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We show that measurements of deep-inelastic bremsstrahlung, e +p e +y+anything, in
the appropriate scaling region will provide a definitive test for fractionally charged constitu-
ents in the proton, provided the parton model is valid. More precisely, measurement of the
difference between the scaling inclusive bremsstrahlung cross sections of the positron and
electron will allow the determination of a proton structure function V(x) which, unlike the
deep-inelastic e-p structure functions, obeys an exact sum rule based on conserved quantum
numbers. In particular, we show that fJ dx V(x) =@~Q + t B (= ~ for a proton target) in the quark
model, whereas f&~ dx V(x) =Q in the case of integrally charged constituents. Since the result
is independent of the momentum distribution of the partons, the sum rule holds for nuclear
targets as well. Since V(x), which involves the cube of the parton charge, is related to odd-
charge-conjugation exchange in the t channel, Pomeranchukon, and other C-even contribu-
tions are not present, so that V{x) should have a readily integrable quasielastic peak. This,
combined with the fact that there exists a simple kinematic region in which the difference is
of the same order as the inclusive bremsstrahlung cross sections themselves, and the fact
that there is no hadronic-decay background, should make this a feasible experiment on pro-
ton and nuclear targets.

INTRODUCTION

The observation of scaling in the highly inelastic
limit of electron-proton scattering has excited con-
siderable interest in constituent models of hadrons.
The existence of charged, structureless "partons"
in the nucleon, together with an assumption limit-
ing the partons' momentum distribution, is suffi-
cient to derive scaling. ' It is also well known that
to account for scaling it is not necessary to postu-
late the full apparatus of a parton model but in-
stead only to abstract from such a theory the singu-
lar behavior of current commutators in the vicinity

of the light cone. '
Since they are more specific, however, parton

models make concrete predictions which cannot be
obtained from more general light-cone considera-
tions. An example is the prediction of scaling in
the process p+p- p,'+ p, + anything' at high energy
and large (g'p ) invariant mass. A test of this pre-
diction will be central in establishing the parton
model independently of the light-cone approach. 4

More recently the parton model has been found to
provide a particularly simple explanation of large-
angle exclusive scattering. ' Although the parton
model may be only an abstraction of a more com-
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piete theory, it is important to obtain and test all
of its predictions, particularly in cases where the
number of new assumptions is minimal. '

If partons are taken seriously it is important to
find ways of determining their quantum numbers.
Although the electroproduction. structure functions
vW;2(x) and vW2" (x) are sensitive to the squared
charges of the partons, it is impossible to extract
from them values of the charges without making
additional, st"ong assumptions regarding the dis-
tribution of partons within the nucleon. ' Our ob-
ject is to describe an experiment which admits a
parton-model description and which provides a
definitive probe of the partons' charges. The ex-
periment involves the process

e' +p- e' +y+ anything

in an appropriate "scaling" region. More precise-
ly, measurement of the difference between the
scaling inclusive bremsstrahlung cross sections
of the positron and electron will allow determina-
tion of a structure function dependent upon the
charge cubed of the various partons. ' As we shall
see, this provides a definitive test for fractionally
charged partons. This process avoids the compli-
cations of Pomeranchukon subtractions and hadron-
ic decay backgrounds. The assumption of a partic-
ular longitudinal-momentum distribution for the
partons is not necessary in the derivation of sum
rules.

If the parton model is correct and scaling is ob-
served, then the corresponding structure function
depends only on the odd-charge-conjugation piece
of the parton distribution functions

from even-charge-conjugation (e.g. , Pomeranchuk-
on) t-channel exchange terms, the new structure
function should show a quasielastic peak (vanish as
x-0); sum rules involving the integral of V(x) can
be expected to converge in a finite experimentally
accessible region. Moreover, integrals over V(x)
are determined by the normalization of various
odd-charge-conjugation form factors (e.g. , charge,
baryon number, hypercharge) and thus provide a
definitive test for fractional charge. We also note
that since the U~(x) are related in parton models
to the structure functions for highly inelastic neu-
trino scattering, V(x) should be completely deter-
mined by the results of neutrino experiments.

THE BREMSSTRAHLUNG CROSS SECTION

The diagrams relevant to the inclusive brems-
strahlung process e'+p- e' +y+ anything are
shown in Fig. 1. In general there are contribu-
tions from both the standard Bethe-Heitler brems-
strahlung amplitude and the virtual inelastic Comp-
ton amplitude. The difference of the inclusive
cross sections

do(e'+p- e'+y+X) —do(e +p- e +y+X)

is due, in order n', to the interference of these
two amplitudes (see Fig. 2), which is a, particular
discontinuity of the 3-photon "double" Compton am-
plitude'

V — P
I d4xd4ye" y"k4m'Z

x(p ~J,(y)T*(J„(0)Z„(x))(P). (1)

We shall work in the Bjorken kinematic region"
V(x)

-=g ~.'U. (x)
a

= g ~.'U.'~(x),
2P q = 2P (q -k)»&',
Q2 — q2 (q Q)2 ))~2 (2a)

U~'(x) = -', [U.(x) —U.-(x)], with x=@2/2P ~ q fixed. In addition we require that

where U, (x) is the probability to find a parton of
type a with charge A., and fraction x of the proton's
momentum in an infinite-momentum reference
frame. Unlike vW;~(x), which obtains contributions

()' -=—' »M'

2P q»M',
q2 g = 2)'2 q» M' .

(2b)

In the parton model the leading contribution to P„,z
in this kinematic region arises when all three pho-

j
I

p/

(&) Bethe-Heitler (b) Compton P P

FIG. 1. Diagrams which contribute to inclusive brems-
strahlung, e P e yX. The Bethe-Heitler amplitude also
receives a contribution from the amplitude in which the
photon is emitted from the incident lepton. The Compton
amplitude changes sign with the lepton charge.

FIG. 2. The absorptive amplitude contributing to the
e P —e yX cross section difference, from the interfer-
ence of the diagrams of Fig, 1.
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FIG. 3. The surviving single-parton contribution to the
interference amplitude in the Bjorken scaling limit. &he
kinematical restrictions require that all three photons
interact with the same parton. The result is proportional
to the charge cubed of the parton.

tons scatter on an individual parton (see Fig. 2)
and is given by kinematical factors multiplying the
scale-invaria, nt function V(x).

This result is derived from the following consid-
erations:

(a.) As long as both spacelike photons, q and q,
are massive (i.e. , have large transverse momenta
in an infinite-momentum frame) and are such that
Q' —Q'= 2k q»M' (which constrains k also to have
large transverse momentum in an infinite-momen-
tum frame), then all diagrams in which photons in-
t~ ct with more than one parton line are strongly
suppressed. [This assumption is, in general, not
satisfied for inelastic Compton processes. In the
case of small transverse momentum transfer,
P r' =ut/s, where

lung can take place off of any of the constituent par-
tons. This generates the usual target bremsstrah-
lung term in the soft-photon radiative correction
formulas.

(b) As in the usual application of the parton mod-
el, the requirements of large q', q', P q, and P q
are assumed to justify the neglect of interparton in-
teractions during the time period of the photon pro-
cesses (the impulse approximation) and final-state
interactions (incoherence approximation).

Thus the standard assumptions of parton models
imply that the difference of positron and electron
inclusive bremsstrahlung cross sections scales
and is weighted by the cube of the partons' charges.
Denoting, as usual, the fraction of the proton's
momentum in an infinite-momentum frame carried
by parton i as q,. we find that (~ p) = +„S„~n))

V„„„=
2

—g ~Q„p(n )5(q, —x)A. ,')n)M'„„„,
1 1

(2)
with

M'„„~ =-', Trp', y„Q, +q')

x [yP&+g+g) 'y&+y&Q, . -Q) 'y&], (4)

where x =Q'/2P. q. —We have written M'„„~for the
case of spin- —,

' partons; the spin-zero case is anal-
ogous. From V„„zwe may extract the structure
function V(x):

V(x) =-g I&„['&u ~&(rf; -x)&,'~n)

t-=(q -k)', s-=(P+q)', u=(P —k)', -=Q U, (x)X.', (5)
multiple parton processes can be important even in
the scaling region. " This has been shown explicit-
ly for the case of"

y+P - "y"(Q') +anything, Q' »M'.

On the other hand, for large P~' the elementary
parton process calculated by Bjorken and Paschos'
can be shown to dominate. "]

Since the interference contribution requires that
both the Bethe-Heitler and Compton amplitudes
have the same final state, we see that our kinemat-
ic restriction requires large transverse momen-
tum in the hadronic wave function unless q, k, and

q all interact with the same parton, as in Fig. 3."
Of course, if the photon were taken to be in the
soft, infrared region (k P «M') then bremsstrah-

the sum being over parton and antiparton of differ-
ent types a.

The cross section is a function of six independent
variables,

P p= ME=2Q'u, —

P P' =ME' = ~Q'n'—,

P k =—Mk, = —,'Q'y,

p k —= 2Q'p,

P' k= aQ'P'-

The difference of cross sections may be written as (s =2P P)

(d'P'/Po)(d'k/k, ) (d'p'/po)(d'k/k, ) w'sQ'

with
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Ma L pN.
a 2 ™P&& (8)

and

The expression for M&~ changes depending on whether partons of type a have spin 0 or —,'. The product
M'„„~L~"~ was computed using Hearn's program REDUCE." The complete expressions are given in the Ap-
pendix for both spin-0 and spin-2 partons.

Here we will concentrate on a particularly simple region, namely,

, » n, u', y, P, P'» I, with n —n' -y =1/x,

of order unity, in which the formulas of the Appendix simplify considerably. To preserve the condition
Q' —Q'= Q'(p —p')»bf, we are required to take Q' quite large. We choose this region for illustrative pur-
poses only —in general Q' need not be larger than the onset of scaling in inelastic electroproduction (e.g. ,
1 GeV'), and the full formulas of the Appendix must be used. In this region we find

d'o, d'o -8(e'/4v)'
(de /pIg)(de /b )

—
(de /p I)(d13'/b )

=
~2 P

6

+ [nPx —2nn'x' —nx+ nP xu+'x+1 —x'y'] Q &.'U. (x)j.
spin p

(10)

Clearly the different dependences of spin-0 and spin- —,
' terms on the invariants allows one in principle to

distinguish the parton's spin.
Besides simplifying our formulas this kinematic region satisfies the important experimental requirement

that the interference be a substantial fraction of the signal. To estimate the individual electron and positron
cross section we have calculated the squared amplitudes for the Bethe-Heitler and inelastic Compton pro-
cesses off of a single parton. We find (e.g. , for spin- —,

' partons) for the squared Compton amplitude

8iToi'-=», (n'x' —uPx —nx+ 0' —n'Px+ n "x'+ u'x+1)

and for the squared Bethe-Heit1. er amplitude

8
IT,„I'=— , , (o.'x' —nPx —nx+ P' —n'Px+ n "x'+n'x+1) .

IH 2Q2

Prom these we can construct the interference-to-signal ratio

do, do QX,'U, (x)

—Q ~.'U, (x) +—Q ~.'U.(x)
a xy

which is clearly of order unity. The choice of P= P yields this result because with that restriction the de-
nominators which enter the inelastic Compton as well as the Bethe-Heitler amplitudes are approximately
equal. It is therefore experimentally quite feasible to measure the quantity Q,U, (x)A.,' from the e'-e cross
section difference.

SUM RULES

To realize the particular utility of the interfer-
ence measurement, one must recall that the usual
sum rules for sums over the squares of the par-
tons' charges involving F,(x) = vW, (x) depend on a
variety of questionable assumptions. ' Rigorous
sum rules must derive from quantum-number con-
servation. Specifically we have

a

1

Y = dx'g y,U,(x),
a

(14)

B= dxg b.U,(x),
aP a

where Q, Y, and B (A.„y„and b, ) are the charge,
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hypercharge, and baryon numbers of the target
hadron (parton) of interest. All of these sum rules
depend only on the odd-charge-conjugation part of
U.(x):

+-', 5, so that

a 0

—,
' for protons
-,'for neutrons

' (19)

w0
V(x)dx = dx Q A.,'U, (x)

a 0

is determined by quantum-number conservation.
This is in striking contrast to the sum rules in-

volving the electroproduction structure functions
vw', ~(x} and vw;"(x), defined by

vW (x) =xg~.'U.(x),
(16)

] W;"(x) = xg ~.'U.-(x),

where a is the isospin reflection of the parton a.
vW;~ and vW', " depend only on the combination

U,'"'" = —', [U,(x) + U;(x)] and are therefore unrelated
to the conserved quantum numbers. The following
sum rules are easily constructed:

dx—vw, (x) = Q A.,'N, ,
&0 a

(17a)

1

dx vW, (x) = g~:x.N. , (17b)
0 a

1
where N, —= J dx U,(x) is the mean multiplicity for a

0 1
parton of type a, and x,N, —=f xdx U, (x) is the mo-

0
mentum fraction for partons of type a. The right-
hand side of (17a) is completely unknown without
strong assumptions. If it is possible to define a
distribution function for the momenta of partons in
each constituent state

~ n) ( Q) = Q „8„~n) ), and, if
one assumes the distribution function to be sym-
metric in all its variables, then the right-hand
side of (17b) reduces to the mean square charge of
the partons. " The usefulness of (17b) is further
diminished in the presence of neutral gluons for
which case the mean square charge defined by the
sum rule will be anomalously low. Similar re-
marks apply to sum rules for vS", —vW', ": They
are valid only with specific assumptions about the
distribution of partons in the nucleons.

Sum rules for V(x) = Q, A.,'U, (x) suffer from none

of these difficulties:
(a} In all models with partons of charge 0 or +I

(e.g. , Drell, Levy, Yan; Han, Nambu; o model;
etc. ) A,,' =-A., so that

d V()-~- 1forprotons (18)
0 for neutrons .

(b) In the standard quark parton model ](,,'= —,'A, ,

v:"(x)=--,'[v.(x) —v.-(x)] .

In general it is possible to reduce A.,' (which is odd
under charge conjugation) to a linear combination
of A.„y„and 5, so that the integral

The sum rule provides a striking test for fraction-
ally charged partons. Since the sum rule is inde-
pendent of the parton distribution, similar results
hold for nuclear targets as well:

e 0
dx V(x) = (Quark model) .3Z+~

If one assumes U„(x) = UI(x) in nonstrange baryons
the last term drops out; if not it may be expressed
in terms of 68=1 deep-inelastic neutrino scatter-

1
ing. " Of course the integral f dx[U„(x) —UI(x)]=S

0
vanishes for nonstrange baryons. Similar analyses
may be performed in other models.

CONCLUSION

In conclusion, we have shown that the parton
model predicts a very specific scaling form for
deep-inelastic bremsstrahlung. The prediction
that the right-hand side of Eq. (A7) depends in the
scaling region only on the variable x and not on
any of the four other dimensionless ratios of in-
variants provides a strong test of the validity of
the parton model. Second, since the structure
function V(x) depends on the cube of the parton
charge, it is possible to obtain exact sum rules,
Eqs. (18) and (19), which provide a, definitive test
of whether the constituents of the proton have frac-
tional versus integral charge.

Since V(x} does not receive contributions from
diffractive, Pomeranchukon, or other C-even ex-
change components, it should have a readily inte-
grable quasielastic peak. This, combined with the
fact that there exists a simple kinematic region in
which the Bethe-Heitler-Compton interference sig-

For nuclei with A, =2Z, the quark-model sum
rule gives -,'of the corresponding result for inte-
grally charged constituents. Thus tests of the sum
rule and the parton model can be performed on nu-
clear targets with the additional benefit of large
cross sections.

Lastly, in various models it is possible to ex-
tract most of the functions U, (x) from deep-in-
elastic neutrino and electron scattering off of pro-
tons and neutrons, "and thereby relate V(x) back
to these processes. In the quark model, for ex-
ample, one obtains

v(x)=(DB —[+.""b) -&P(~)] —&A""(~)++7(x)]}
1 9

——,', [v„(x)—v-„(x)].
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nal is maximal, and with the absence of a hadronic
decay background, should make deep-inelastic
bremsstrahlung a feasible experiment for proton
and nuclear targets.
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APPENDIX

In this appendix we give the complete parton-model prediction for deep-inelastic bremsstrahlung in the
scaling region. The inclusive cross section assuming spin- —,

' partons is (e'/4m = n = 1/137.036, Q' = -q',
Mv=P. q, s=2P P}

dh(e'p-e'yX) s do.

(d'p'/po)(d'k/ko) 2M' dQ'dv(d'k/ko)
e2 3

~ Z~.'~.(x) IT„I'~2K~.'~.(x) IT. , I' g&.'&.(x) IT,I', (A1)

where

iT i
=

2 [ 2x L2-aP'(n —n') —2x L,L2(n P —a —nPa'+na'P' —a'2P' —a' )

—2x'L,2Pn'(u —n') —xL, P'(nP —2nP' —3a + n'P'+ n')

xL,L, (n—p' —3upp' —3np+Sup'+2n+3pn'p'+Spn' —n'p" —3n'p' —2n')

+ xL2p(up —n —2pa'+ n'p'+ Sn') —L3'p'(p'+ 1) + L,L,(p' —2pp' —3p+ p" + 3p'+ 2) —L2 p(p —1)],
(A2)

2

iTci' =, [ x'D, '(n'p-'+ npn' —nn'p' —pn") —2x'D, D, (n'p —n'+ npn' —nn'p' —n"p' —n")
x'D, '(n'—p'+ npn' —nn'p' —pn") —xD, '(npp' —up" —np'+ p'n' —pn'p' —pn')

+xD,D, (nP'+ nPP'+ nP —nP' —2n —Pn'P' —Pn' —u'P" + n'P'+ 2n')

+xD, '(u P' —nP + uP" + 2 aP' —P'u' + 2Pn' —u'P" —n'P')

+D,D, (P' —2PP' —SP + P" + 3P'+ 2) —D, '(P' —P+ P"+ P')],
=-2

iT ) i
= -2 [4x P22a a +4x P2ia n +4x P»nn +4x Pinna

—x'P»(n'p+ 2n'p' —n'+ upn'+ 3na'p' +4un'+ u"p'+ n")
x'P»(Su'P —-2n'P' —3n' —nPa'+ 5nn'P'+4nn' —n "P' —n")
x'P»(n'P —n-'+ SnPn'+ nn'P' —4nn'+2Pa "+a "P'+ n")

+x'P„(n'P —n' —5nPu'+ nn'P'+4nn'+2Pn" —Sn "P' —Sn")

+xP»(nP' —nP+2nP"+SnP'+Pn'P'+2Pn')

+xP„(Snpp'+2ap —2up" —4np' —2n —2pn'p' —pn'+u'p" +3n'p'+2n')

+xP»(nPP' —2nP'+2P'n' —SPn'+ a'P" + u'P')

+xP„(nP' —2nPP' —SnP+ nP'+2n —2P'n'+SPn'P'+4Pn' —2n'P' —2n')

—P„(P' —PP' —2P + 2P" + 3P' + 1) P„(PP'+ P —P—"—2P' —1)

+P„(2P' —PP' —SP + P" +2P'+ 1) P„(P' —PP' ——2P + P'+ 1)] .

For the case of spin-0 partons
-1

iT. , i' = -, [8x'P„n'n'+8x'P„n'n'+8x'P„an" +8x'P„nn"
-4x'P» n(n p —n + 3n' p' + 3n') —4x'P» u(u p —a +a ' p' + a')
—4x'P»n'(3np —Sn+ n'p'+ n') —4x'P»a'(ap —u+ n'p'+ u')

+4xL,(up —n —2pn'+u'p'+u') —4xL, (np —2np' —n+ u'p'+ n')

+xP»(Snpp'+8np —9np' —8u+ 5n'p" +9u'p'+4u')

(AS)

(A4)
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+xP»(oPP'+4nP —5nP' —4n+ n'P" + o'P')

+xP„(5nP' —9oP+4n+ 5Pn'P'+9Pn' —8n'P' —8o, ')

+xP»(nP' —nP + Po."P' + 5P n' —4o.'P' —4n')

+ 4L i(P' PP—' 2—P+ P'+ 1) +4I a(PP'+ P —P" 2—P' —1)

P-..(2PP" + 5PP'+4P 5P—" 9P-' -4) P.-,P'(P P'——1)

P-la(2p'p'+5p' —5pp' 9p-+4p'+4) —Pllp(p —p' —1)j (A5)

The quantities o. , P, n', P' and kinematics are defined in Eq. (6). The propagators are (mass terms are
neglected)

(p'+0)'
2

—
2

(xP+q+k)'
D, '=, =x(n —o. ') —1+p —p',

(xP -u)'
2

(A6)

and P,, =I., D, , i, j=1,2. Also note the relation x=(n —o, '-y) '.
The odd-conjugation structure function V(x) = Pp, U, (x) is thus obtained from experiment by the relation

d'o(e'P- e'yX) do (e p- e yX)
(d'p'/p, )(d k/k, ) (d'p'/p, )(d'k/k, )

A severe test of the parton model is obtained from the requirement that the right-band side of (AV) is in
fact a function of x alone. Note that hadronic decay processes, e.g. , ep- er'X- eyyX, contribute to the
sum but not to the difference of e cross sections. The nominal order of the total scaling inelastic brems-
strahlung e-p cross section is (n/s) times the total scaling inelastic e-p cross section.
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of J. D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, New York, 1964).

~OThe early scaling observed in inelastic e-P scattering
indicates that Q2 ~ 1 GeV2 should be sufficient here.

S. J. Brodsky and P. Roy, Phys. Rev. D 3, 2914 (1971);
M. Bander, University of California, Irvine report, 1972
(unpublished).

~ R. L. Jaffe, Phys. Rev. D 4, 1507 (1971).
J. F. Gunion, S. J. Brodsky, and R. Blankenbecler,

Phys. Rev. D 6, 2652 (1972). The background to deep-
inel. astic Compton scattering due to inclusive r photopro-
duction and decay is discussed in this reference and in
Bjorken and Paschos, Ref. 7.

~4These results may be equally well obtained in the
covariant approach of Landshoff, Polkinghorne, and
Short (Ref. 1).

~5A. C. Hearn, Stanford University Report No. ITP-247,
1968 (unpublished).

6This is proved as follows: For any constituent state
of the proton, ) n), containing N„particles we define a
probability function f" {x&,...,x~ ) (integrated over trans-
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verse momenta), normalized by

f 1 n
dg dX «N f (&g." e~N I

2 n'
0 0 0

Then ~S& is given by

"~i()=Q&.p&g'/&*i-' d" „*i'(*i *)f"Wi -".* ~„)
n

where P„ is the probability for finding the state ~s) in the
proton. Integrating from 0 to 1,

i

~

~ ~
~ ~ ~"%(*)~*=ZPZ~ f~*l ~*I *f I*I ",'* )

n

ff t

where (7&)„ is the average momentum of particle i in the
state ~s). Since for any values of x&, .. . ,x» momentum
conservation requires g& "& x&

-—1 we find

Nff

Q (x))„=1.
I=i

If f{x~,... ,xN ) is symmetric under interchange of any
indices i anZ j, (x&)„ is independent of i. This implies
(x&)„=(x)„=1/N„which proves the contention that
J'0 vW2(x)dx is the mean square charge.

VLlewellyn Smith (Ref. 6).
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A new model of leptons based on discrete scale transformations is proposed. It is shown

that this model predicts a lepton mass spectrum consisting of an in6nite series of electron-
like and muonlike particles whose masses and charges are given by m„= m, p" (p = m&/m, )
Q = 2s(1+n/(s(). Particles with n positive are charged, those with n negative neutral.
Possible weak coupling schemes of charged and neutral leptons are considered. The lepton
with n = 2 is a heavy electron at 22 GeV. Decay modes and production mechanisms of this
particle are discussed. It is shown that, apart from high production cross sections needed
to fit experimental data, some of the recently observed anomalies in cosmic-ray muons
can be effects due to heavy leptons predicted by this model.

I. INTRODUCTION

Ever since its unexpected discovery, the muon
has remained as a tantalizing puzzle in elementary
particle physics. ' Except for the discovery of the
muon neutrino the situation today regarding leptons
is the same as in 1947. (Even this was anticipated
in the paper of Sakata and Inouye' written in 1946
to clarify the s-p, puzzle. ) No new charged leptons
were found. So far no experimental or theoretical
clue has been found to suggest a difference between
the electron and the muon, apart from the mass.
All experiments carried out up to this date, viz. ,
measurement of the branching ratios for decays
of hadrons into electrons and muons, ' precision
measurements of the muon magnetic moment, 4

electron-proton and muon-proton scattering' and
the recent experiment that demonstrated that the
muon obeys the same statistics as the electron, '
show that the muon is a heavy electron or in other
words, that the so-called electron-muon universal-
ity is strictly obeyed.

Many attempts have been made to understand
the muon puzzle, but none of them are entirely

satisfactory. One class of such theories attempts
to derive the muon from quantum electrodynamics.
Some of these derivations are based on the obser-
vation that muon-electron mass ratio is almost
exactly —,(1/o.), this being taken as an indication
that the key to the muon-electron puzzle may lie
entirely within the realm of ordinary quantum
electrodynamics. It is possible to start with bare
(zero-mass) electron and muon fields interacting
with the electromagnetic field and get two distinct
masses by renormalization. ' But these arguments
mere cutoff-dependent. In theories with spontane-
ous breakdomn, the necessity of a cutoff is re-
moved, and it is possible to obtain two renormal-
ized masses. Furthermore, the heavier lepton
remains stable, i.e., p. —e+y remains forbidden,
which is nice', the mass ratio, however, remains
arbitrary xo

Another approach to the muon problem depends
on higher-order wave equations. Markov" showed
that the two linear equations (i)(+m)$, =0 and
(i/-m)$, = (w0here P is a four-component spinor),
together are equivalent to a second-order equa-
tion that can describe two Fermi particles con-


