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A bootstrap approach is shown to reproduce a number of the results of hadronic statistical
thermodynamics without the use of thermodynamical assumptions; in particular, we demon-
strate a possible dynamical origin for the crucial constant- “temperature’” Boltzmann factor
in single-particle distributions. In our model, a fireball decays sequentially, each vertex
in the decay chain being described by an asymptotic vertex function derived from a bootstrap
theory of infinitely composite particles. When combined with a diffractive model for fire-
ball production, the bootstrap description leads to good agreement with the qualitative

features of inclusive reaction data.

I. INTRODUCTION

Statistical thermodynamics has proved to be a
remarkably successful phenomenological tool in
the study of strong interactions at high energies.’
This approach has given reliable predictions for
particle yields over a wide range of energies and
masses and it seems to lead to a mass spectrum
in agreement with experiment. In addition, it cor-
rectly predicts the qualitative features of single-
particle momentum distributions in inclusive re-
actions.? Nevertheless, the basic assumption,
that of the applicability to high-energy collisions
of techniques adapted to the study of weakly cou-
pled systems in thermal equilibrium, remains a
mysterious one indeed.

From a phenomenological point of view, it is
this latter assumption, as embodied in a factor of
the form

exp[-B(B° +1?)'?], 1)

which has been the key to the success of the model,
for this factor contains the “maximum temperature
of hadronic matter” (¢g8)~!, it automatically pro-
duces the exponentials which are so characteristic
of inclusive spectra,®? and, when combined with

a mechanism which ensures that particles are
produced from objects (called fireballs) which
move only forward or backward in the center-of-
mass system, it leads to a transverse-momentum
cutoff. It is noteworthy that, in the thermodynamic
model,! it is simply assumed that fireballs move
purely longitudinally.

We present here a model in which both the fac-
tors of the form (1) and the transverse-momentum
cutoff follow from dynamical considerations, with-
out thermodynamical assumptions. The basic in-
put is the assumption of peripheral or multiperiph-
eral production of massive objects which spew out
sequentially the particles observed in the final

[K=2)

state, each vertex in the decay chain being de-
scribed by a bootstrap model.

The notion of the bootstrap has played an im-
portant role in the development of the thermody-
namical model. For example, it is used in Hage-
dorn’s derivation of the hadronic mass spectrum.
Furthermore, Hagedorn has argued that the ex-
ponential falloff of elastic form factors, a behav-
ior obtained from theories of infinitely composite
particles, is also a consequence of the thermo-
dynamic model.! The results of Frautschi* and
Hamer,® to be discussed below, in conjunction with
the present work, suggest that perhaps the boot-
strap idea is central to the thermodynamic picture
in the sense that many of the features of the latter
are general properties of bootstrap solutions.
However, we prefer not to speculate on the validity
of the thermodynamic model or its assumptions.
Instead, we present an alternative set of ideas
which leads to similar predictions.

The combination of statistical notions with boot-
strap techniques has been quite successful in re~
producing thermodynamic-looking results. In par-
ticular, Frautschi* has derived the hadronic-
mass spectrum predicted by Hagedorn'® indepen-
dently of the assumption of thermal equilibrium.®
Exploiting further the statistical bootstrap,

Hamer 5 has derived, from approximate phase-
space calculations, a Boltzmann spectrum for cer-
tain inclusive reactions. In Hamer’s work the dy-
namical assumption is that the matrix element is
unity, whereas in the present work the dynamical
input from the bootstrap leads to matrix elements
quite different from unity. Remarkably, either
assumption leads to thermodynamiclike spectra

in the fireball decay; distinguishing between the
two assumptions awaits further exploration of the
models. One important difference between the re-
sults of the Frautschi-Hamer statistical model
and ours is that the decay of very large fireball
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masses is more strongly suppressed in the latter.
The multiplicity growth per fireball predicted by
our work is therefore slower than in the statisti-
cal model. Qur results are consistent with a con-
stant multiplicity per fireball as s increases; a
logarithmic or faster multiplicity growth must
come from a growing multiplicity of fireballs.

Qur plan of presentation is to first present a
brief review of the bootstrap model (Sec. II) and
then to apply these ideas to the decay of a fireball,
with particular attention to the case of pion pro-
duction (Sec. III). In Sec. IV, these results are
combined with a phenomenological description of
fireball production, thus providing a qualitative
picture of inclusive cross sections. The relevant
calculations are carried out in the Appendix. Be-
cause of the number of assumptions necessary to
extract the inclusive cross sections and because
of the uncertainties involved in the fireball-pro-
duction mechanism, a detailed comparison with
the data is not really a test of the key ideas in this
work, so we attempt only to explain the qualitative
features of the data. Finally, we offer a number
of speculations on particle production at very high
energies (Sec. V).

II. THE BOOTSTRAP

A bootstrap theory” of strong interactions de-
veloped by one of us provides an asymptotic de-
scription of the interactions of infinitely composite
hadrons in the limit in which the Mandelstam vari-
ables characterizing a given reaction are large in
absolute value. The predictions of the theory are
contained in a tree theorem for the asymptotic am-
plitudes: Simply sum all tree graphs and describe
the trilinear vertices of these graphs by a certain
rapidly decreasing vertex function I'(p,% p,% ps?)
with known asymptotic behavior. These n-particle
amplitudes satisfy the exact unitarity conditions
asymptotically and they describe infinitely com-
posite particles. The self-consistent solution for
T reads, in the limit in which at least one of the
p;® becomes large,

T(p.% D% bs°) ~P(p % P35 bs”)
Xexp[—ag(plz,pzz, psz)]a @)

where P is power-bounded, a is a constant, and g
is a function that satisfies the following conditions:
(i) £=0 when at least one of the p;? vanishes;
(ii) if any one of the three variables, say p,?
becomes large, then g behaves like (p,2)!/* times

a function of the remaining two variables;

(iii) if two variables, say p,% and p,? are large,
then g behaves like (p,2)/4(p,2)/* times a function
of pg%

(iv) if all three variables are large, g behaves

like (p12)1/4(p22)1/4(1)32)1/4.

According to the tree theorem, the wide-angle,
high-energy elastic hadron-hadron amplitudes are
related to the hadron form factors F by the expres-
sion (neglecting particle labels)

A(s, t,u)= F2(s)+ F2(t)+ F2(u), (3a)

where the three terms on the right-hand side re-
sult from the three possible tree graphs in a two-
body reaction. The form factor is predicted to
have the asymptotic behavior

F(t)~exp[-c(=t)"*]. (3b)

Both (3b) and the generalized Wu-Yang relation,
Eq. (3a), give an excellent fit to the nucleon form-
factor data and to the wide-angle pp elastic scat-
tering data.® Comparison with data suggests that
the asymptotic form in Eq. (3b) is valid for |¢{|>1
BeV?, giving us a crude idea of where asymptopia
is.

The model also makes a connection with the
deep-inelastic e "p data; in fact, the structure
functions in this theory exhibit a partonlike be-
havior.® This follows from the observation that
the vertex function T'(Q?, p,%, p,?) is a rapidly de-
creasing function of the heavy photon mass (-Q?)!/2
if and only if p,%, p,°+#0. Hence internal lines in
tree graphs with zero virtual mass which couple
to heavy photons play the role of partons. The ob-
served small value for the ratio o, /0,, as well
as approximate scaling, follow from these ideas;
other consequences are being explored.

III. A MODEL FOR FIREBALL DECAY

Let us apply this theory to high-energy multi-
particle production. We take seriously the experi-
mental observations indicating that the produced
secondary particles originate from jets or fireballs,
and use the bootstrap theory to derive a momentum
distribution characterizing the “decay” of a fire-
ball. In order to confront the data, however, one
must also have a description of fireball production.
But such a description requires more information
about the functions P and g [see Eq. (2)] than is
now known. Thus we are forced to adopt a phe-
nomenological description of fireball production;
this is carried out in Sec. IV.

What is a fireball? We identify a fireball with a
line in a tree graph (in the sense of the tree the-
orem) with a timelike momentum pyand a large
mass M?= p?. We further make the quite natural
assumption that a fireball decay proceeds in the
manner illustrated in Fig. 1; arguments to support
this assumption in the framework of the bootstrap
model are given below. Shown is a fireball of
mass M, which decays into z final-state hadrons
with momenta p,,p,, ..., p, in the rest frame of
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M, through a sequence or chain of decays. We em~
phasize that the internal lines in our tree graphs do
not necessarily correspond to one-particle states,
and we do not wish to imply a resonance-decay-
chain mechanism.

At the first vertex in the chain, a fireball of
mass M, decays into a fireball of mass M, plus a
stable particle with momentum P, and mass y, .
The vertex function for this process is given, from
the bootstrap theory, by

r (M12, M22’ “12) =P(M12’ M22y MIZ)
Xexp[ ~b (le)(Mlz)lM(Mzz)lM] R
(4a)

where P is a power-bounded but unknown function,
and b(u?) is a function of p? satisfying
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FIG. 1. A typical decay chain of a fireball of mass
M, decaying into » final-state hadrons. py,p, ...,p, de-
note their momenta in the rest frame of M; .

b(u2)~a(u?)'* as u?— o, (4c)
and
Reb (u2) > 0. (4d)

It has been assumed in writing Eqs. (4) that the
fireball masses are sufficiently large to permit
use of the asymptotic form for the vertex.

The amplitude for the particular tree graph

b(0)=0, (4b) shown in Fig. 1 is then given by
J
n-1
A(My; by, 51? “'2;52; <M, ’ﬁn)=H P(IWJ 2er+12: I‘l‘jz) exP[—b(“’jz)(ﬂ/[j 2)1/4(1‘/11'”2)1/4] . (5)
351

The total amplitude will be the sum of the amplitudes for all possible tree graphs.

To simplify the computation from here on, it is helpful to assume that all of the » —~ 1 decay products in-
dicated by dashed lines in Fig. 1 are pions. Thus we include the important case of a fireball with baryon
number one which decays sequentially into #z — 1 pions and one nucleon. With this simplification, we can
write the amplitude in Eq. (5) as

n-1
A(MI;EU e ’ﬁn—l;Mn ,5,’)=B(Ml;§1, ] ﬁnd;Mn ’ ﬁn) eXp[—b Z (Mj2)1/4(%+12)1/4], (6)
i=1

where b =b(u?) is independent of j because we have
chosen the emitted particles u; to all be pions,

and the function B is just the product of all

P(M;% M, % u?). The real part of b will be de-
noted by 8, which is also a function of u2.

To find the total amplitude, we observe that
while tree graphs topologically distinct from the
one shown in Fig. 1 are allowed, they are relative-
ly unimportant. We illustrate this point by com-~
paring the contributions from the following two
trees (see Fig. 2). Every vertex in graph 2(a) has
only two heavy legs, but one of the vertices in
graph 2(b) has three heavy legs. From Eq. (4),
we see that the contribution from graph 2(b) is
small relative to that from graph 2(@).

Thus, as a first approximation, the total ampli-
tude for the fireball M, to decay into (z — 1) pions
plus one relatively heavy particle M, is simply the
sum of all tree graphs that are topologically
equivalent to the one shown in Fig. 1, that is,

AT: EA(M1;§i1’§i2’ ..

"ﬁi,l_l;Mn, —ﬁn), (7)
P(i)

where the ordered set of momenta

r
(9, ,P;.,..-,0; _,) is a permutation of

> 17572 > el . .
(P1,P2y - - -sD,-y) and the summation 3, ;, is over
all such permutations.

In the Appendix, the summation over the tree
graphs is performed and the phase-space integrals
are approximated. Heavy use is made of the ap-
proximate recursion relation

szl‘lj+1+(§j2+ /J'Z)”Z, 8)

justified in the Appendix. The key observation in
our work is that the one-fourth-power behavioy in
the asymptotic form for the vertex function is pre-
cisely what is needed to give a Boltzmann-like
dependence on the momenta of the emitted parti-

Kl H2 K3 / \ B3
B p2

FIG. 2. Two topologically distinct tree graphs corre-
sponding to the same decay process My — iy + ug+ U3
+ M.
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cles, which, as we have seen, is the reason for

the phenomenological success of statistical thermo-
dynamics. To see the Boltzmann factor with con-
stant “temperature” emerge, simply note that for

(By% + )< My, 2,
it follows that
exp[-b (Mj 2)1/4(Mj+ 12)1/4]
~ exp(~bM,, ;) exp[~zb (B, + u?)?].
©)

The inclusive pion spectrum for fireball decay
into pions plus a nucleon is found to be [Eq. (A20)]

do = . =2 2\1/2
Ed—gp (M) =35 g exp[-B(2i = 1) (P> + p?)'?],
i=1

(10)

where g; is a slowly varying function of ¢ given by
Eq. (A21), and B is the real part of b. Because g,
grows slowly with ¢, the ¢=1 term in the sum
dominates in Eq. (10) provided |p| is not too small
(=300 MeV); in this case, we obtain the desired
Boltzmann form

dO' (B2 211/2
Ea?j; =g eXD(—(-I-)—;%)——>, (11)

where we have replaced the constant 8 by
Bt =kT. (12)

If the g; are independent of ¢, the series (10) can
be summed, yielding

do _g{1 —exp[-@N =2)(°+ p*)"*/kT];
d’p = 2 sinh[ (p?+ %) 2/kT] ’

13)

an expression intermediate between Boltzmann
and Bose-Einstein distributions. We have not
been able to determine the value of the “tempera-
ture” within the present model, and the approxi-
mate phenomenological result 27 =m,_remains a
mystery to us.

IV. INCLUSIVE SPECTRA IN THE CM. FRAME

The spectrum given by Eq. (10) was derived in
the rest frame of the fireball. To investigate scal-
ing and other properties of observed inclusive
spectra we must examine the effect of the Lorentz
transformation from the fireball frame to the c.m.
frame of the collision; this requires a model for
the production of fireballs. We assume that at
Brookhaven energies single-fireball production
dominates and the fireball is diffractively pro-
duced (see Fig. 3). Since the production is dif-
fractive, fireballs produced with large transverse
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momenta will be damped sharply by the factor e?*
when the c¢.m. energy s'/? is large. Thus all fire-
balls will essentially be moving longitudinally.
This, plus the Boltzmann-like distribution of the
produced pions in the fireball frame, provides the
transverse-momentum cutoff observed in produc-
tion processes.

Before we discuss the detailed fireball produc-
tion mechanism, let us take a simplified case and
see what kind of inclusive spectra are implied by
our model. Consider a fireball of mass M pro-
duced in the forward direction. If s'/2 is the total
energy in the c.m. frame of the collision, then the
velocity of the fireball in the same frame is given
by

1
V= AP S gE 18T 2 T mg?) 4 (M7 =Y,
(14)

where m, is the mass of the target particle. In the
high-energy limit, i.e.,

sY2>> M, m,, (15)
Eq. (14) can be approximated by

v=1-2M?%/s, (16)
which corresponds to a Lorentz factor

y=st2/2M. 1)

If a pion produced by a decaying fireball of mass
M has momentum p, and P, in the c.m. frame, its
energy E/ in the fireball frame will be

Ef =y[(p\2+D.%+ u)% =vp,]. (18)
Introducing the Feynman parameter
x=2p,/s'?, (19)

we rewrite Ef as

f=_€_ . 4(§¢2+M2)>1/2_ ( ....2M2>j|
E YSY; Kx L— x\ 1 5 s

(20)
which can be approximated by
b 2+ “2
Efrimxr Ba B 21
Y @1)
Projectile Fireball Projectile Projectile
: A \\ \\ \\ i , ,
oL . | ;oL
i 1 K YR ’/
Target Torget Target Fireball

FIG. 3. Single excitation of the projectile and target,
respectively. We assume that this is the predominant
production mechanism at Brookhaven energies.
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for
x> 2[(P, 2+ u2)/s]2. (22)

The inclusive spectrum is given by Eq. (10), or

- d | — f
f(S, x,p;)EEd—sqp' z‘zgiexp (@—k%)_E)' (23)

Since the right-hand side of Eq. (21) is independent
of s, we see that the invariant cross section in-
volving a given fireball, Eq. (23), scales for x
satisfying (22). Scaling will thus be observed in
single-particle inclusive spectra if the fireball
production spectrum is s-independent. This sug-
gests a diffractive model. The combination of a
diffractive model with our description of fireball
decay also ensures the presence of a D, cutoff.

For smaller x, Eqs. (20) and (23) predict sizable
deviations from scaling. In fact, a dip at x =0 de-
velops which becomes stronger with increasing en-
ergy s'/2. However, this behavior is restricted
to pions produced from fireballs of relatively low
mass. Higher-mass fireballs will produce pion
distributions peaking toward smaller values of x,
and they will not contribute significantly at inter-
mediate values of x. Thus the resulting x distribu-
tion depends crucially on the fireball production
mechanism.

Detailed phenomenological models of fireball
production have been proposed by Jacob and Slan-
sky '° and by Hwa '* which incorporate the features
we require. In these models, the cross section
for producing fireballs is diffractive (independent
of s). Hagedorn'® describes fireball production in
terms of two arbitrary functions, the velocity
weight functions. When transformed into the
equivalent fireball mass distributions, the phe-
nomenological fits to these distributions are very
similar to the functional forms used by Jacob and
Slansky, namely, a function rising to a low-mass
maximum at about 1.5-2 GeV and falling off as
M2 for large M.

If we adopt any model of this type for fireball
production, we find inclusive spectra very similar
to those of Ref. 10, because the bulk of the data is
more sensitive to the production mechanism of the
fireball than to the details of the decay. We differ
from the Jacob-Slansky model in our description
of fireball decay. Our Bose-Einstein or Boltz-
mann-like form for the decay spectrum should be
contrasted with their Gaussian form. This differ-
ence is reflected in the transverse-momentum dis-
tribution. For example, for intermediate values
of x, we find, assuming a low fireball mass M,
the p, distribution to behave like

exp(-p,%/2MkTx), (24)

while they predict
exp(-p.*/K?), (25)

where K depends on M but not on x. Thus when
the logarithm of the inclusive spectrum is plotted
against x for several values of p,, we predict a
bunching of the curves at larger x, while they pre-
dict more nearly parallel curves.

Another aspect of the data which is sensitive to
the decay mechanism is the multiplicity. We shall
have more to say about this point in the next sec-
tion, but we note that the apparently simple Ins be-
havior of the data may actually result from a com-
bination of mechanisms, for it is found in both the
Jacob-Slansky model and in this model with simple
interpolating functions for g(p,% p,%, ps°) in Eq. (2)
that two-fireball production will predominate over
one-fireball production at sufficiently high ener-
gies, the transition probably occurring between
Brookhaven and ISR (CERN Intersecting Storage
Rings) energies. It is clear that a single-fireball
picture cannot explain the existing cosmic-ray
data, and yet cosmic-ray data together with ac-
celerator data are needed to establish the Ins fit.!?
If the physics really is so different at accelerator
and cosmic-ray energies, it seems unlikely that
a simple theoretical picture will explain the pres-
ent multiplicity data.

While single-particle distributions in the pres-
ent model agree closely with those of the thermo-
dynamic model, the models are definitely not
equivalent. In the thermodynamic model a number
of fireballs are produced simultaneously, even at
accelerator energies. Thus correlations between
emitted pions are expected to be small. We, on
the other hand, predict that, in a given event in-
volving a light fireball, the produced pions should
emerge either all forward or all backward depend-
ing on whether the projectile or the target is dif-
fractively excited. (As noted by Jacob and Slansky,
heavy fireballs move sufficiently slowly in the
c.m. frame that the emitted pions are not as cor-
related.) At higher energies, we expect a forward
cone and a backward cone of produced particles,
corresponding to excitation of both the target and
the projectile (two-fireball production); this is ob-
served in cosmic-ray events.'® If these views are
correct, then two-particle correlations cannot ap-
proach limiting distributions at accelerator ener-
gies. Further, the boiling of hadronic matter in
the thermodynamic model does not give rise to
sizable P, correlations, whereas the decay-chain
model predicts that pions with large p, should be
highly correlated both because of momentum con-
servation and because of the likelihood that a fire-
ball with anomalously large ¢ is responsible for
such pions.
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V. SPECULATIONS ON VERY HIGH-ENERGY
PRODUCTION

The assumption of diffractive excitation is taken
to mean that the excitation spectrum, denoted by
p(M,), is independent of s, except for the shifting
of the phase-space cutoff to larger values of M,.
The growth of (M) with s is further inhibited in
our model by the rapid decrease of the production
vertex, indicated by a shaded square in Fig. 3, as
a function of M,. Moreover, the multiplicity dis-
tribution ¢(M,,n —1), given by Eq. (A16), falls off
very rapidly, more rapidly than a Poisson distri-
bution, with increasing». The average multi-
plicity from a fireball of mass M, is given in
terms of N, the maximum number of pions which
is kinematically allowed, by

N
(n (M), = Z)(n—l o(M,,n - I/EG(Ml,n—l),
n=2

(26)

which grows at most like In(M,). To determine
the average multiplicity, we must average over
the fireball spectrum

(M)ay = f dM p(M)(n (M)>av/ dM p(M),

my

@7)

where M is the kinematic upper bound on the fire-
ball mass. For large s, M, is proportional to s'/2,
If p(M) behaves like M® for large M, one finds the
following bounds on the multiplicity in the limit of
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large s:
<=1, (n)s constant-0(s®*!1Ins)
5>-1, (ny<Ins. 28)

The fastest p(M) can grow consistent with the
Froissart bound as applied to Pomeranchukon ex-
change is (InM)/M, which gives rise to a Ins mul-
tiplicity growth. In the work of Jacob and Slansky,
and Hwa, p(M)~M~2 and we obtain an asymptot-
ically constant multiplicity per fireball. We note
in this regard the recent prediction of Callan and
Gross'* that the multiplicity in e*e~ annihilation
via a single timelike photon is bounded.

The observed multiplicity growth, from accel-
erator and cosmic-ray data,'? more nearly follows
a law of the form

(ny,,®Ins or (n),=s'/*. (29)

We are then forced to the conclusion that if 6< -1,
fireballs are produced with increasing multiplici-
ties as s increases. Perhaps the simplest assump-
tion would be-to argue that tkey are produced by a
multiperipheral mechanism with a Poisson distri-
bution, with average multiplicity

(il ¢ Ins . (30)
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APPENDIX

We consider the exclusive cross section for M, decaying into (n — 1) pions plus a heavy particle, say, a

nucleon,

n-1

_11)! Jdapn @, +M 2)1/2<H

oM,,n-1)

d
2(p, €1“2)1/2>|AT[

+ “2)1/2 (5"2+ M" 2)1/2)

%) -5 5

) (n—l)'C :J 2(p; 2+u2)1 > . 1A Ll” 5( Z-) (B;2+ Mz)”z-E,,>, (A1)

where A ; is given by Egs. (6) and ('7) and
E"=[M"2+ (ﬁl+. v

1/2

+Pn-1)%]

The total cross section for M, decaying into pions plus a nucleon is then given by

c(M1)=ZN) o(M,,n-1),

n=2
where
N=<u'(M,-M)+1

A2)

(A3)

is the kinematic upper bound on the number of emitted pions. The inclusive cross section for M, - m ()
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o

+pions + 1 nucleon is given by

(M) E 1)' Udsp"( x}nz)"z(,mJZ(p +112)‘72>1ATI2
(3 Yoo, F 6,0 rm- @]

>

=P

\j=

or

EC%%(MJ:;I:(;'L—II)' " [(Hj

*i= j#i

n-1
2)1 2>%'A.T|25<M1_Z> (13,2+u2)”2-E,,>} - (a4)
n j=1 Pi=P
To calculate these cross sections, we must express the M; in Eq. (6) in terms of the momenta of the
emitted particles. In the rest frame of the initial fireball M,, energy and momentum conservation provide
a recurrence relation for M :

[Mj2+ (ﬁl +ﬁ2+, .o +I‘)’j_1)2]1/2 =[A4j+12+ (§1+, .o +§j)2]1/2+ (I’)j2+ “2)1/2 . (As)

Insertion of this into the phase-space integrals leads to intractable expressions, so we begin a series of
approximations.

Since pion emission is essentially isotropic in the rest frame of fireball M,, the randomness of the or-
ientations of p,, P,,. .., 13,. tends to prevent the magnitude of their vector sum from growing too large. In
fact, we expect

< » 5 >=nl (V2% n/2[3(0.4 GeVY]V2 = (1.52)2(0.4 GeV), (46)
i=1

where we have incorporated the fact that the observed average transverse momentum of emitted pions is
<0.4 GeV, independent of the energy of the collision and the identity of the colliding particles. Typically,
M; =z 1.5 GeV, and one finds, because of a cancellation of the corrections on the two sides of the equation,
that Eq. (A5) may be approximated to a few percent accuracy by the simpler expression

MJ, = 1Wj+1 + (5] 2, IJZ)UZ, (A7)

p+“

which corresponds to treating each fireball as being at rest in the rest frame of the first fireball. Such a
simplified treatment, of course, must be modified if one also wishes to describe the emission of heavier
particles.

Equation (A7) leads to

E 2)1/4(M+12)1/4~(n l)M +Z> (] _2)(pj2+“2)1/2, (AB)
i= ji=1

which allows (6) to be written as

n=1
A(M1;§19 . "ﬁn-l;Mrnﬁn)=BeXp<bE (.7 "%)(5;‘2"'/‘}’2)1/% . (Ag)
i=1
The total amplitude, given by Eq. (7), then becomes
n-1
Ar=3 B (=05 (G =D, + i) (a10)
Bi) i=1

To further simplify the computation, we will assume that Imb/Reb is of order unity. Then the relative
phases between the amplitudes of different tree graphs oscillate very rapidly over the entire range of in-
tegration so that the phase-space integral of each of the cross terms in the expansion of |A ,|* [see Eq.
(A10)] is negligible. In other words, different tree graphs can be treated as if they are incoherent. Then
we can replace |A,|? by

n-1
Adl'= 2 B e (28 (7 -D(E, "+ 67) a)
P(i j=1

where g is the real part of b. It is assumed that the p dependence of the unknown but relatively slowly
varying function |B(Z)|? in front of each exponential can be neglected; we simply replace |B(Z)|? by its aver-
age value «,(M,), allowing for a dependence on the mass M, of the first fireball.

The exclusive cross section (A1) becomes
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W=D 1)v<,112<pdf]u2>l”> Z )

nP:

n-1
xexp (28 G =0)B,,*+ )" )o (b1, - 5 3,7+ w2 -5, )
1

i=1
which can be simplified by a change of variables:

O(Ml,n-1)=a,,(M,)<:HJZ( d‘i’u 7 ) exp<—262 (7 - z)(§,2+u2)"2>6<M1—:2:31(13,2+ uz)”"‘—E,,>.

(A13)

We will approximate E, by M, ; this approximation, while not very accurate numerically, does serve to
greatly simplify the integration and does not affect the exponential dependence of the inclusive cross sec-
tion on the pion energy. Equation (A13) involves a phase-space integral which cannot be done exactly, but
an approximate expression for o(M,,n —1) is obtained by dropping the energy-conservation constraint.!®
In view of the rapidly decreasing integrand for large pion momenta, we expect the error made by extend-
ing to infinity the domain of integration of each pion momentum to be small. Equation (A13) then yields

=1
001, =1)= 0y 00 [T [ 5myrs expl=2607 =), w1, (a14)
or
o, 1) oy or,) T () L CPLUEN (a15)
i=1

The constant 8, we shall see, is to be identified with 1/kT in the thermodynamic distribution, and hence is
experimentally determined to be roughly 1/u. Therefore the K, functions '® can be expanded to give

1/2 _ -

o(M,,n -1)% a (M, )H<lln3> e_XL(?B_“l()Z/Z 3)] =1, (M, )%’(‘QLB_:’;)__f___":]Hl)z] , (A16)
where

Ny (M ) = @, (M) (2 pr/B3)n=172 (A17)

Note that the error made in using the asymptotic form of K, tends to underestimate o, while the neglect
of the energy conservation constraint tends to overestimate 0. In most cases, the combined correction due
to these errors is small and does not alter the essential property of the solution, namely, its exponential
character. However, our approximations fail if one pion carries off nearly all the available energy (in in-
clusive spectra, this means x=1).

With the same approximations, the inclusive pion spectrum (A4) is reduced to

2E 5; (V)= XN: ”in‘Ml) Z exp[ - (2i = 1)(F°+ 1°)""?] E(fz(pd:ﬂ Y exp[—ﬁ(z]'-1)(5,2+u2)“2]>,
(A18)
which can be expressed in terms of o(M,,n —1) [see Eq. (A14)] as
B 0n)=3 ()" T -1 3 Z ~1)°/%exp {8 ~ D[(F*+ 22 =]} , (A19)
or
E;’l;; (M,) = Z) i exp[ - (2 = 1) (5 + n®)'"?], (A20)
where
£i-1i -1 explpei - Du3 ujr>/>i e ’Ll; DN (a21)
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It is demonstrated that the Schwarz inequality gives useful relations between the one-
photon annihilation process e* + ¢~ — any hadrons, the electroproduction e + A — ¢ + anything,
and the two-photon process e* + e” — e* + ¢~ + A, where A is an arbitrary hadronic state
with positive charge conjugation. Particularly, the 7%y vertex function, if it decreases at
all, is shown to decrease not slower than (—g?) -1/2 35 one of the virtual-photon masses g*
increases. Possible applications to various other processes are suggested.

Both the one-photon annihilation process e* + e~ —~hadrons® and the electroproduction e+ p - e + anything,
especially in the Bjorken scaling region,? have been of great experimental and theoretical interest. In
addition, the two-photon process e* + e~ —e* + ¢+ hadrons has attracted considerable attention since its
experimental feasibility was emphasized by several authors a few years ago.® In this paper we show that
the Schwarz inequality? gives useful relations between the inclusive one-photon process e* +e~ —any had-
rons, the inclusive electroproduction e+ A— e¢+anything, and the exclusive two-photon process e* + e~ — e*
+e”+A, where A is an arbitrary hadron (or hadronic state) with positive charge conjugation.

To be more specific, let us take A=7° as the simplest example. The differential cross section for the
two-photon process e* + e~ —e* + e~ +7° at the c.m. energy E is given by

_ do _ 1984 ZEIEYE ~ E)M(E - B
dE! dcos6,dE] dcos6,d ¢ (@%k2R

6(Pz _mwz)lF(qz) k2)[2

for m,? < —q%, - k2« 4E2, (1)

where Ej and 6; (=1 and 2) are the energy and angle of the scattered leptons; ¢ is the coplanarity angle;
g, k, and P are the momenta of the first and second virtual photons and the pion, respectively (P =g+k);
m, is the pion mass; and the 7°yy vertex function is defined by



