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the event at A, or the event at B. Thus, a definite,
mell-defined, and Lorentz-invariant causal con-
nection between the event at A and that at B wiQ be
determined, the tachyon beam being the causal
agent. Every observer, in each of the proposed
anomalies, can be supplied with such a "causal
pointer" making the causal direction unambiguous
and Lorentz-invariant.

III. CONCLUSION

In conclusion, the reader should be reminded
that tachyons, as physically realizable entities
capable of carrying information across spacelike
intervals, are the subject of the anomalies. The
"virtual" particles or exchanges which arise in
series-type solutions of interaction problems as
well as any waves obeying a Klein-Gordon equation
may have spacelike four-momenta, however they
cannot carry information across spacelike inter-

vals. Thus, they do not yield any new conclusions
about rigid bodies, action at a distance, etc.
Tachyons can exist only if certain experiments
cannot be performed, i. e. , only if certain of the
emitters trill not zoork. ' Finally, I wish to remark
that only if tachyons (which interact with tardyons)
exist may the arrow of causality point in the op-
posite direction to the arrow of time. Under such
circumstances the arrow of causality is well de-
fined by use of a "causal pointer" for tachyon
beams. (Naturally occurring events, connected by
tachyons, will indeed result in tachyon beams if
we take a large enough sample of tachyon-active
material, cf. natural radioactivity. )
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We insert Regge-exchange amplitudes into the unitarity relation at intermediate energies.
The resulting m absorptive part is then required to be dual to one with Pomeranchukon (P),
p, and f exchange. By assuming p and f0 residue functions consistent with the dual-ab-
sorptive model, we can then calculate the P residue near t = 0.

In previous papers, '' a form of nonlinear dual-
ity, abstracted originally from the multiperipheral
model, ' was used to calculate the Pomeranchukon
residue at t=0. In the present paper, we consider
t+0. In mm scattering below the 3p threshold, our
duality condition takes on the form'

I

ds 6; t v"'' — a' s, t =0, 1
So c=m, R

where s, t, u are the usual Mandelstam variables,
v = —', (s —u)/m, ', and b; v"' is the contribution of
the Regge trajectory n;, while a" and a are the
contributions of Figs. 1(a) and 1(b) to the absorp-
tive part A. . Here 8 stands for any accessible mm

resonance, and s, and s, are taken to lie at chan-
nel thresholds. In what follows we take (s, , s, )
= (4m~, 6m ~'), which coincide with the pp and
NN thresholds, respectively. '
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FIG. 1. (a) Unitarity diagram giving a . Single lines
denote pions and wavy lines denote Regge exchanges.
Only the 7t 7I' intermediate state is retained. (b) Unitar-
ity diagram giving a~. Double lines denote 7r7j- reso-
nances (R ) . Only the RR intermediate state is re-
tained.

dv[bo(t)v"~~'i -A„„„,„„(s,t)] =0, (3)

where N is taken halfway between the f and g reso-
nances. We assume that peripheral resonances
continue to dominate even at low energies, so that
A„„„,„„is saturated by the p and f' (with m o

= 765
MeV, FP = 125 MeV and m& -—1260 MeV, F& —- 140
MeV), both of which fit in quite well with l(l+ 1)- (qx)'. This means that we drop all daughter reso-
nances such as the p' or ~, which in any case
seem to be either absent or small in the most re-
cent data. If we then take the usual uo(t) = n(t)
= —,'(1+ t/m~'), we find that Eq. (3) leads to a zero
in bo at

~
t~ = 0.29 GeV', which would correspond

to r = 0.88 F in Eq. (2). The corresponding value
in ÃP scattering is r = 0.95 F.'

To calculate bf we could again use an FESR.
The zero-moment sum rule might have fixed-pole
contributions, however, while the first-moment
rule weights the region near v = N unduly. We
shall therefore assume exchange degeneracy in-
stead, which gives n&

—- nP and b& = —,'b P
~ One gets

essentially the same result using the zero-mo-
ment sum rule, which means that fixed poles are
presumably negligible.

In Ref. 2, the functions bP and bf, which come
into Eq. (1) along with bv, were extracted from
the Lovelace-Veneziano model. Recent investiga-
tions of dip structure by Harari' seem to show
that the resonance distribution in such a model
may not be sufficiently peripheral to be consistent
with the data, howeve r. One is 1ed, instead, to a
model in which A is dominated by the peripheral
(l- qr) resonances. More specifically, we have

A= C(s) e '"Zo(r~t ) .

With r=1 F, A has a zero at
~ t~ =0.2 GeV'. By

contrast the Lovelac e -Vene ziano model gives a
zero at ( t~ =0 ~ 6 GeV' ~

To calculate bP, we use a finite-energy sum
rule (FESR) in the t-channel isospin I, = 1 state

Sg

ds[bo v" & —(4bo- bq} v" +a") =0,
Sp

(5)

where a =jgr 2 I =i I =pS S S
Since the horizontal lines of Fig. 1(a) are domi-

nated by the p and f' Regge exchanges, we can cal-
culate this diagram in terms of the m m amplitudes
T, =F(n;)b;v ', where E(n) is the appropriate sig-
nature factor. Now the dominant contribution to
Fig. 1(a) comes from T, near the forward direc-
tion, so we shall approximate F(n) by its value at
t = 0. We also make the exponential approximation
b(t) = b(0) e&', with y=(b'/b), , If we now evalu-
ate Fig. 1(a) for the various isospin states, making
the usual asymptotic approximations and inserting
a factor of two to take into account the contribution
of the backward direction, we obtain, with o'(0}=—'„

gFK 3m -2b 2(0) ~ 1 eMpt/4
P P (6)

where ~;=2(y, +n lnv). This turns out to give a
rather small contribution to Eq. (5).

Before we can calculate bz(t) from Eq. (5), we
need some kind of model for a~(t} The simple. st
is to assume a flat P with o'v(t} = 1. We then ob-
tain b~(0) =0.019 and yv =4.2 GeV '. This corre-
sponds to a high-energy cross section o„,= 13 mb
and a differential diffraction-peak width co& = 8.3
GeV '. Experimentally, o„,= 15 mb (using factor-
ization) and &op~= 12.5 GeV ' at ISR (CERN Inter-
secting Storage Rings) energies. ' Our calculated
value therefore appears to be somewhat too small,
since any simple multiperiphe ral model would give
~&' = co~ = ~~~~ However, factorization only pre-
dicts that ~"= 2u '~ —co ~~ Since v'~ is slightly
smaller than co ~~ at lower energies, it would not
be inconsistent to expect cv&' & co~~~ at higher ener-
gies. Finally we obtain 8,„=1 .0, where

R„,=[b~(0)/bq(0)](A/m ')"& '

It now remains to evaluate a ' and a . Actually
the latter does not have to be calculated explicitly
if we assume that the horizontal lines of Fig. 1(b)
are dominated by I= 1 exchanges, such as the n

and A, trajectories (see Ref. 2) ~ In that case, all
the lines of Fig. 1(b) are I= 1 systems, since we
are neglecting daughter resonances and can there-
fore only have B = p in the region of interest. Sim-
ple iso spin considerations then give

+i, =o=4&rg=i ~ (4)

This differs from the corresponding Eq. (20) of
Ref. 2, in which, however, 8 included a rather
large e component. If we now apply Eq. (1) in both
the I, = 1 state, where i = p, and in the I, = 0 state,
where i =P,f, we can use Eq. (4) to eliminate a"
completely. We then have
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D(J; t) =[J—o(t)](c —[J—n(t)]o'(J, t)],
where

(8)

(9)

and c= 1 if the effect of the cut is in fact a small
perturbation, as we are assuming. In the immedi-
ate neighborhood of J= n„ then,

v(J, t}= g(t) ln[J ——n, (t)],
where

32za~'(0)](0)=[o',(0) —o'(0)]'g '(0),

(10)

and g~(t ) is the triple-Pomeranchukon vertex func-
tion, as defined in Ref. 10.

We have neglected any J dependence in the nu-
merator of Eq. (7), an assumption which was
checked explicitly in the case of a specific Amati-
Bertocchi-Fubini-Stanghellini- Tonin (ABFST) mod-
el and found to be quite reasonable for & & J& 1.
Moreover it can be shown that the addition of a
certain amount of J dependence will not affect our

with A =1 GeV . This is consistent with the experi-
mental values of R,~ and A'», which are predicted
to be equal to R„, in the f-coupled Pomeranchukon
hypothesis. '

A more sophisticated model for o.~(t) might en-
tail taking a structure from some multiperipheral
model. Now for a broad class of such models the
I, =0 projected absorptive part can be written as'

(7)

where D has zeros at J= n~, n& and a logarithmic
branch point at J = n, (t) =2m~( ,'t) -1-, whose
strength is governed by the triple-Pomeranchukon
vertex. " We can therefore write a dispersion re-
lation" in J with a double subtraction at J = n&.

with
I

D(J; t) (13)

Since we are only interested in the properties of
the f and P trajectories, we thus see that o is
needed only at J'= o~(t). This is indeed very close
to n, (t) when t is near the forward direction, and
means that we can use the approximation (10).

If we now apply Eqs. (5), (6), (12), and (13) and

their t derivatives at (=0 we obtain o~(0) =0.985,
v„,= 13 mb, R,„=1.0, o.~ '(0) = 0.06 GeV ', and

y~ =4.0 GeV '. The first three quantities are es-
sentially the same as in the flat-P case discussed
already. Our I' slope is much smaller than the
value n~'= 0.5 GeV ' suggested by a simplistic in-
terpretation of the Serpukhov data, although it is
consistent with the ISR results, which suggest a
much flatter I' trajectory. ' At the typical ISR en-
ergy squared of s =2000 GeV' (P„b= 1000 GeV/c},
our y~ gives the diffraction width (d&" -—9.0 GeV ',
which is again somewhat smaller than the experi-
mental ~~~ =12.5 GeV '.

As a by-product of our calculation, we obtain a
triple-P coupling g~(0) = 0.85 GeV '. This is quite
close to the value g~(0) = 1 GeV ' calculated within
a specific ABFST model in Ref. 10. It is also not
too different from the "experimental" value g~(0}
= 0.5 GeV ' extracted by Rajaraman, "although a
cleaner measurement which is free of resonance
complications will have to await higher-energy ex-
periments.

results very much. From Eqs. (7) and (8) we see
immediately that b(t) = bz(t), irrespective of the
detailed form of o'. The upper zero of D now gives
us o.~(t);

(12)
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