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We investigate the invariant and helicity amplitudes for A +B C + D, where A, B, C, and
D are Jp = s'+ particles. New variables are introduced to simplify the otherwise complicated
expressions for the regularized, parity-conserving helicity amplitudes in all three channels.
Simple algebraic methods are used to derive the equivalence theorems and the Fierz trans-
formations for four spinors. The reduction of this general formalism to describe hyperon-
nucleon scattering (e.g. , ZN AN, ZN ZN) is immediate.

I. INTRODUCTION

The study of hyperon-nucleon scattering is a nat-
ural extension of the old and thoroughly studied nu-
cleon-nucleon problem. For example, one might
like to see a strange (virtual) bound state similar
to the deuteron in the low-energy region. Also, at
high energies, a Regge-pole and/or -cut analysis
may be appropriate; hence more experiments with
high-energy hyperon beams are welcome.

There exist good review articles on hyperon-nu-
cleon scattering. ' It is clear that the kinematics is
fairly complicated. On the other hand, the problem
of anomalous thresholds, ' which do occur in the s
channel of ZN- ZN and ZN- AN (but not AN- AN),
must be settled, in view of its potentially important
effects on the low-energy parameters.

In this first part of two articles on hyperon-nu-
cleon scattering, we try to standardize the invari-
ant and helicity amplitudes for a general 2+ &- 2

+ —, (all positive parity) scattering, ' by examining
their relations in all three (s, t, and u) channels.
The reduction of the eight independent invariant
amplitudes to six for elastic scattering (e.g. , ZN- ZN), and to five for NN- NN, is well known. It
also emerges quite naturally in the helicity formal-
ism.

Invariant amplitudes are most suitable for a dis-
persion-relation approach. The absence of kine-
matic singularities in the invariant amplitudes can
be directly "proved" by examining the explicit s-,
t , and u-channel -helicity amplitudes (h.a. ). Helic-
ity amplitudes, in addition, are feasible for a par-
tial-wave decomposition in both the direct and the
crossed channels, which is necessary for a full
phenomenological analysis in the low- and high-en-
ergy regions, respectively.

When evaluating the s-channel h.a. , say,
[u(p, )u(p, )][u(k,)u(k, )], in the center-of-mass
(c.m. ) frame of p, (p, ) and k, (k, ), the resulting
expre'ssions are very messy. Two reasons are re-
sponsible for this complexity: (i) p, (k, ) and p, (k, )

are not collinear, and (ii} they do,not have the
same magnitude of momentum. 4 The situation
changes completely in the t-channel c.m. frame of
k, and -k, (to evaluate [u(p, )v(p, )][V(k,)u(k, )]), as
well as in the u-channel c.m. frame of k, and -P,
(to evaluate [u(k, )v(P, }][v(P,)u(k, )]). These latter
circumstances therefore simplify the algebraic
manipulation greatly. This fact makes possible an
algebraic derivation of the equivalence theoxems'
and the Fierz transformations, ' by means of the t-
and u-channel h. a., respectively.

In Sec. II we evaluate the s-channel h.a. in terms
of eight invariant amplitudes for a general A +B
—C +D. The specialization to hyperon-nucleon
scattering can be easily made. In Sec. III the h.a.
in the t channel are calculated. As has been men-
tioned, the resulting expressions are simpler due
to the collinearity in the momenta. This allows for
a simple algebraic derivation of the equivalence
theorems for four spinors. The same observation
leads to another algebraic derivation of Fierz
transformations using the u-channel h.a. in Sec. IV.
The correctness of these u-channel h. a. (as as-
sured by yielding correct Fierz transformations)
serves to check the algebra of the complicated s-
channel h. a. (Sec. II) via the "crossing symmetry"
between s and u. A summary is given in Sec. V.
Finally, the Appendix lists the definition of the
eight regularized, parity-conserving h. a. in all
three channels.

II. s-CHANNEL AMPLITUDES

Consider the process

A(p„X,)+B(k,& u, )- C(ps& A )+D(k2, p2), (I)

where', B, C, and D are J = —,
'+ particles with

momenta and helicities (p„X,), (k„g,), (p„A.,),
and (k„p,,}, respectively. The s-channel scatter-
ing amplitude T' can be decomposed into eight in-
variant amplitudes:
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FIG. 1. c.m. frames for the s, t, and u channels.

where mA is the mass of particle A,

EA= (s+ mA —mB )/2s (6)

p„' = [s —(m„—m B)'][s—(m „+m B)']/4s . (7)

The other three spinors can be obtained from (5) by
performing proper rotations and by multiplying
with suitable phases.

Because of the unequal-mass kinematics, a

It will be shown later that I'7 and I'8 are more con-
venient than I, and I'8 from the point of view of
s —u crossing, when A = C (or B =D).

To evaluate the helicity amplitudes in the c.m.
frame [Fig. 1(a)], we use the phase convention of
Jacob and Wick. ' The typical spinor for A(P„X,) is

u„(p„a,)=(2m„(Z„+m„)] "'( " ", (5)
pA 1

straightforward calculation of the h.a. with (2) and

(5) is rather awkward. We therefore introduce the
following quasivariables between a pair of collinear
particles (A and B, C and D, in the s channel):

Z, , =-', [s —(m, —m, )']"',
m, ~ =Z;, (m; + m, )/s'",

p, , = —,'[s —(m, + m, )']"',
b, , = p;, (m; -m;)/s"',

which reduce to E;, m;, pi, and zero, respectively,
when m; = m1. (Note that 6;, = -t1;;.) Although just
E», p», ECD~ and pcD shouldbe enough, we add

ABx +ABo cDs d ~cD to facilitate easy manipu-
lation in the actual calculation. It also eliminates
the explicit s dependence of the h.a., and maintains
a high symmetry in the resulting expressions.

The eight regularized, parity-conserving h.a.
(see the Appendix) thus read

f 1 F1(PAB PCD+ +AB +CD) F2(PAB PCD +AB +CD) F2(2PAB PCD +AB +CD) 2F4(2PAB PCD++AB CD)

+ F2PABPCD 6[PA@AB CD PC +AB +CD ~(PAB CD ABPCD)]

+ F7[ PA AB PcD +Pc PAB CD + (PAB +C +DAB PCD)]
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+F6[ PAEAB cD+Pc ~AB EcD W(PAB ™cD ~AB PcD)]

+ ~ ( 1(EABECD+ AB CD) +F2( AB ECD AB CD) + (F3 +F4) AB CD + 2F6 EAB ECD

6[~A AB EcD + Pc EAB +cD ++(EAB mcD+ m AB EcD)]

+F [ PAPABmcD Pcm AB PcD+W( EABmcD m AB EcD))

+ F6[PA +ABECD PC EAB +CD D(EABmCD m AB ECD)) ]

f2 F1(EABEcD™AB cD) +F2( ABEcD m AB cD) + F ( EAB EcD AB cD)

(2EABEcD+ m ABmcD) 6F EAB EcD+ F6[PA ~ABEcD +Pc EAB +cD+D(EABmcD ™AB EcD))

+ F,[pApABmcD PcmABPcD+W(EAB cD ™ABEcD)]
+Fs[f A&ABEcD -Pc EAB &CD -D(E.BmcD -m.6 EcD)]

+ es( Fl(PAB PCD+ +AB +CD) Fs(PAB PCD +AB ~CD) (F3+F4)~AB +CD F6PAB PCD

F6[PA EAB +CD+PC +AB CD+W(PAB +CD++ABPCD)]

+F7[ PAm AB PcD +Pc PABmcD+D(PAB ~cD +AB PcD)l

+ F8[ PAEAB +CD+PC +AB ECD W(PAB +CD +AB PCD)] lt

f3 F1(EAB EcD + m AB mcD) Fs(EAB EcD m AB mcD) + 2(F3+F4)EAB EcD + 2F m ABmcD

+F6[PA +AB EcD +Pc EAB + c+DD(EAB m cD + m AB EcD))

+F [ PAPAB cD +Pc AB PcD W(EAB cD m AB EcD)]

+F6[ PA+AB ECD+Pc EAB ~CD+ (EABmCD mAB CD)] &

f4
= -F1(PAB PCD+™AB+CD)+F2(PAB PC D ~AB +CD)+ 2(F3+F4)PAB Pc D 2F6 ~AB +CD

+ F6[PA EAB +CD +PC PAB ECD +W(PAB +CD + ~AB PCD)]

+F [PAm ABPCD PC PAB mcD —D(JAB ACD —6AB pCD)]

+ F8[PA EAB ECD PC 4AB ECD+W(PAB ECD AABPCD)] x

f, =-F,(E„BmcD+mABEcD)+Fs(EABmcD-mABEcD) —2(F, +F4)E„BmcD —2F, m„BECD

+F6[ ~A+AB cD Pc AB~cD (EAB cD+ ABmcD)]

+F [pA pAB EcD +pc EAB pcD +W(EAB EcD ™ABmcD)]
+F [PA+AB cD+Pc AB +cD (EABEcD mAB cD)]

f 6 Fl(PAB CD ++AB PC D) + F2(PAB +CD ABPCD) + 2(F3 +F4)PAB +CD 2F6 +AB Pc D

+ F6[PA EAB PCD ~C PAB ECD+W(PAB PCD + ~AB +CD))

+F7[PAmAB +cD +Pc +AB cD (PABPcD +AB +cD)]

+F6[~A EABPCD +PC PAB EC D + (PAB PCD +AB +CD)] y

f7 F1(EABmcD+ mAB EcD) +F2(EABmcD ™ABEcD) + 2(F3 +F4)mABECD + 2F6EAB mcD

+F6[PA ™AB CD +Pc AB +CD +D(EAB ECD + AB CD)l

+F [PAPAB CD+PC EAB PCD+W(EAB ECD ™ABCD)]

+F [PA+AB CD+PC AB +CD D( ABECD ™ABCD)l

f8 F1(PAB +CD++AB PCD) +Fs(PAB +CD +ABPCD) ( 3+ 4)+ABPCD+ F6PAB +CD

+F6[ PAEABPCD PC PAB ECD W(PAB PCD++AB +CD)]

+F [PAmAB +cD+Pc +AB cD D(PAB PcD AB cD)]

+Fs[PAEABPCD+PC PABECD+W(PAB &CD +AB CD)] &

where
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and

1W=2(EA+ ED+ Ec+ ED)=s'
l 1D = (E—A+ Ec —EB —ED)= 2(m„'+ mc' —mB'-m ')/s'

cos 8, = [s(t —u) —(m „'—m B')(m c' —m D')]/4s pA pc .

(10)

(11)

(12)

To describe AB- CB (e.g., ZN A-N}, we simply put D =B [not to be confused with the D in Eq. (11)].
There remain eight independent amplitudes. To arrive at elastic scattering AB-AB, in addition to putting
C = A and D =B in (9), we must also include time-reversal invariance. It requires f, = -f, and f, = -f„
which in turn rules out F, and F, (not 0, and 0,). Finally, for the case NN- NN, ' we have all b, ,, = 0 and

f, = -f, =0 (spin conservation). The last condition eliminates F,.
Starting from expression (9}for the f, one is able to write down kinematic-singularity-free amplitudes

f, . These f; are linear functions of the F, with coefficients that are just polynomials in s, t, and the
masses. For example, f, reads, in terms of s and the four masses,

f, =-,'[s —(m„+mB)']"'[s —(mc+mD)']"'s '"
x (-F,(mA -mB+ mc -mD) —F,(m A-mB -mc+ mD)+2(F, +F4)(mc -mD)

—2F,(m„-m B}+2F,[s —,'(m„—-mB-mc+ mD}']

F72( A+ B mc D)( A mB mc+ mD)+ 2F6[s —4(m„—mB+ mc —mD) ]j. (13)

Clearly f, =f, s"'/pAB pcD is free of all kinematic
singularities if the F; are. This can be done for
the other f s in an analogous fashion. One then
finds that the kinematic-singularity-free ampli-
tudes f; are given by

f~=fisPABPcDt f2 f E2BABEcD&

f3 f3 B/EAB EC D & f4 f4 B/PAB PC D &

f6=f6s /EABEcDr f6 f6s /PABPGD~

f7 f7 / ABEcDt f6=f6s /PABPcD ~

(14)

That one is able to factor out of the f; a term con-
taining all the s kinematic singularities partly
"proves" that the F; are the correct invariant am-
plitudes. (A complete proof would require that the
same procedure is possible also for the t- and n-
channel h. a, .; this will be discussed later. )

However, one has to be careful and realize that
the expressions (14) for the f; are true only for the
general case in which all four masses are differ-
ent. When a pair or more of the masses become
equal, the expressions for the f; will assume, as
is well known, a different form. This is because
some of the kinematic singularities in (9) are auto-
matically removed if some of the masses are
equal. Also one must set F,=F, =O for elastic
scattering, no matter what coefficients they have
in (9). In all these mass-degenerate cases, there-
fore, the best way to proceed is to investigate the
properly reduced f;, and then extract the correct
f, directly therefrom, rather than modifying (14).

A partial-wave expansion for the f; is trivial, if
use is made of the d functions. ' The partial-wave
amplitudes are used for analyzing experimental

8

iy KSiy P= g a;0; (15}

on both sides, and solving for the eight a;. This
method is not practical here in the s channel, be-
cause none of the coefficients of the a; are zero,
as is evident from (9). It turns out that, if we con-
tinue Eq. (15) etc. to the t channel, many of these
coefficients in the continued equations do vanish.
We shall come to this point in the next section.

Likewise, for a u-channel exchange diagram, it
requires a Fie7"z t7ansformation3 to bring the am-

data in the low-energy region. Inversion of the E&

in terms of the f, then incorporates the experimen-
tal data in the invariant amplitudes F; for phenom-
enological analysis. The inversion is not easy, un-
fortunately.

At high energies, the asymptotic behavior for the
F; can be deduced from the Regge-pole model
(Secs. III and IV). If the conjecture of s-channel
helicity conservation' is assumed (for diffractive
processes), all but F, and F, will decouple from
the leading trajectories. All eight E& then satisfy
unsubtracted dispersion relations. Furthermore,
only F, would survive asymptotically, ' if there is
asymptotic helicity independence, i.e., (++

~

T' ~++)
= (+- lT'I+-}.

In a perturbative calculation, one often faces the
problem of developing covariants such as iy K
Siy ~ P and iy K81+liy P, etc. , in terms of
the eight standard 0;. These are called the equiv-
alence theo~ems. ' An algebraic derivation is pos-
sible, namely, by invoking the eight independent
equations obtained by evaluation of the various he-
licity "matrix elements" for, say,
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plitude to the eight standard 0&. Again an algebra-
ic derivation of the Fierz transformation is possi-
ble with less effort if we employ the same trick.
We shall see that we will gain more if, instead of
the t channel, we go to the u channel (Sec. IV).

Before closing this section, we would like to re-
mark that, although the formalism to be used be-
low for describing the t- and u-channel amplitudes
does not differ much from the s-channel one, the
physical content of each channel is certainly differ-
ent. As a result, we deal with each channel sepa-
rately.

III. t-CHANNEL AMPLITUDES

By t-channel [D(—k„p, )2B+(k„p,,)- C(P„A2)
+ X(—P„A.,')] amplitudes we mean

(P2t 2t Plt ~1 I

&'
I
-k2& l 21 kit 01)'

x[8 (k„ tt,')O~pu (k„ tt, )]F;(s, t)

(16)

with the same F;, Ott', and Op~ as in Etl (1). .
We consider the crossed channel (by means of a

boost plus analytic continuation) mainly in order to
deduce the high-energy behavior for the I';, rather

E,, = [t —(m, -m, )']"',
m „=Z, ,(m t + m, )/t"',

ptt -- [t —(m,. + mt)2]"2,

a„=p, ,(m, -m, )/t"',

(18)

where ij =AC or BD." Using for the antiparticle
D with helicity p,,' the spinor

vD(k2t p.2')

—( 1)lt2+tt2 [2m (E + m )]D D D g +mD D

(19)

the eight t-channel regularized parity-conserving
h. a."are given, in the notation of (16}and the
Appendix, by

than to actually study antihyperon-nucleon scatter-
ing. If the latter is the case, we should directly
start with

X(p, )+B(k,)- C(p, )+D(k, ),
with p„k„P„and k, having nothing to do with P„
k„p„and k, in (1).

The evaluation of the h.a. in the c.m. frame of
the t channel [Fig. 1(b)] is expedited again by in-
troducing eight quasivariables E&~, m;~, p;~, and

4„, which now read

Rl 1PAC PBD F8 AC BD 6 2[(EA C}PAC +BD ( B ED) ™ACPBD]

+C et [F AC BD F +AC EBD (PAPAC BD PB AC PBD)]

g2 F2EAc BD 4 Ac BD (F + }2(EB D)mAc@BD (F7 F8)2(+A +c)@Ac BD

+ C et I F4 +Ac +BD F6PAc PBD (F7 +F8)PB+Ac EBD ( 7 F8)PA+Ac ~BD] t

83 ~AC +BD ++ AC BD

g4 +4PAC PBD +5 AC BD s

g5 +3 AC EBD 5+AC BD ++6PAPAC +BD

86 -F» EAC PBD + F6PAC KBD + (F7 F8)PA EAC PBD t

g + +Ac mBD ++ mAc FBD ++6PB ~Ac PBD

88 4PAC ~BD F6 AC PBD (F1+F8)PB P'AC EBD t

(20)

where

Z„=(t+ m„'- m, 2)/2t'~',

p„' = [t —(m„-mc)2] [t —(m„+ mc)']/4t, etc. ,

(21)

(22)

cos0t = [t(s —u)+ (m„' -mc')(mB' —mD')]/4t p„pB.
(28}

Obviously Eq. (20) is much simpler than Etl. (9).
The simplicity is essentially due to the co11inearity
of p, and p, in [uc(P2)Ot ~v„(p,)] and of k, and k, in
[vD(k2)O~t2~uB(k, )]. Thus even for a general DB- CX
with four different masses, the task of inverting
the E; in terms of the g; now poses no problems.
This result is quite useful.

The reduction of (20) to describe hyperon-nucle-
on scattering is also tremendously simplified.
First, although we still need eight amplj. tudes for
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BB- CA (e.g. , NN-AZ), a simplification already
occurs because 4BD =4BB=0. For the reaction
BB-AA (e.g. , NN- ZZ) one has &BD =b, Ac =0 as
well as C invariance. The C and P invariance to-
gether require g, =g, =0, so that (F, -F,)=(F,+F,)
=0, or F7 F, =O. The well-known NN- NN, ' in
addition, acquires an extra condition g7=-g„' con-
sequently F, also needs to vanish.

By definition the g, 's are free of the kinematic
singularities in s. If the E,. are invariant ampli-
tudes, we can factor out of the g, in (20) the terms
containing the remaining kinematic singularities in

t, and obtain the regular amplitudes g& as follows:

gl +1tpAC PBD s g2 N2 EAC EBD &

g3 = g3t/EAc EBD & g4 —g4t/PAc PBD &

g5 g5t /EAc EBD & g6 g6t /PAc PBD &

gv g7t /EAC EBD & g8 g8t /PAC PBD '

(24)

That we are able to define these g; is the second
part of the proof that the E, have been correctly
chosen.

For the mass-degenerate reactions, BB-CA,
BB-AA, and NN- NN, the limit in (24) (obtained
by putting D =B, C = A, etc.) may not yield the cor-
rect regular amplitudes g; for the desired process.
This point we have explained in the previous sec-
tion. The correct procedure to follow is to make a
pertinent reduction in the original g; [Eq. (20)] and
factor out the explicit t singularities from these
mass-degenerate g, directly.

Reggeization of the g; at fixed t yields the asymp-
totic behavior for the Ej Flp F2 s

y F3p F4y F5p

E„E„E,-s ' '. The number of subtractions
needed in a dispersion approach for each invariant
amplitude can thus be inferred. It also allows for
investigations such as the conjecture of asymptotic
s-channel helicity conservation, in which case all
F& would satisfy unsubtracted dispersion relations
(Sec. II).

The inversion of the F& in terms of the g; is nec-
essary anyway, to examine kinematic constraints
such as conspiracy, evasion, and so on. Since the
inversion of Eq. (20) is really feasible, we are able
to make some applications. That is, we are able to
derive the equivalence theorem and the Fierz
transformation for four spinors by an algebraic
method.

Continue, say, both sides of Eq. (15), i.e.,
8

iy KSiy P= Pa;0; (15)

to the t channel, so that uA(P„A.,) becomes
DA(P„A.,'), uD(k„p. 3) becomes VD(k„p3'), and p, (k, )
;and p, (k,) are collinear [Fig. 1(b)]. We obtain

eight new independent equations, the right-hand
sides of which are the same as those in Eqs. (20)
with (-F,.) replaced by the a, . If we denote the
left-hand sides by L„clearly we can first solve
for a„a„and a, from L„L„and L, simulta=
neously. The rest can then be easily computed,
one by one, with the other L,-. We find

a, =0,

a, =~4(mA+ mc)(mB+mD),

a, = —,'(s —u),

a, = —,'[(m„-rnc)'+(mB -mD)' —t],
a, = —,'(m „-mc)(m B -m D),

a, =o,

a7 = —(mA+ mc —m B+mD},
lt

a8 = —(m A
—mc —mB + mD) .

The same procedure, when carried out for

(25)

b, = --4'(s —u),

b, = =,'(s —u),

b, =-,'(m„+ mc)(mB+mD),

b, = ,'(m„—mc)-(mB -mD),
(27)

'b6 4(mA+mc mB mD)&
1

b, =-(m„-mc+ mB -mD),

b, = -(m„-mc -mB+mD).

While this kind of derivation for the equivalence
theo~ems may not be the most general one, it is
clearly a bonus in the course of evaluation of the
t-channel h. a. Moreover, we realize that, due to
the correlations among the a& (or b&) to yield an
acceptable result like (25} [or (27)], any mistake
made in the computation of the 0; in (16) and (20)
can be detected easily.

It is true that a Fiery transformation

4 8

iy K 1+1 iy P= gb, o, ,mA+mB+ me+ma

(26)

yields

8

[u (k pD, )03&;"u3(P„AX,)][u (p &cX3)03,"uB(k„p,,}]= Q c„[uc(P3& X3)0',"uA(p„z, )][uD(k3& P3)0;"uB( „px)]

(26)
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can be also derived with the same trick. The left-hand side of (28), however, has nothing to do with the
t-channel h. a. , and is not readily available. A better way is to go to the u channel (Sec. IV).

IV. 0-CHANNEL AMPLITUDES

The u channel is taken as C(-P„A,')+B(k„p,,)- X(-P„X,')+D(k„p, ,), with the amplitudes given by"

(-P„A.,'; k„p, ~

T"
~
-P„X,'; k„p, ,) = —g [Vc(P2, A.,')0 v„(P„A,,')][uD(k„g2)0 uii(ki, p, i)]F;(s, t, u) . (29)

Hy now we can evaluate the h. a. in a straightforward way. We obtain" [cf. Fig. 1(c) and the Appendix)

k, = -F,(P„Dpiic —6„cAiic) —F,(pr, v prie +A„D Eric) —2F,( p„ii prie + ~D iic)

—2F4(2PADPBC DADE ii)c—6FSP/Dpgc F6[ PA EAD +Bc +PB AD Bc (PAD iic ADPBC)]

+ F7[ PLEAD +BC PB +AD EBC ~(PAD Bc AD PBC )]

+F [PAmADPBC PBPADmBC +D(PAD+BC +~ADPBC)]

where

+cos0„ iF,(E~rr Eric + m ~Dm ric)+ F (E„rrEac -m ~Dmiic) —2(F —F4)m ~pm ric -2FrE~rr Eric

F6[ PA+ADEBC PBEAD+Bc +D(EADmBC ™ADEBC)1

+F7[ PA +ADEBC PBEAD +Bc +D(EADm BC ™ADEBC)]

+F [ PAPADm—BC +PBm ADPBC W(EADm BC™ADEBC )]] (3o)

E,, = ,'[u —-(m, -m, )']"', m, , =E,, (m,. + m,. )/u"',

p;,. = ,'[u —(—m;+m, )']"', n;, =p;, (m; -m,.)/u". ',
~ = z(E~+Ea +Ec +Ec) = u

D =2(EA+EC EB ED) 2(mA + mc ms mD )/u2 2 2 2 / 1/2

cos0„=[u(t —s)+ (m„' -mD')(mii'-mc')]/4up„pii,

with

E„=[u+ m „'-m, ']/2u"', etc. ,

p„' =[u —(m„-m )'][u —(m„+ m )']/4u,

and

pa'= [u —(mii -mc)'][u —(mii+ mc)']/4u.

A comparison of k, and f, shows that k, is the same as f, if a formal substitution

(Fit Fps Fsy F4& Fss Fat F71 F8) (Fit F2& Fat F4& F5i Fsi FBt F7)-
and an explicit replacement

(m„,mc, s)- (mc, m„, u)

(31)

(32)

(33)

(34)

(36)

(36)

(37)

(38)

are made in f,. In fact, a detailed calculation shows that this is true for all k;. Many of the properties of
the f; discussed in Sec. II can thus be carried through for the h; without change. It is worth noting from
Eqs. (38) and (39) that one may prefer to use the second set 0,' and 0,' than 0, and 0, for s-u crossing.

Due to the analogy between the k& and f; it is clear that we can find k& free of s and u kinematic singular-
ities. Combining this with the other proofs made in the s and t channels we finally conclude that the I'; axe
invariant amplitudes.

Reggeization of the h; at fixed u reveals that all I'; behave as s " ' asymptotically. Since the inversion
of the F; in terms of the k; is as difficult as with the f;, an investigation on the Regge constraints in back-
ward scattering will be more involved.

Had we chosen in (2) and (4) the equally acceptable spinor covariants

[u~(k„p,,)0('~ u„(P„A.,)][u (Pc„X,) 0~ u~(k „p,)] (40)
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where 0~"0, '"-=0, with

0,'-=0& for i=1 to 6,

O,'= r tr .'(P—.+k,)+ r. ,

o8 = rs'3 r,ir ' a(k2+Pg) ~

(41)

the resulting k; would be as simple as the g, in (20), because k, (p, ) and p, (k, ) are collinear in the u chan-
nel. Now (2} is related to (40) by a Fierz transformation

8

[ue( p„x,)O,""u„(P„A,,)][uv(k„p, )O('~ ua(k„p, ,)]= Q d, ,[uD(k„p, )O,'"u„(P„X,)][uo(P„X,)OJ'4'us(k„p, ,)] .
f=1

(42)

The coefficients d;~ can be readily computed if we continue (42) to the u channel,

[V (P, X,')0,'~'~v„(P„A.,')][u (k„p,)O ~'iu (k„p,,)] = Q d;q[u (k„g,)OJ~'~v„(P„X',)][Pc(P„X,')OJ~ iu (k„g,)],

(43)

just as we continued (15) or (26) to the t channel. It turns out that all d, , are either pure numbers, or de-
pend only on the four masses.

An inverted expression for (42),

[u v(k„p, ) 0,'"'u„( P„X,)][u o( P„L) 0" us( k„p, )] = Q c,', [ue(P„A.,)OJ"u„(P„A.,)][uD(k„p,,)O("'us(k„p, ,)],
f=1

(44)

is more useful for the u-channel exchange diagrams in a perturbative approach. The c f, which are re-
lated to the d;, merely by relabeling the masses, are displayed as follows'.

Ia
tf

a

0

1
1

a 4

6

1 1 1
1 -1 -1

-4 -2 2
-4 2 -2

6 0 0

1
1
0
0

-2

3(mD+ m„-mc -mB)
—m D +?tl A -2 fPl c + 2 m

C

-2mp+2mA —mc + m B

mp m„+ mc+PPZB
—m D + m A + 2 p?z c -2 foal B

2mp-2mA-mc+ mB

—mp —mA+mc+ mB
fPl D

—mA —2mc +2mB
—2fPl D+2m A+ mc —m B

3~mD+ mA-mc -mB)
mp ™A+2mc 2mB
2m p —2m„+ mc -P?l B

—mp —mA+ mc + mB
mp —mA

P?ZC —m B

The ordering (D,A, C, B) on the left-hand side of
(44) is kept in I; for convenience.

That we make an analytic continuation to the u
channel with (42) rather than continue (44) or (28)
to the t channel follows from the simple fact that
the left-hand side of (43) has already been calcu-
lated in (29). In particular, a compact result for
c,',. like (45) checks also the correctness of (30) and

(9), if a Fierz transformation itself involves only
simple coefficients.

We believe that our c&f are more reliable than
those obtained with other methods, because had we
made a mistake in the h; or in some of the already
calculated c,'f, the progression from one step to the
other for the next coefficient would be catastrophic.

V. SUMMARY

We have examined the invariant and helicity am-
plitudes for a general process A +B- C + D (all

four particles having J =-', '), and the analytically
continued D +B- C + A (t channel) and C +B-A + D
(u channel). The full formalism ean be immedi-
ately applied to describe typical hyperon-nucleon
scattering such as ZN- AN, ZN- ZN, etc., for
which experiments at higher energies will soon be
possible.

Due to the unequal-mass kinematics, the relation
between the c.m. helicity amplitudes and the in-
variant amplitudes is necessarily complicated.
Since we need both of them for a complete descrip-
tion of the process, we have introduced quasivari-
ables like E;~, p;~, m;~, and t „[Eqs. (8), (18),
and (31)] to expedite the manipulation of the alge-
bra. The reduction from the generalA+B- C+ D
toA+B-C+B, toA+B-A+B, and toA+A- A + A is natural and can be easily carried out.

When the momenta of a pair of spinors are col-
linear, e.g. , uq(p)Ov„(-p), many of the helicity
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"matrix elements" are zero in different configura-
tions (i.e., Ap =++, +-, -+, —-). We have exploit-
ed this property to derive the equivalence theo-
rems and Fierz transformations by an algebraic
method. Not only is the result reliable (because
many correlations are involved), it also checks
the correctness of the otherwise ugly t- and u-
channel h.a. [Egs. (20) and (30)], and, through s-u
crossing, the s-channel ones [Eq. (9)] too.

ACKNOWLEDGMENTS

The author would like to thank Professor J. J.
de Swart for a careful reading of, and various
valuable comments and suggestions on, the manu-
script. He also thanks Professor I. J. McGee for
reading the manuscript.

APPENDIX

The eight regularized, parity-conserving, x-
channel c.m. helicity amplitudes for a general

—,'+-', - —,'+-', scattering are defined in standard no-
tations as

(&„If.) =4[&++IT"I++&(+, -)&- —
I ~ I++&],

&+ —Is*I+-) &-+IT' I+ —
&

1+cos 8, ' 1 —cos 8„

(If.,~.) =-.'[&-IT"
I -&(, -)&--IT"

I
-)]/. .e. ,

(II» ff8) = 2[&+- I
T" I++&( , +)&--+

I
T* I++&]/sin9.

where + stands for +-,'. In the text,

fr=4M'&; for x=s,

g& =M H, for g=],
and

h, = 4M'II; for x = u,

where

M'=(mgm~mcmn)' '.
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