83 at 3.28 GeV/c, 4.28 at 5.70
GeV/c, and 4.50 at 6.94 GeV/c, in very good agree-
ment with the experimental values 4.0 + 0.3,' 4.3
+ 0.2,"and 4.5 + 0.2" ' "respectively.

VI. DISCUSSION OF RESULTS

We consider here the physical interpretation of
solutions 1 and 2 ~

The parameters of solution 1 would have o.

~ s ', contradicting the bootstrap hypothesis.
A behavior o~~' -o~' ~ s ' is very difficult to under-
stand theoretically. The possibility of a daugh-
ter (presumably of the Pomeranchukon) does not
arise, because the Pomeranchukon has an O(4)
quantum number M = 0, and its daughters lie at
-1, -3~ ~ ~ ~. Thus the leading exchange with inter-
cept 0 is the I= 1 m-A. , trajectory. An I= 1 exchange
is very difficult to reconcile with the annihilation

+ 2l(o„—od +4g„~ I '-1 (8a)

In the approximation g„~'» —,'(n„—o.~)'= 0.06, we
obtain

o!A oN o!6 (gNN +g66 +EN' (8b)

We can then identify gNN' +gzz' +gN z' with our
value g', owith o (0), and —,'(o, +&~) with our

being responsible for o~~'-a~"~', because then we
would have „—~ =v„——o„~=—(o~~ —o»)= —o mh, atot tot tot tot

meaningless result. It is possible that the kinemat-
ic and other approximations which are made in
the Chew -Pignotti approach are too severe in the
energy range considered, and that a best fit to fu-
ture data at higher energies would yield a value of

g ' closer to 2.16, thus satisfying the bootstrap con-
straint. But for the present, we reject solution 1 ~

In accepting solution 2, we must find some way
of accommodating our intercept e~ = -0.14. What
is the experimental situation 'P A best fit to the
energy dependence of the backward v'P data (der/

du)„, between 6 and 17 GeV/c (Ref. 16) yields an
effective intercept o, (0) = -0.20+0.05. The same
experiment established the dominance of N over
exchange, and hence we can identify this value as
the intercept of the N (Ref. 17) trajectory, and
also consistent with our result. Recent higher-en-
ergy data" seem to confirm this departure of the
intercept from the value -0.38 obtained" by linear
extrapolation from the Chew- Frautschi plot.

Since eB =-0 ~ 14 lies about halfway between
-0.38 and a~(0) = 0.14, one may also consider the
possibility that solution 2 mocks up the situation
where both N and 6 occur in the multiperipheral
chain. We know" that b, is suppressed at the end
links, but there is very little evidence that the two-
Reggeon-pion couplings Nhw and hAm are small";
indeed, we know that when both, N and b, are on
shell at least the N4m coupling is comparable to
the NNw coupling (the "reciprocal bootstrap"").

The cross-section formulas (2)-(4) are incom-
plete if 6 is present; not only are there two addi-
tional g parameters, but the complex combinator-
ics for I= —, preclude the possibility of simple for-
mulas . Nonetheless, we may examine whether our
results represent some average over the contribu-
tions of the two trajectories .

As a simple example of a model which would
yield our result, we may consider the bootstrap
condition of the CGL mul tipe riphe ral equation'
generalized to the case where two trajectories
are present. " Neglecting isospin coefficients, one
obtains for eA, the t = 0 intercept of the leading
trajectory dominating the absorptive part due to
annihilation,

2 2
+A +N + ™6+NN
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effective baryon intercept o~ = -0.14. In a linear
approximation to the trajectories —,'(n„+ n~)= -0.13
(Ref. 13), consistent with our value of ns.

However, in view of all the uncertainties sur-
rounding the trajectory intercepts, it is our dis-
tinct preference at this time to simply conclude
that the result a~ =-0.14 is consistent with -0.20

+ 0.05, the N intercept found in fitting the energy
dependence of the backward m'p scattering.

Our main goal has been accomplished: We have

shown that the MRM provides a fair fit to the anni-
hilation data saith Parameters which mould sustain
the difference o,~'- o~",'ct: s "~~'~ ' observed at very
high energy.
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