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The ratio of the vector to axial-vector coupling constant for Z —Ae v decays using 186
events is determined to be —0.37+0.20. The branching ratio for Z —Ae v is (0.62 +0.07)
x10 4 and for Z' Ae+v is (0.21+ 0.05) x10 4. An upper limit on the magnitude of the ratio
of the axial-magnetism to axial-vector coupling constants is 3.2.

Recently, three comparable experiments were
performed' ' to study the strangeness-conserving
decays Z' -Ae'v. The conserved-vector-current
hypothesis (CVC) relates the vector coupling in
these decays to the amplitude for Z'-A'y, it is
thus expected that, to zero order in the momentum
transfer, the vector coupling should not contribute
to such decays. 4

The sample of events available in each experi-
ment was rather small. We therefore felt it worth-

while to repeat the analysis of the combined sam-
ple rather than simply averaging the results pre-
sented by each group. The combined sample con-
tains 163 examples of Z decays and 23 examples
of Z' decays. The present analysis has also been
performed under slightly more general assump-
tions than before.

The decays Z' Ae'v are particularly rich in in-
formation because the three-body final state can be
completely kinematically analyzed by observing
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the A' decay. In addition, the A' decay is a good
analyzer of the A' polarization, thus allowing one
to measure the correlation between momenta and
the baryon spin.

Assuming that (1) the interaction is of the form
current x current, (2) the leptonic part of the cur-
rent is the same as in nuclear P decay, (3) the had-
ronic part of the current is thus a combination only
of vector and axial-vector parts, (4) the hadronic
current is even under G parity, and (5) the interac-
tion is invariant under time reversal, the matrix
element for Z -Ae v can be written in terms of
four real invariant functions of the momentum
transfer squared q' = (t}» —p~„)' as

Af = (A IZ„IZ) (e v)„
= uA(G, (q'h „+G~(q')y„y.

+ G~(q')o'q„q„/Mr+ G», (q')qqy, /M~) ur( ev)„,

(e v) „=u, y„(1+y, )u, , (1)

Q u, (1+)(y,)uAuAO„u~(ev)„
A spin

= u~(1+gy )(P'~~m~+)O u~(ev)„/2m~,

and then computing in the usual way,

(2)

where G~ is the vector coupling constant, G~ is the
axial-vector coupling constant, G~ is the weak-
magnetism coupling constant, and G„,is the induced
pseudoscalar coupling constant. In this convention

G„/G» for neutron P decay is positive.
The conserved-vector -current hypothesis implies

that G„(q' = 0) is zero, and uni(luely predicts G~ in
terms of the anomalous magnetic moments of the
proton and neutron. Contributions from the in-
duced pseudoscalar term can be ignored since
they are proportional to the electron mass.

We will in the following ignore the dependence on
q' of all form factors. This is justified firstly be-
cause in the decays of interest, q' is extremely
small I'0.0034 ~q' ~0.0059 (GeV/c)' for Z -Ae v],
and secondly because of the limited statistics. In
particular, we have checked that the inclusion of
a reasonable q' dependence (e.g. , the same as for
the electromagnetic form factors) does not change
any of the presented results.

En order to best use all the information available
in each decay event, we prefer to obtain a com-
plete distribution function in the 12-dimensional
momentum space of the A, electron, neutrino, and

proton. This distribution will take into account
correlations in momentum space as well as A-spin
correlations in a relativistically correct way. It
is obtained by summing over the A spin the ampli-
tude for the complete decay chain Z -Ae v, A
~ P71

f (PA, P, , P„P~)=
e, v, p gpins

(3)

In the above O„stands for the entire operator in
brackets between the A and Z spinors in E(l. (1).

X is related to the n parameter in A decay,

}1'(cos8,,}=—' 1+, t:Ds6,„)

We define three orthonormal vectors:

The A-spin correlations are

8 ReZ
W(S~ c}.) = —,

' 1+3
I

I, SA n

IV(Sq }1}=—'((+1 (gI, Sq (}),
r ImZ

w(s, y)=-,' 1+2 IZI, 3 s, y

These nonrelativistic results have been checked

by a Monte Carlo integration of the complete ma-
trix element squared. The Monte Carlo result
shows excellent agreement with the above expres-
sions except for the coefficient of eos6I„. Figure
1 shows a comparison of the coefficients. In es-
sence, the coefficient as determined from the
Monte Carlo integration is 0.07 smaller than the
nonrelativistic result except near large IZI where
the difference approaches 0.13.

The result is shown in the Appendix.
It should be noted that the matrix element for g'

-Ae'p is different from the above. In particular,
the lepton current is

u„y„(1+y,)u, .

If one makes the usual assumption that the bary-
on current is the same for Z' and Z, the only dif-
ference between these matrix elements is the or-
der of the leptons. One may thus combine the two

types of decays by interchanging the neutrino and

electron for the g' decays.
As a check on the results from the likelihood

calculation, it is useful to compare the experi-
mental distributions of the various kinematical pa-
rameters with the expected distributions based
upon the likelihood calculation. Some of these ex-
pected distributions have been calculated assum-
ing the A is nonrelativistic and the electron has
zero mass. ' Defining Z as G»/G~, the expected
distributions of the electron-neutrino angular cor-
relation is
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FIG. 1. Value of a in f(cos6) =0.5(1+a coso~~) com-
paring nonrelativistic result shown in text with Monte
Carlo result.

A likelihood calculation must take into account
any biases in the data. In principle, one should
determine the detection efficiency as a function of
all measured variables and use this to normalize
the likelihood function. In practice, with only 186
events, this is impossible. Qne must then rely on
a Priori arguments to determine any detection
biases that exist. We are convinced that the mo-
mentum of the A, the electron-neutrino correla-
tion angle, and the various spin projections are un-
biased, at least to our level of statistics. This fol-
lows because the Z decay with a range of lab mo-
menta and the above quantities are calculated in
the Z rest frame. The Lorentz transformation
thus washes out the laboratory detection biases.
The same argument cannot, however, be made for
the electron momentum. The Lorentz transforma-
tion will change the electron momentum only on the
order of 6%. We believe that the detection efficien-
cy for the events was independent of the electron
momentum, but are unable to prove it. Thus, one
should be wary of any determination which depends
critically on the electron momentum.

An examination of the expected distributions
shows that the ratio Gv/G„depends most strongly
upon the cos61, „and the SA ~ 6 distributions and is
quite insensitive to SA ~ P and the electron momen-
tum distributions. The ratio G~/G„depends most
strongly on the electron momentum distribution
and to a small extent upon the SA ~ 5 distribution.
Defining Z' as G~/G„, the dependence on SA ~ n is

FIG. 2. Contour plot from 2-variable likelihood cal-
culation using 163 Z events. The closed contours are
the 1- and 2-standard-deviation contours. The dashed
curve shows the trajectory of the most likely value of

Gz/G& and the 1-standard-deviation point as a function
of various fixed values of Gz, /G&. The dash-dot curve
shows a similar trajectory for G~/Gz for various fixed
values of Gz/Gz.

the 163 g events. The approximate error matrix
derived from the 1-standard-deviation contour is

f 0.115 -0.6041
!-0.604 14.74

The two parameters are clearly correlated. The
result is Gv/G„= -0.64,,",'„G~/G„=+5.8", ,'where
the errors are taken at the extrema of the 1-stan-
dard-deviation contour. An alternate procedure is
to perform single-parameter likelihood calcula-
tions holding the other parameter fixed. Figure 2

shows the trajectories of maximum likelihood as
each of the parameters is varied. The error bars
are at 1 standard deviation. Assuming the CVC
prediction that Gv/G„ is zero, the value of G~/G„
is 2.4+ 2.1, consistent with the CVC prediction of
1.9.

Figure 3 shows a plot of log likelihood versus
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Figure 2 shows contours a.t 1 and 2 standard de-
viations from a two-parameter likelihood calcula-
tion for Gv/G„and G~/G„assumed real using only
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FIG. 3. Likelihood function from 1-variable likelihood
calculation using 186 Z events for G~ =0.
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G~/G„assumed real holding G~/G„ fixed at zero
for 186 Z and Z' events. The standard deviation
and central value calculated from the 1-, 2-, and
3-standard-deviation points are virtually identical.
The result is G~/G„= -0.37+0.20. The results for
the separate samples are -0.45+0.21 for the Z
sample and -0.06+0.64 for the Z' sample. For
G~/G„=1.9, the result is G~/G„= -0.45+0.20.

Figures 4 through 8 show five experimental dis-
tributions of interest. It may be noted that assum-
ing Z real and Z' zero, a fit to the cosg, „distribu-
tion yields a value for ~Z~ of 0.65',"„'. Similarly a
fit to the a projection of the proton momentum (re-
lated to the spin of the A along the o. direction)
yields Z = —0.23+0.23. These two values are con-
sistent with the value from the likelihood calcula-
tion of -0.37+0.20. A fit to the electron momen-
tum distribution may be done simply by dividing
the spectrum at 40 MeV/c. The calculated elec-
tron spectrum given by Bender et al. ' may be inte-
grated to yield an expression for 5, the number
above 40 minus the number below divided by the

FIG. 6. Distribution of the kinetic energy of the electron
in the Z rest frame for 163 Z —Ae v events. The ex-
pected distributions for two values of GIv/G~ (Z') for
Gv/Gz =0 are shown.

total. The expression for Z =0 is

5 = -0.021+0.028Z' .
The fit yields Z' =+1.9+ 2.8 which is consistent
with the value from the likelihood calculation.

For all the above results, it is a,ssumed that Z,
the ratio of the vector to axial-vector coupling con-
stants, is real. The distribution of SA ~ y is sensi-
tive to the imaginary part of Z. Figure 9 shows a
related distribution, p~ ~ y. A fit to this distribu-
tion, assuming Z is pure imaginary, yields Im(Z)
= 0.16",4'„which is consistent with zero. This
corresponds to an upper limit on ~lmZ~ of 0.63.

Branching Ratios

The branching ratios of g'-Ae'p are of interest
because they are related to the D to I' ratio. The
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FIG. 7. Distribution of the projection of the proton
momentum in the Z rest frame in the n direction for
186 Z events. The expected distributions for several
values of Gv/G& (&) as well as Gz, /G~=1. 9, Gv/Gz ——0
are shown.
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FIG. 8. Distribution of the projection of the proton
momentum in the Z rest frame in the P direction for
186 2 events. The expected distributions for several
values of G~/Gz (Z) are shown.

FIG. 9. Distribution of the projection of the proton
momentum in the Z rest frame in the y direction for
163 Z Ae I events. The expected distributions for
several values of Im(Gv/G~) {Z) are shown.

the ratio of Z' to Z production by stopping K .
Thus '

ratio of the decay rates is also of interest because
a deviation from the phase-space ratio (0.61) is an
indication of the occurrence of second-class cur-
rents. In order to calculate these numbers, it is
essential to know one's detection biases. Each of
the groups chose a sample of events appropriate
to their detection procedure and made a Monte Car-
lo estimate of the resulting detection efficiency.
Also, in order to calculate the branching ratios it
is necessary to know the number of 5' produced.
Again each group chose a different technique. Ta-
ble I shows the various numbers needed to calcu-
late these ratios. It should be noted that in all
cases the number of Z' and Z produced were de-
termined in ways which yield strongly correlated
values. The ratio of the decay rates may be calcu-
lated using only the detected number of events, the
scan and detection efficiencies, the lifetimes, and

r(Z' -Ae' v) 35.8 ~ 8.7 1.64+0.06
I'(Z -Ae v) 237+24 0.810+0.013

x ' x22~0 1

= 0.67 + 0.18 .

The branching ratios are given by the corrected
number of events divided by the branching ratio
for A- p7I and the total number of Z's produced:

I'(Z' -As' v) 35.8 a 8.9
I (g+- all) (2.66+0.12)x10'x(0.653y0.012)

= (0.21+0.05) x10 ',
I'(Z -Ae v) 237 + 27
I (Z - all) (5.86~0.20)x10'x(0.653+0.012)

= (0.62+0.07) x10 '.
The errors on the corrected numbers of events

are different for the ratio of the decay rates and
the branching rabos because the error in the scan

TABLE I. Event rates and efficiencies for branching ratios. '

CU/SB Maryland Heidelberg Total

Z used
Scan eff.
Geom. eff.

corrected
produced (x 106)

Z+ used
Scan eff.
Geom. eff.
Z+ corrected
Z+ produced (x 106)

31
0.95+ 0.05

0 44
74.2 + 13.9
2.13+ 0.11

5

0.95+ 0.05
0.49

10.7 + 4,8
0.99+ 0.08

35
0.80+ 0.08

0.44
99.4 + 19.5
2.35+ 0.12

6
0.80+ 0.08

0.55
13.6 + 5.7
1.04+ 0.07

31
0.81+ 0.08

0.605
63.3 + 13.0
1.38+ O.ll

6
0.81+ 0.08

0.65
11.4 + 4.8
0.63+ 0.06

97

237 6 27
5.86+ 0.20

35.8 + 8.9
2.66+ 0.12

The Heidelberg group reports a total of 10 Z+ decay events; four events, however, did not have
a visible A decay. We prefer to use six events to maintain uniformity with the & decay where
events without visible A decay are usually due to the decay Z ne
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efficiency does not enter into the former.
The measurement of the ratio of the decay rates

permits a limit to be set upon the axial-magnetism
(AM) coupling constant in the hadron current. This
is a second-class current' and is of the form

G~o „„y,q„/m z.
We use the calculated decay rates of Nieto" and
note that the major effect of axial magnetism is its
interference with the axial-vector term. This in-
terference is of opposite sign" for Z' and Z . Con-
sidering only this interference and the dominant
axial-vector contributions, and ignoring the abso-
lute sign of G~/G„, one gets

1'(Z ' -A e' v} = 6.625 x 10' G„'y 0.5487 x 1 p' G„G
F(Z -Ae v) = 10.95x10'G„'+0.9979xlp'G„G

This yields, calling ft = I'(Z'-Ae'v)/1'(Z -Ae v),

GAM 8 -0.605
G~ 0.09119+0.0501

~(p 6+ 1.3)

This corresponds to a 90/0 confidence upper limit
on 6AM/G„of 3.2.

Assuming that the decay Z -Aev is pure axial-
vector, the branching ratio can be computed by
combining the Cabibbo prediction of the decay rate
with the lifetime of the Z; in particular, for the Z

F(Z -Ae v)

(
=(1.80+0.07)x10 'cos'8 ,'D'. —

Using the value for 6) at 0.239+ 0.006 from a one-
angle fit,"we calculate D= 0.74+0.04.

Conclusions

We find G»/G„= -0.37+0.20, consistent with the
CVC prediction of zero. We clearly have very lit-
tle sensitivity for the quantities G~/G„, lm(G»/G„},
or G~/G„. However, our results are consistent
with the various predictions of CVC, time-rever-
sal invariance, and the absence of second-class
currents. The branching ratios of Z' and Z to
Ae' v are determined to be (0.21 +0.05) x 10 ' and
(0.62+0.07) xlp ', respectively, yielding a value
for D of 0.74+0.04.

APPENDIX: MATRIX ELEMENT FOR Z ~ Ae v FOLLOWED BY A ~px

All coupling constants are assumed to be real and an ov'er-all constant has been deleted. The metric is
(1, 1, 1, -1) and in this convention G„/G» for neutron P decay is positive. Four-vectors are abbreviated to
the particle name and a dot between two four-vectors indicates an inner product. We define

A = a/pm~, C = G„+(mz+m~)G~/mz,

where n is the asymmetry parameter for A-pw, and p is the c.m. momentum in A-pm . The matrix
element squared is

~5g~'=(C'+G„')[A ~ eZ v+A ~ vZ e+AA P(A eZ v-A vZ e)+Am~'(P eZ v-P vZ ~ e)]
+(C' —G„')[mzmAe ~ v-AmzmA(A ~ vP e -A eP v)]

+2CG„[A ~ eZ ~ v-A ~ vZ ~ e+AA P(A ~ eZ ~ v+A vZ e)+AmA'(P ~ eZ ~ v+P vZ e)]
+(CG~/mz)[ mz(Q ~ eZ ~ v —Q Ze v+Q vZ e) —mz(Q eA v —Q Ae v+Q vA e)

+Am~Q A(p ~ eZ ~ v -p ~ vZ ~ e) -Am~Q p(A ~ eZ v -A ~ vZ ~ e)

+Am ~Q ~ Z (A ~ ep v —p ~ eA v)]

+(G„G~/mz)[-Am~(mzm~ -Z ~ A)(P ~ eQ ~ v —Q Pe v+P ~ vQ ~ e)

—A(mzA p+mAZ p)(A eQ v —Q Ae v+A vQ e)]
+(G~'/mz')(mzm~ -Z ~ A)(Q eQ. v-Q Qe v/2) .
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Boris Kayser
DePartment of Physics, Northwestern University, Evanston, Illinois 60201

and

F. Hayot
Service de Physique Theorique, C.E.N. Saclay-B.P. No. 2-91 Gif-sur-Yvette, France

(Received 15 December 1971)

The SU(3) symmetry of baryon Regge poles is explored by comparing the angular distribu-
tions of backward meson-baryon reactions whose Regge exchanges should be SU(3)-related.
Several indications of the symmetry are found. In particular, it is discovered that one can
generate the observed highly structured angular distribution for m+p -pm+ from the feature-
less one for K+P -PK+ simply by assuming SU(3) symmetry and taking singlet-octet ex-
change degeneracy in K+P scattering into account. Using the symmetry, evidence that ex-
change degeneracy between the Reggeized 2 and 2 octets is broken is found. Relevant ex-
periments are suggested.

I. INTRODUCTION

We are exploring the question of whether baryon
Regge residues show the same kind of SU(3) sym-
metry that resonance decay rates and stable-par-
ticle couplings do. More specifically, we are look-
ing for evidence of such symmetry (and sometimes
of exchange degeneracy as well) in the observed
features of backward 0 meson--,"baryon scatter-
ing. We would like to report some of the things
which have been found.

As is well known, resonance partial widths have
proved to obey close-to-exact SU(3) symmetry,
once the barrier-penetration-phase-space factor
q"" is divided out of them '(Here .q is the center-
of-mass momentum of the outgoing particles, and
l is the orbital angular momentum of the reso-
nance. ) Thus, the residue of the Breit-Wigner
pole in the partial-wave amplitude (S —1)o/
2i(q, q&)'" for formation of a resonance by incom-
ing state i, and its subsequent decay into outgoing
state j, is SU(3)-symmetric once the factor (q,.q,.)'
is removed. It is then natural to conjecture that as
one moves along the Regge trajectory to which the

resonance belongs, this barrier-penetration effect,
(q,.q,.)', continues to be the only thing which breaks
the SU(3) symmetry of the residue. Hence, we
write the signatur'ed meson-baryon partial wave
containing the Regge pole to which some resonance
k belongs (for definiteness we treat here the case
where k is a member of the 5 decuplet [b, ~(1236),
Z~(1385), etc. j) in the form

p'„.(w)/s,', z,. +M,. E,. +u,. ~~2

f„.(z, w)
( )

(q, q,

(1.1)

Here J is the total angular momentum, l =J ——,
' is

the orbital angular momentum, W is the total c.m.
energy, u = W', and E, is the c.m. energy of the
baryon, of mass M„ in state i. The trajectory on
which resonance k lies is denoted by u~. [We will
always take n„ to be the true, somewhat SU(3)-
breaking, trajectory. ] The amplitude f is defined
to coincide with (S- 1)/2i(q, q~)'I' for physical J',
and the slowly varying square root in (1.1) has
been included so that P~~/so~ will be the residue of
the Regge pole in the standardIkinematic-singu-
larity-free partial-wave amplitude. ' The conjec-


