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The partial differential equations with respect to strong and electromagnetic coupling
constants are established for the S matrix, Heisenberg operators, and “out” field opera-
tors. The macrocausality relations —vanishing of derivatives with respect to coupling con-
stants for free “in”’ field operators —are important in the formalism. As a consequence of
macrocausality relations, observable masses do not depend on strong and electromagnetic
coupling constants. This makes the observable n-p mass difference uncomputable. Thus,
our approach goes along the lines of divergent (but renormalizable) field theory. We are
assuming (although not discussing) the existence of nonelectromagnetic interactions which
make m, —m, =0 when e = 0. The partial differential equations with respect to strong and
electromagnetic coupling constants are derived for bare » and p masses. In order to inte-
grate these differential equations, the observable n and p must be known a priovi. After
integrating these differential equations, a formal expression for the observable n-p mass
difference is obtained. This expression, compared with the usual expression from the lit-
erature, besides containing the difference of » and p mass shifts due to the electromagnet-
ic interactions (“renormalized” by strong interactions), also contains the bare z-p mass
difference and the difference of » and p mass shifts due to strong interactions. One cannot
“recover” the usual expression for the n-p mass difference since our expression, as far
as the observable n—-p mass difference is concerned, is an identity and not the relation from
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which it can be computed.

I. INTRODUCTION

It has been shown on various occasions in quan-
tum field theory that the differential equation with
respect to the coupling constant for the S matrix,
Heisenberg fields, and “out” fields can be quite
useful.! They enabled one to reduce the S matrix
into the closed normal form in free-field “in” op-
erators for some models of quantum field theory.

However, if the interaction cannot be character-
ized by only one coupling constant and, in parti-
cular, if one is much larger than the other, for
practical applications we shall need more than
one set of partial differential equations for the S
matrix, Heisenberg operators, and “out” field
operators. This, for example, will happen when
the system of particles interacts through strong
and electromagnetic interactions. We shall char-
acterize the strong interactions with just one cou-
pling constant, g, while as usual, the electromag-
netic coupling constant with e. We will vary them
independently between zero and their physical
values, signifying that the electromagnetic and
strong interactions are different in nature.?

In the derivation of these partial differential
equations with respect to strong and electromag-
netic coupling constants, the macrocausality re-
lations (8¢, /8g=08¢, /6e=0) are important. These
relations require the observable masses to be in-

8

dependent of coupling constants. This means that
our development will be based on the divergent (re-
normalizable) field theory, in which the observ-
able masses are given as input parameters. (For
example, we do not know yet how to incorporate a
deuteron into this formalism.)

Once having these partial differential equations,
one has the means to tackle practical problems
where both strong and electromagnetic interactions
are important. Of all possible problems, however,
we shall discuss only the question of the electro-
magnetic mass difference of hadrons, in particu-
lar, the n-p mass difference. As is well known,
the calculated values for the n-p mass difference
usually predict the proton to be heavier than the
neutron, contrary to the experiments. However, ac-
cording to our formalism one should not try to
compute the observable #-p mass difference since
by the assumption of the formalism it is not neces-
sary to assume that the observable masses depend
on coupling constants g and e.

In Sec. II, besides listing the assumptions of our
formalism, we derive partial differential equations
with respect to coupling constants for the S ma-
trix, Heisenberg fields, and “out” fields.

Section III is devoted to the derivation of the de-
composition of the S matrix as S=5,S,,, where S
describes the strong interactions only, while S,
is responsible for electromagnetic transitions

22717



22178 JOSIP SOLN 6

(“renormalized” by strong interactions).

In Sec. IV we show that partial differential equa-
tions with respect to coupling constants have to be
formulated with the total Hamiltonian density, if
its free part contains bare masses.

Finally in Sec. V we derive partial differential
equations with respect to coupling constants for
neutron and proton bare masses. From them we
further derive the partial differential equations
for the self-masses. The Cottingham formula for
the hadronic electromagnetic self-mass is also
deduced. The formal expression for the observ-
able n-p mass difference is derived. It differs
from the usual expression by having some addi-
tional terms. Because of these additional terms,
the expression becomes an identity as far as the
observable n-p mass difference is concerned,
which makes it uncomputable. Of course, we as-
sume that there are some other (nonelectromag-
netic) interactions which make m, # m,.

In concluding Sec. VI we make some remarks
about #-p mass difference with respect to SU(2).
We show that if m, — m, is neglected and strong
and electromagnetic interactions are present
[SU(2) is broken] the bare z-p mass difference is
calculable, and it turns out to be 0.66 MeV.

In the Appendix we discuss the SU(2) transforma-
tion properties of proton and neutron “in” field
operators for cases when SU(2) is broken and ex-
act.

II. THE DIFFERENTIAL EQUATIONS FOR THE S MATRIX
AND HEISENBERG OPERATORS WITH RESPECT
TO THE COUPLING CONSTANTS

We shall assume that the system of particles in-
teracts strongly and electromagnetically only.
Then, formally we can write the S matrix in the
Dyson form:

S:Texp[—ifd“x:fc;‘zt(x)] . (1)

e, denotes the interaction Hamiltonian expressed
in terms of incoming field operators and their ca-
nonical conjugate operators. We denote with g and
e the strengths of strong and electromagnetic cou-
plings, allowing them to vary independently be-
tween zero and their physical values. However,
before we vary the coupling constants, let us write
down the most important assumptions and relations
which we shall need later. The basic assumptions
are macrocausality relations,

9 9
@‘Pm(x): £¢m(x)=0,

(2a)
2T (1= 727, () =0,

where ¢;, and 7, are common symbols for all free-
field “in” operators and their canonical conjugates.
As a consequence of relations (2a), no observable
mass m can depend on coupling constants g and e:
] 9

gg‘ m= —a—é‘ m=0 B (Zb)
which means that the observable masses are given
as input parameters. Thus our approach goes a-
long the lines of renormalizable-divergent field
theory. On the other hand, a bare mass m, will be
generally a function of g and e and, as usual, we
assume that it is connected to the mass shift Am
by the relation

mo(g’e):m_Am(ga e)' (20)

Finally, we take that the S matrix in the absence
of all interactions is equal to unity; i.e.,

Slg:o.e=0:1' (2d)

Taking into account that the Heisenberg field op-
erators and their canonical conjugate operators,
which we denote with common symbols ¢(x) and
m(x), are connected to ¢;, (x) and 7, (x) by the re-
lation

(%) =S"T (¢ ()S),
7(x) =ST T (1;0(x)S),

then because of (2d), in the absence of all inter-
actions (e=0, g=0), we have

¢(x)| e:o,g=o=¢in (%),
ﬂ(x)l e=0,8=0" Mip (x) . (26)

As a consequence of relations (2), there might be
some other relations which we shall write down
when needed. Let us say that macrocausality re-
lations (2a) can be understood from the point of
view of asymptotically switching-on the interaction:
The system does not know anything about the inter-
action in the distant past.®

Let us now proceed with our derivation of partial
differential equations with respect to coupling con-
stants. Again using

¢(x)=ST T (¢ (0)S) and m(x)=ST T(m;,(x)S),

we get at once from (1) the following differential
equations for the S matrix:

7 528==5 [ d%x o (), 700,
, (3)
125--s [ atx Lt o), 1)

The partial derivatives 8’/8g and 8’/9¢ in (3) mean
that while they act as ordinary derivatives 8/8g and
8/8e on the coefficients that multiply ¢(x) and 7(x)



6 PARTIAL DIFFERENTIAL EQUATIONS WITH RESPECT TO... 2279

in 3Cin, they do not act on ¢(x) and 7(x) at all.* Thus
we may write formally5

—¢(x)~ ¢>(x) 0,

, , (4)
z}n(x)= -g;n(x)=0.

- The partial differential equations (3) connect the S
matrix with the Heisenberg operators ¢(x) and (x).
8%3C;n; /88 and 0'3C;, /de pick up the parts of ¥, that
correspond to strong and electromagnetic interac-
tions. However, one should note that 8’3y, /8g and
8'3Cins/9e are dependent in general on both g and e.
8'3Cin1/9g and 8'3Cint/9e are, of course, Hermitian
operators in order that STS=5S"=1.

To obtain the partial differential equations with
respect to g and e for ¢u(x) and mu(x), we note
that ¢ (%) = STdum(%)S, mu(¥)=ST7,,(x)S. Then using
(3) we have at once

7 Bg ¢out(x) [¢out(x)y fd"y %Gﬁmt(yi‘ s
(5)

1 de

12 gt ==[ui), [ty 30

and the same equations for Tou(x).®

The partial differential equations for the Heisen-
berg field operators ¢(x) and their canonical con-
jugate operators 7(x) are obtained by help of the re-
lations ¢(x)=ST T (pn(x)S), m(x)=ST T (mix(x)S) and the

F(x)= fex —yh)dYy [aqu(x)

. 8’ >
_g“4fd3y [F(X, x4), @.:}Cint(y’ x4)]

im(y)]

* a_x“e ggF ( ’)

differential equations (3). We obtain

= —¢(x) f 6(x* =y*)d*y [(b (%), géffcim(y)} )

i og
4 4 4 8' (6)
75;‘1)(95)— —f 0(x -y )d y[¢(x)y gzgcint(y)] ’
and the same equations for 7(x).

Suppose now that we have an operator F which is
a function of ¢’s and 7’s, and their space deriva-
tives, for simplicity all at the same space-time
point. Furthermore, let F depend also explicitly
on coupling constants g and e. Then from (6) we
have that F satisfies the following relations:

71 B%F(x) =— f 0(x* —y*)d*y [F(x), %Rm(y)]
10
+ = _F(x) )
9,
Lo (7
71 —;—G;F(x) f 6(x* =y*)d%y [F(x), g—zc in.(y)]
19
Al

From (7) we can derive an interesting property
which the partial derivates 8’/0g and 8’/6e general-
ly satisfy: their noncommutativity with the time de-
rivative 8/8x*. Let us apply 8/0x" to the first
equation in (7),

On the other hand, 8F/dx" can be expressed in terms of ¢’s, ™s, and their spatial derivatives. Thus, we
can write according to (7)
18 N ] 19 <a )
 or o)== [0t =30ty [ S2r ), S0y (0] + 2 2 (25 0)
From these two equations we get that”
22 5] re a%y5(x* =39 [P0, L6 0 (9 ®)
g’ axF | T 0 ==8, f O(e® =y | Flx), 5 Bine (9)] -

The same relation we get with respect to e. In the above derivation, we assumed [8/dg, 8/6x*]=0 and

[8/8e, 8/0x"]=0, since we are treating x, g, and e as independent variables.

The relation (8) might be

useful in current algebra in view of the fact that on the right-hand side we have an equal-time commutator.

We shall not pursue this idea in this article.
III. DECOMPOSITION OF THE S MATRIX
AS A PRODUCT OF TWO S MATRICES

The partial differential equations (3) when solved
should give us, at least in principle, the S matrix

reduced into the normal form in free-field “in
operators and as an analytical expression in the
coupling constants g and e.'*® So far, this has been
possible to achieve only for simple cases of one
interaction (see, for example, Refs. 1 and 8).
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Thus, presently we shall pursue a less ambitious
goal: to write the S matrix as a product of two S
matrices.

First, let us show how one can write S=5;S,,,
S, describing only strong interactions and S, de-
scribing the electromagnetic interactions (“renor-
malized” by strong interactions).

We start with the definition

S$=S;Sem>» (9)
where
Ss=S|,=0 (10)

Then S,, according to (3), satisfies the following
differential equation:

: ags =S fd‘* ( ““(x))e:o' (11)

Indeed, (8'3Cin(x)/0g),-, Will now depend on ¢°(x)
=¢(x)],-o and 7%(x)=7(x)[,-,. It is easy to verify
by help of (11) that S, is unitary. Finally, from
(9), (3), and (11) we get for Sen

19
7 aese"‘— -Semfd“x —JCmt(x) (12a)
ll a?g fd“x —3Cine (%)
al
d"x(—ff(i- x) Sem - 12b
+f ogCm(9) (12b)

It is clear that S, depends on both ¢ and g. Thus,
in order to be able to integrate (12a), we have to
know S%m=Sem|, -, for every g. This information we

J
1 92 1 6(1 9
<i 5) Sem= 5(7 %Se‘“)

4
7 ve Se’“fd

SOLN

I
eJCMt(x)—Semfd4

|

should be able to get from (12b):

19 8’
—;%—Sem——[sgm,fd‘*x (;gf}cm(x)l:o]. (13)

However, before we discuss Eq. (13), let us note
that the fact that we defined S, =S|,-, requjres
Son=1 [see Eq. (9)]. In order to show that the
same result follows from (13), we note with the
help of (11) that we can write formally the solution
for S satisfying (13) as

Som=STSNS,, (14)

where S =Senle-0.¢-o- Since 35%/3g=95%/9e =0,
it does not depend on dynamics, so we can choose
S¥=1. Thus

Son=1. (15)

Now we can write the solution of (12a) in the form

T )]

where

[Ga)s..

are determined by the help of (15), (12a), and (16).
Let us compute the first few terms. The zeroth
term is unity according to (15). The first term is

1 e, . [0 )
ie aesem——zefd x(aeii(im(x) o’

while for the second term we need

1 0 9o
*7 se ae:}ci‘“(x)'

Identifying &3C,, (x)/8e with F(x) in (7), we finally obtain

(s, fomrros) (i), J- et

Thus, up to terms to the second order in ¢, we have

S, =1—z'fd4x e li&(i- (x) +é ﬁ.'}(i- (x)) + X(~i)?e? d“xd"‘yT[(i’-JC- (x) (iﬁc
on de W) T2 \ee2 it/ |72 ge” M/ _ \oe

It is not difficult to find the #nth term in the expan-
sion, and the result can be cast into the Dyson
form

. 20 en aln
Sem=Texp{—1fd4x Z;'—(a—e,,i}(iim(x» } .
n=1 * R e=0

1

im(y))ezo]-

(16)

—

Let us yet note that when evaluated
(8750 s (x)/8€"),=, Will depend on ¢°(x)= ¢ (x)le=o
and 79(x)=m(x)|,-,.°

Secondly, we can write S equivalently as

S=8{uS?:, (18)
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where we now define
Sem=Slg=0- 19)

It is clear that this second possibility is obtainable
from the first by formally interchanging the roles

of strong and electromagnetic interactions. Then
according to (11) we write at once
1og s fd‘* (—:fc (x) (20)
i e 'em int =0 ’

where now (8’3, /9¢),-, depends on ¢°(x)= ¢(x)le-,
and 7°(x)=7(x)|, -, Similarly we get

7@5,__8’,[[14 (IMER \«12)
106, 4, 0
75;5 fd x ZC,m(x)
fd4 < s x)) s, (21b)
£=0

where again we find that S§°55§|g=o =1. We now
see that S¢n depends on e only, while S, depends
on both g and e. S; is obtainable in principle from
(21) if strong interactions are given. Of course,
we expect to know S¢nas a power series in e since
it only depends on electromagnetic interactions
[see (20)]. To get this let us first write down some
useful identities.

The S matrix must be the same no matter how we
write it: i.e.,°

S = Sssem = Se,mS;
from which we get

(22a)
(22b)

Selm = Semlg =0
Se= S;Ie =0
Thus utilizing (17) we get Sim at once,

. * n am
Sl=T exp{—z fd“x E % (a—e,,ﬂ(iim(x)> } .
n=1 M e=0,8§=0.
(23)

Of course, we get the same expression directly
from (20).

IV. REFORMULATION OF THE THEORY IN TERMS
OF THE TOTAL HAMILTONIAN DENSITY

Everything we said so far is correct providing
that the total Hamiltonian density operator is split
in such a way that the free part contains observable
masses of particles that interact. Since, accord-
ing to our basic assumptions — macrocausality re-
lations [see (2a) and (2b)] - the observable masses
do not depend on the coupling constants g and e,
8%3C;/9e =0"3C;/9g =0. In this case we can freely
make the substitutions

a 7 a 7 a ’ a !

——ine ~ =3, —FHint ~—3C,

og og de de
where 7

3C=3C; +3Cint,

3, being the free part of the Hamiltonian density.
Then all the equations can be written with 8/3¢/og
and 8'#¢/de in place of 8’3C;y /5g and 8’3Cy, /0. On
the other hand, if our decomposition of the total
Hamiltonian density is such that 3C; contains the
bare masses!! rather than the physical ones, then
we can claim that in formulas such as (3), (5), (6),
(1), (8), (11), (12a), (12b), (13), (16), and (17) the
total Hamiltonian density must appear; i.e., in all
these formulas we must have 8’%/8g and 8'3¢/de
instead of 8/3Ciy /g and 8'3Cint /0. The proof is
quite simple. ¥C; is a sum of individual terms cor-
responding to each particle that participates in in-
teraction:

34(x) :Z)JC}’ Xx). (24)

A typical expression for 3(1?) if the ¢th particle is
a spin-% fermion is

3P = ~imyyy [~y V + mi( g, e)]lp(i),
L. 3;9,,,1

TMpy= — :zzp

® Py BZP @

where, as already mentioned earlier [see (Zc)], a
bare mass mf)(g, e¢) is assumed to be generally a
function of the coupling constants g and e. Now,
since the hypothesis of the adiabatic switching of
the interactions in the far past and future means
considering the coupling constants weakly depen-
dent on time in these regions [g(#)= ge-<'?!,
e(t)=ee2'"! ¢ ,~+0], then it follows that the
bare masses become the observable masses m;
when both g=0 and e¢=0 (Ref. 12):

mi(0,0)=m;. (26)

Equation (26) will be quite important later for the
partial differential equation with respect to g and
e which ml(g, e) will satisfy. Namely, in solving
those differential equations (26) will be used as an
initial condition which m} will have to satisfy. Let
us introduce Am; as »

(25)

Amy(g, e)=m; —mi(g, e),
m;(0, 0) = &

Now we shall have for the case of a spin-} particle
3P = -—i‘n(i)'y“[—i;/V + mi]‘/)(i) +iam(g, e)mgyy*hsy.
(28)

Of course, in usual formulation the term
iam;(g, e)mgyy*dyy is simply added to ¥y, In our
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formalism this is done automatically since, for
example,

8’ . 8 .
3_6"36?)= gé[‘z”(i)?"ll/)(i)mé(g, e)]
o
- _”T(z)y Zp(;) mo(g, e)
8/

= %e [iﬂ(¢)7’4¢(i)~’-\mi(g, e)]

_“7(1)7 Zp(t)( Am; (g’ e)>

when 83¢/9e is written instead of 8’3Cint /9e. Let us
point out that relation (8), which now reads as

|:ag 8x“:| F(2)=-g,* fd 5(x4—y4)[F(x),gém(y)],

(8"
is fully consistent with Heisenberg equations of
motion. Thus, we see that in all our relations like
(3), (5), (6), etc., we can write 8’5¢/8e and 8'5¢/dg
regardless of whether the free part of the Hamil-
tonian density operator contains observable masses
or bare masses. In view of this, we rewrite some
relations here from Secs. II and III:

N.I)—A

s=-s [ a'x %Sc(x),
(3"

S
Slo &l

al
- 4
~S= Sfd x 5550,

- 5%45(96) fd *yo(x* —y%) [¢>(x),%:§3€(y)] ,
e

5—8—¢(x)= —fd"y@(x‘1 -y% [¢>(x),%;;fm(y)] )

~

(6”)

S =

and the same equations for n(x). If F depends on
¢(x)’s and 7m(x)’s and explicitly on coupling con-
stants g and e, we have

aiF(x)_—fd 0(x% -y )[F(X), %3@(3?)]

: (1)
2 pw= [ atyotet 9P, 2

+ -1———F(x)

i de

S, and Sem defined by (9) satisfy

Z38'3 Sfd4< )zo’

(117)
1o - mf x——JC
i 3@

ngESemIez():l- (12a”)

The solution (17) for S,, now becomes

Sem—Texp{ fd“xzn'(am >:o}. 17

From now on we shall assume that the free part of
the Hamiltonian density has bare masses depen-
dent on the coupling constants. With this assump-
tion we must use the total Hamiltonian density in
relations (3’), (6’), (7'), (11’), (12a’), and (17').
It will prove to be very useful to have m,(g, e) in-
stead of Am(g, e) later in the discussion of mass
differences of hadrons.

In order to proceed any further, we have to say
something about the interaction. We will not as-
sume any particular model for strong interactions
in this paper. However, with the correspondence
principle, we will be able to write down the first
term in the expansion in e that occurs in (17’) and
make reasonable assumptions about higher terms.
To see how this comes about, let us write the solu-
tion for the Heisenberg electromagnetic field as

A(x) = AK(x) + ie(% %A“(x)) o+ 0(e?),

(29)
Af(x) = A0, =0 -

fd y0(x* = %) [ 5(x), <a' (y)>e 0]-

(30)

According to (6")
(l iAu(x))

As we see from (29) and (30), we have to know
what Aj(x) is. Since, according to (29), we as-
sumed that A"(x) is well behaved at ¢=0, we then
can write according to (6)

<~1— —a—A“(x)>e=0= % {%Ag(x)

= fd 0(xt =y

oo (o))

(31)

Now comes the important point: According to (11),
(8'3¢/2g),-, defines pure strong interactions, i.e.,
the interactions between hadrons only. Thus, when
we expand (8'3C/9¢),-, in terms of a complete set
of “in” fields only hadronic “in” fields come in the
expansion. Then seeking the solution of (31) for
Al(x) as a power series in g, we get

Al(x) = AMx)|, - 0,6=0
= AL (%), (32)
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where (2e) was taken into account. Indeed (31) is
satisfied with (32) since, according to (2a),

e]
— AH =
Y, Al (%)=0

(), ]

[(a’3¢/3g),-, describes the interactions between
hadrons only|.*®* Thus we can write

and

AN(x) = AL (%) e f Ay 0(x4 = y%)

<[t 0, (g—esc(y))}

0o(e?). (33)
In quantum electrodynamics

(%3“(”)9 IR A

(see Ref. T), which has the property of being in-
dependent of the choice of hypersurface o(y).'*

j,"j‘( ) is a leptonic electromagnetic current, bi-
linear in leptonic “in” fields. We shall also main-
tain the same property in our case if we make a
natural choice

<%3‘3(y)>e:0= [7.0)+ 7 (y)]A" ), (34)

where J), is a hadronic electromagnetlc current;
i.e., when expanded in terms of a complete set of
“in” fields, only hadronic “in” field operators are
needed for the expansion. Taking into account the
commutation relations for Af fields, (33) can be
rewritten in the familiar form

AM(x) = AL (%) —e f A% Dy(x = PITH(9) + 3% ()]
+0(e?). (33%)

There is still one point that we have to clarify: In
view of the assumption that 3¢, contains bare
masses, (34) implies for every one of them that

9 i -
<§mo(gy e)>e=0_0, (35)
since we also want

9’ . i
(55:;@,,,)2:0 = —(JF4 ) Al

We shall see in Sec. V that (35) is indeed satisfied.

If we now continue computing A"(x) to second and
higher orders in e, then besides (8’3¢/d¢),-, the
terms like (823¢/8¢?),-, etc. would come too. We
shall assume that the terms like (8'25¢/9¢?),-, etc.
exist and that their only role is to make the theory
renormalizable.’® This is indeed so in the case of

quantum electrodynamics. However, we will not
need to know them explicitly in our discussion of
the mass differences of hadrons.

V. MASS DIFFERENCES OF HADRONS

Although in this section we shall discuss only the
problem of the n-p mass difference, similar dis-
cussion could be extended to any other case in
which the mass difference is expected to be elec-
tromagnetic in origin and where one-particle states
are stable under strong and electromagnetic inter-
actions.

In quantum electrodynamics one usually starts
the discussion of the mass renormalization by ob-
serving that the electron is stable, thus demanding
that (¢’|S-1|¢) =0. Since the one-electron states
|@) and [¢") are “in” states, we can rewrite this
condition as

p 8e<q IS|a) = < '—.'—S

=0.

_Similarly, since proton and neutron are stable un-

der strong and electromagnetic interactions, we

then demand
7 al
< ’75;5 > <p 4Sfd4x 55(3(9() p>
=0, (36a)

)l

=0, (36b)
and the same equations for a neutron (making sub-
stitutions p -n, p’—~n’). Furthermore, since both
proton and neutron are stable under pure strong in-
teractions, then according to (11’) and (12a’) we

have
’ 1 i = ’
<P Ss? aesemlp>“ —'<P P>
=0, (37a)

1 s os()_)

=0, (370)
and the same equations for a neutron. From now
on we shall concentrate on the case of a proton,
since the neutron case can be obtained by simply
replacing p -~» and p ' ~#’'. Writing formally

3(x) =3¢4(x) +3C(x) = 3€h(x),

the right-hand sides of (37a) and (37b) become

al
SSom| d*x 5-50(x)

1 8
7 ogss
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sema

1)> ’ (38a)

(Lt ) [ a5 (b1, 1) == [ ax{p |5, 5o () =2

p> , (38b)

s.(% et -50))

< mf’(g,o>)f @ (p 15 [ ol == [[atx(p
where we used
2 563(0) = —imy(2) Y14, 0) s 8, ),

etc. The terms that multiply 8m? (g, ¢)/de and am? (g, 0)/8g are kinematic factors and can be computed ex-
actly because of our assumption that strong interactions are already renormalized,*®

—ifd4x<p,Isssemﬂp(x)'}’qlpp(x)lp> = _ifd4x<p Ilss[ﬂp(x)74lpp(x)]e=o|p>

= [[a1xp |13, (<, (302180

=269 (p — p "V (p")u(p).

We also see that 3¢(x) —3€(x) can be replaced by ¥y, (x) in (38a) and (38b), since similarly 8°5¢*’(v)/3g and
8’5e{) (v)/ve give no contribution for i #p. Thus, we have

2190 = p Vi p (1) 5, €)= [ @3 (p S i) ), o

< :fci,,,(x)> —0 p>, (39b)

where in (39a) we have put (p’|S ;=(p'| which is consistent with (37b). With

2769 (p —p’)a(p')u(m%mg(g, 0=~ [atx <

9’ . in
<—3_E 5Cim>e=o B _(J" + ]i‘:l)AH ’

we see at once that [6m?(g, e)/del,-,=0 is satisfied. It is not difficult to see that this is true for any other

mass mi(g, e).

The equations (39a) and (39b) are two differential equations necessary to solve in order to know mi(g, e).
As we can see, in order to be able to integrate (39a) we have to know mb(g,0). This we can know in princi-
ple by solving (39b). Now, since we are interested in knowing mb(g, e) only to the order ¢?, we need to
know the right-hand side of (39a) only to the order e. Thus, we first expand 8’3C;, /9e as

:—e HCine (%) = (58-;- HCint (96))6=o +ie E _aa_e<_;_; Hint (x)ﬂe:0
=<:—e’ C‘Cam(x)>e:o -ie f d*y 9(x‘*—y‘*)'[<:—el JCm(x)>e=0 ) (:—e' Hint (y)>ezj vies <a : HCint (x)>e=0 .

Second, we use the expression (17’) for S,,, expanding it to the first order in e, and obtain

S )= (G50, =i [ v a((Gsent)(GGm0)Joser{aents) - w0

The first term in (40) does not contribute to the mass renormalization since (8’3Ciy /8€),-, iS proportional
to A'. The last term in (40), although it may be necessary for proton or neutron field-operator renormali-
zation, need not be known explicitly since the mass renormalization can be achieved without it.}” Thus we
can continue with only the second term in (40) and have for either proton or neutron

2m6%(p —P’)E(p')u(p)%mo(g, e)=iefd‘*xd“y<zr’|T[J,,(x)Ai‘,‘,(x)J,,(y)A{.’,(y)]lP>

~¢ [ aaty Delx=9)<p" T[T, TN £ - (41)

Or from here



|

@(D)u(p)5=me(s,

We integrate (42) as
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ikx
=5 [ a5 (I T, TN ) (42)

mo(g, €)= my(g, 0)+foe de aﬂ"a(f—’—e—) . (43)
Denoting

demm(g, €) = — f: de %’—Q , (44)
we have'®

FPu(pommlz, )=~ S [ atsat &5 (pI (7,70 ). (85)

my(g, 0) in (43) has the meaning of the bare mass
due to the strong interactions only. In principle we
could find m,(g, 0) from (39b) if we knew the right-
hand side of (39b) as a function of g. Taking into
account that the observable mass m is equal to
my(0,0), we write

mo(g,0)=m+ " ag 20, (46)

where we assume that Bmo/ag is well behaved at
£=0. If we denote

Gsm(g)=—f:dga’"+f), a7

we see that the total self-mass is
Am(g, e)=m—-myg, e)
=Gs m(g)'*'éemm(g, e)- (48)

6,m(g) is the nucleon self-mass due to the strong
interactions only, and it satisfies

2159(p = p "V (p')u (p)

20 sm(g)
.

fon o{p o (Gemts)
(49)

with the initial condition 6,72(0)=0. Thus we get
for the »n-p mass difference two equivalent ex-
pressions!®

m, = m,=mg(g, e) —mh(g, €)+0d,m,(g) = 6,m,(g)

+ 6em’nn(g, 6) - Gemmp(g, e) ’ (503)

m,—m,=my(g, 0) -~ mh(g, 0)+0,m,(&) =6,m,(g).

(50b)

Relations (50a) and (50b) reflect the assumption
that the observable masses are independent of
coupling constants g and e since (50b) follows from
(50a) by putting e=0. In view of this, both ex-

pressions, when read from left to right, should be
viewed as identities rather than the expressions
from which to compute m, - m,,.

In the literature the expression from which one
tries to compute m,—-m, is

m,,—m,=6emm,,(g, e)"ﬁemmp(g’ e)- (51)

Equation (51) definitely assumes the observable
masses to depend on g and e coupling constants.
We believe that this is an unnecessary assumption
for most of the calculations. For example, when
computing the amplitude for the Compton scatter-
ing in quantum electrodynamics, one never ex-
pands the “in” states of the electron and the pho-
ton in terms of e.

Even if (51) were numerically satisfied, that
still would not mean that the observable masses
must be functions of g and e coupling constants.
Namely, according to our formalism this would
simply mean that m((g, e) — m5(g, e) +6,m,(g)

-0, m,(g) happens to be numerically equal to zero.
Of course, we admit the existence of some other
(nonelectromagnetic) interactions which cause
m,-m,+0. An example is quark-gluon interaction
which gives the observable hadronic mass spec-
trum in terms of bare quark mass. Since the bare
quark mass depends on the quark-gluon coupling
constant, the observable hadronic mass spectrum
will depend on the quark-gluon coupling constant
too.

VI. REMARKS AND CONCLUSION

It is not difficult to see that in our formalism we
have adopted a viewpoint which one meets in the
usual formalism of divergent (renormalizable)
quantum field theory: The observable masses w’s
are given, while the bare masses m,;’s and self-
masses An’s are to be determined in such a way
as to satisfy m=m + Am. Since it is Am that one
usually computes, m, then is given as m,=m — Am.
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Of course, what we get for Am depends entirely on
dynamical assumptions. For example, if we use
the tree-diagram approximation for strong inter-
actions (an approximation very popular for effec-
tive Lagrangians with chiral symmetry), then
6,m,(g)=0 and 6,m,(g)=0. This simply means
that in the tree-diagram approximation strong-
interaction dynamics does not change the mass
which means that m,=m} (g, 0) and m, =m?% (g, 0).
However, in general (no tree-diagram approxima-
tion) d,m,+0 and 6gm, +0.

Next we would like to bring SU(2) into the discus-
sion. In view of assumption (2b) that the observ-
able masses do not depend on coupling constants
g and e, we shall have two independent SU(2)-
symmetry-breaking parameters: e and, say,
A=m,—m, (see the Appendix). A#0 is due to
some nonelectromagnetic interactions. In other
words, the exact SU(2) symmetry is achieved only
if independently ¢ =0 and A =0 (all other observable
“electromagnetic” mass differences we assume to
be expressible in terms of A). In the Appendix we
show that for A =0 and e #0 [SU(2) symmetry still
is broken by eléctromagnetic interactions], we
have 6,m,(g)=06,m,(g). Therefore, from relation
(50a) we have

my(g, e) — mh(g, €)= =[Oemm, (g, ) = demm,(g, €)]
=0.66 MeV, (52)

where the numerical value is valid to the order
0(¢%).2° In other words, even if pure strong inter-
actions are SU(2)-invariant [6,m,=0, m,, and
therefore my(g, 0) — mf(g, 0)=m, - m,=0], the de-
generate incoming system of neutron and proton
acquires the nondegenerate bare masses under

the influence of electromagnetic interactions (“re-
normalized” by strong interactions) and, of course,
becomes again a degenerate outgoing system.

The case of e=0 and A small is quite interesting
since now we have only strong interactions. We
expect that they break SU(2) only slightly. To show
this we rewrite (50b) as

A=mf(g, 0) = mi(g, 0)+A(g, 1), (53)

where we defined

A(gA)=0,m,(g) - 0,m,(8)
(see the Appendix). In the Appendix we argue [see
(A12)] that we should be able to write

A(g M) =R (@ + Ry (g% + O(N3).
From (53) we then have that
my(g, 0) = mf(g, 0)=[1 - k,()Ix = k(N + 0().

’ (54)

Equation (54) shows that when X is small, which
is true in our case,

my(g, 0) = mg(g, 0)~ 2.

Now, since the mass differences of the type m}( g,0)
- m}(g, 0) determine the nature of SU(2) breaking,
we see that it will indeed be small as long as A is
small.

However, (54) opens another completely unex-
pected possibility. Namely, let us suppose the
following academic case: that A is not too small;
i.e., we really have to retain the terms up to the
second order in A. This presumably resembles
the case of “medium-strong” breaking, which one
meets in the case of broken SU(3). As we know,
the “medium-strong” SU(3) symmetry breaking is
caused by mass differences of the type m, - my,
which are considerably larger than m, - m,. How-
ever, despite the fact that now we take X to be not
too small, the symmetry breaking could still be
quite small. This possibility could happen if %,(g)
in (54) is numerically very close to unity, in which
case

mg(g, 0) — mb(g, 0)~ —k,(gN2,

which, of course, could be quite small.
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APPENDIX

In this appendix we wish to substantiate the claim
in Sec. VI that when m, — m ,=0 and (8'3Cyy /98)e=0
is invariant under SU(2) transformation, &,m,(g)
=05my(8).

We start as usual: In the presence of SU(2) sym-
metry breaking, the doublet of proton and neutron
Heisenberg (interpolating) field operators is as-
sumed to obey the linear transformation law,

[Qi(®), o (0)] = =2(7,)o PUg(x) . (A1)

¥,(x) and ¥,(x) are proton and neutron Heisenberg
field operators (we ignore Dirac indices). Q;(f)
(¢=1,2,3), the generators of the SU(2) transforma-
tions, obey the well-known commutation relations

[Qi(0), Q;(1)] = 7€, Qu(t) - (A2)

Relation (A1) usually suggests a simple expression
for @; in terms of Heisenberg fields. However, @;
can also be expressed in terms of asymptotic “in”
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fields by the fact that the Heisenberg fields can be
expressed in terms of them (“in” fields) by solving
the equations of motion. Since the connection be-
tween Heisenberg fields and “in” fields is general-
ly nonlinear and nonlocal, then nobody will be sur-
prised that the doublet of proton and neutron “in”
field operators (¥i" and yi") will in general trans-
form nonlocally and nonlinearly with @; (i =1, 2, 3)
as generators:

[Qi(t )7 Zp(lxn(x)] = —é('r,-)aﬂzl)é“(x) +Oi ,a(x) ’ (A3)

where O,-,a(x), a complicated fermion field, de-
pends nonlocally and nonlinearly on “in” field op-
erators.?! [Note that in (A1), (A3), and in what
follows summation occurs only when contravariant
and covariant isospinor indices are the same.] We
can demonstrate the complicated nature of Oi'a(x)
by working out the Jacobi identity between Q;, Q;,
and Pin:

[Qi(t)’ Oj,a(x)] —[Qj(t)’ Oi,a(x)]

= iEijkOh,a(x)"' %(Ti )aBOj ,B(x)‘+ %(Tj)aBOi s B(x) .
(A4)

We see that 0; ,(x) definitely does not transform
as a product of isovector and isospinor since if it
were we would have to have 2i¢,;, instead of i€, ,
in (A4).

Let us now apply the Dirac operator

. 9
D, (X)E_'L'y o tmy, (m1=mpin12=mn)
o Maxu

to both sides of (A3):
i Qi0), v*in(x)] = 2(7:)P(my — M) (x)
=Dy, (0)0; () . (A5)

The case of ¢ =3 is quite simple. Since @, is a
constant of motion from (A5), we get D,, (x)O; o (x)
=0. On the other hand since O, ,(x) is a fermion
field, its vacuum expectation value is zero [no pos-
sibility of a spontaneous breakdown of SU(2) sym-
metry]. Furthermore, since @, and the total
Hamiltonian are diagonal at the same time, it then
follows from (A3) that the matrix elements of
04 (%) between physical “in” states vanish. There-
fore

O3 ,4(x)=0,

which is not a surprising result.

The cases of ¢ =1 and 7 =2, however, are not
that simple. It is quite clear that @, and @, depend
on the parameters of SU(2) symmetry breaking.
Since, as we mentioned before, in our formalism
the observable masses do not depend on g and e
coupling constants, we shall have two independent
SU(2)-symmetry -breaking parameters, e and, say,

x=m, — m, (all other “electromagnetic” observable
mass differences we assume to be expressible in
terms of A). Furthermore, since @; (i =1, 2) are
not constants of motion, they generally depend on
all coupling constants. Thus Q; (7 =1, 2) will de-
pend on g as well.

In view of the fact that we have two independent
parameters of SU(2) symmetry breaking, of in-
terest to us are the following three cases: (a) A=0,
e#0; (b) A#0,e=0; and (c) r=0, e=0.

(a) x=0, e+0. Here the SU(2) symmetry is bro-
ken only via electromagnetism. From (A5) we have

i Qi(0), YRR ()] = =Dy (0)0; o (x), i=1,2. (A6)

This relation clearly indicates that since Q,- +0
(£=1,2), 0; 4(x)#0 and the doublet of proton and
neutron “in” field operators yir(x) (a=1, 2) still
transform nonlocally and nonlinearly. On the other
hand, we know that the total Hamiltonian for the
Heisenberg fields H(¢) equals the free-particle
Hamiltonian for the incoming fields Hj*(¢):

H()=H2?). (A7)

Thus H ¥ (#) should reflect the breaking of SU(2)
symmetry despite the fact that we have m,=m,,
Myy =My-=myo, etc. HF(t) is not invariant under
SU(2) transformations simply because in view of
(A6) 0; ,(x)#0 (¢=1,2). Namely, it is the non-.
linear transformation law (A3) which makes H ¥ (¢)
noninvariant. Furthermore, since @;#0 (i =1, 2),
Coleman’s theorem?®® is not violated; i.e., @;|0)+0
(=1,2), (Q,+17Q,)|neutron)#|proton), etc.

(b) x#0, e=0. Here the breaking of SU(2) sym-
metry is due to mass differences of the type
My, = My, Mp+ + My —2myo, etc. This case is in-
teresting in view of the fact that we have only
strong interactions. According to (A5) we can still
write

[ @i(0), Y ()] = 2(7:) 2 (m, = m )P (x)
-Dma(x) Oi,a(x) . (A8)

One would think that because ¢ =0 maybe now
O; «(x) vanishes. This, however, is not the case.
Namely, since @;(¢) (i =1, 2) are not constants of
motion, they will depend on strong interactions
and, again, in view of equations of motion, we
conclude the nonlinear and nonlocal transformation
laws for doublet of proton and neutron “in” field
operators [see the general discussion after (A2)].
(¢c) A=0,e=0. This is the case of exact SU(2)
symmetry. Now we have @, =0 for all ;. From
(A5) we get D,,,a(x)Oi.a(x)=0. However, as in the
case of i =3, we again conclude that 0; ,(x)=0,
i=1,2,3. Now, of course, we shall have that
(Q, +¢Q@;) | neutron) =| proton), @;|0) =0, and simi-
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lar relations.

Let us now justify relation (52) and the conclu-
sion in Sec. VI. There we claimed that §.,m,(g, e)
= demMy(g, €)#0, 5,m,(g) =6,m,(g) when A=0, e+ 0.
For the sake of clarity, we shall use the symbols
p and n to denote proton and neutron, respectively,
while four-momenta we shall denote with ¢ and ¢’.
From (39a) we get for d.,m,(g, ¢) the following
differential equation:

9
2”6(4)(q - q,)mﬁ 6em"np(gy e)
= f d‘*x<q',1>

where we use the normalization i,(q)u,(q) = m (note
that now m,=m,=m). Using the fact that Q; is a
constant of motion and that [Q,, @_]=2Q,
(Q,=Q,+1Q,), we can write

<q', 2 a, 1>>
=<q’,1>

Since for A=0and e+0, Q_|q,p)#|lq,n) and
Sem 8"3Cint (x)/0e is not invariant under SU(2) trans-
formations, we conclude that in general

o),

<q',1> q, P> # <q’, n

which in turn means that in general 8.,m,(g, €)
# OemMy( g, €).

Let us now justify the claim that 5,m,(g) = 6,m,(g)
when A=0, e#0. From (39b) we can write

ot

(A9)

9’
Sem 5—8- :}Cint (x)

a’
Sem 'a—z 3cint(x)

al
seméz :‘Cint(x)[Qw Q-]‘ q, p> .

9’ 9’
Sem& 3Cint (x) Sem 5 Jcint (x)

) N, 0
2169 (q - ¢ Yz Osmyg)

S, (—;; K (’")e \ @ p> :

(A10)

=f d*x <q’,1>

Despite the fact that we are interested in the case
of A=0 and e+0, we see that the right-hand side
of (A10) is independent of e. Therefore, when we

W rlte
S ¥ (X) >
S Bg int q, p

<q',1>
= <q',p Ss<58§’ 3Cint (x))ezo[Q+, Q-]‘ 9 P> )

we can take @, to be from the case of x=0 and
e=0, which is the case of exact SU(2) symmetry.
Now, since Sy(8'3Ciy (¥)/8g),=, is SU(2)-invariant
and Q_lq,p)=|q,n), we have

NEE

9’
=<qun ss (5;.' gcint (x)>
e=0

o)
which in turn means §,m,(g) =06,m,(g).

This result can be further used for the case of
e=0,1+0. Namely, if we now denote 5,m,(g)
—8,m,(g) =A(g, A), then A=0 is definitely included
in the domain of convergence when A(g, \) is ex-
pressed as a power series in A. On the other hand,
from the physical point of view, we expect that
A =m, —m, lies between A =0 and the radius of con-
vergence of the power series. If this is so, then
we can always write

Alg, \) =k, (@A +Ry(2)A2 +O(N?),

a result used in Sec. VI.

<q’,1>

(A11)

*This paper is an updated and revised version of a
1971 work under the same title done at the Department
of Physics, University of Illinois~Chicago Circle,
Chicago, Ill.

tPresent address.

13, Soln, Nuovo Cimento 32, 1301 (1964); 37, 122 (1965).

2The simplest thing is to assume that g multiplies the
strong-interaction Lagrangian (or Hamiltonian) and that
it varies between zero and unity, unity being its physical
value. This would ensure that the strong interactions are
switched off when g tends to zero. On the other hand,
one may assume that the coupling constants describing
the interactions of hadrons with hadrons are functions of
g, and as g— 0, they tend to zero, and as g tends to its
physical value (which one can choose to be gy,), they
tend to their physical values. As a matter of fact, in
view of the SU(3) symmetry, universal coupling of p

mesons to other hadrons, the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin relation,. etc., there is a strong
indication that the strong interactions are characterized
by only one independent coupling constant. [See, e.g.,

M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne’eman,
Nucl. Phys. 26, 222 (1961); S. Okubo, Progr. Theoret.
Phys. (Kyoto) 27, 949 (1962); M. Gell-Mann and F. Zach-
ariasen, Phys. Rev. 124, 953 (1961); J. J. Sakurai, Phys.
Rev. Letters 17, 1021 (1966); K. Kawarabayashi and

M. Suzuki, ibid. 16, 255 (1966); Riazuddin and Fayya-
zuddin, Phys. Rev. 147, 1071 (1966).] The chiral La-
grangians and field algebras suggest further the nor-
linear dependence on the coupling constant. [See, e.g.,
S. Weinberg, Phys. Rev. Letters 18, 188 (1967);

J. Schwinger, Phys. Letters 24B, 473 (1967); J. Wess
and B. Zumino, Phys. Rev. 163, 1727 (1967); L. S.
Brown, sbid. 163, 1802 (1967); J. Soln, Phys. Rev. D 2,
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2404 (1970).]

3To show the convenience of relations (2a) and (2b),
let us take a scalar “in” field operator g;, (%) associated
with a particle of a physical mass u and assume that
both are functions of a coupling constant g. Then from
the differential equation (O — u?)ay, (x) = 0, we get

9 2
a- #2)< Oin (x» <agu)ain(x).

From here we see that unless 842/8g =0, the matrix
element (0|80, (x)/8g|k) =« for k%= —u?. Now we know
that the S matrix can be expanded in terms of free-field
“in” operators. While some matrix elements of S|,
would not be singular when evaluated between some
states, suddenly we would find that for the same states
the matrix elements of Slg+5g are singular. Of course,
803, (%) /o g still may contain an arbitrary term

90y, (x)/0g 1 satisfying

(D—uz)<%om(x>o=0

Because of its arbitrariness, we have chosen this term
to be zero.

There is no doubt that with observable masses being
dependent on coupling constants, the formulation of a
perturbation theory would be quite difficult.

Let us finally point out that the above example is
actually a different demonstration of Haag’s theorem,
which states that the field operator ¢,(x) of mass u and
the field operator oy, (x) + 6 0y, (x) of mass (u? + 6p2)1/2
cannot be connected with unitary transformation
[R. Haag, Kgl. Danske Videnskab, Selskab, Mat.-Fys,
Medd. 29, No. 12, 3 (1955)] .

iTo clarify this point further, let us take the case
where 3ips (%) = g0°(x). Then we have 9/3Cin; (x)/0g
= ¢(x), 8" Kint (x)/ e =

5Since, in general, Jcm can also depend on space
derivatives of ¢’s and 7’s, relation (4) will hold for
them too.

61t may look strange that ¢y (%) and Ty (¥) should
depend on g and ¢ while @i (%) and m, (x) do not.. How-
ever, the explanation is very simple. Namely, the free
physical system long after the collision, besides carry-
ing the observed masses, charges, etc., will also have
to carry the information about the collision. Thus
Gout (x) and 7y (x) will have to depend on coupling con-
stants g and e. This dependence, of course, comes
through the S matrix, since ¢out = S Ty S, Tout = stm, s.

"We can verify relation (8) on a simple model of
spinor field ¢(x) interacting with a scalar field o(x)
with £ine =29 v, 90"c. From Lint we get

Kint = =&Y dVo-gPrium,+ 1 2@y e,
from which
o it = FTVV0 =Ty, + g Gyt

Choosing F = ¢ (8'0/8g =0), relation (8) gives us
(1/¢)(8'0/0g)=iPy*. This we rewrite as

T GrgTrie -

But &+ g$y4 § we recongnize to be 7, a canonically
conjugate operator to field ¢. This example shows us

that relation (8) could be useful in finding a canonically
conjugate operator m, is some operator F is chosen to
be a Helsénberg field operator.

8J. Soln, Nuovo Cimento 18, 914 (1960).

%It is not difficult to check ( (17) in quantum electro-
dynamics. There S; =1 and ¢°(x) and 7%(x) are “in”
operators. Thus

el 8 @ et 9"
Z} <6e Hint (xpe_o ="Z;{ n_!<6e Hint (x» =0
= King (%)

with the condition (3¢ (x)) =, = 0.

00ne shall feel the “difference” between S=S; S, and
S = Sy Ss in practice, however. To see this let us d1s—
cuss the transition amplitude {out, »’|in, ), where com-
mon indices 7 and »’ specify states according to a com-
plete set of commuting observables.

For choice S=5;S,,,, we have

(in, 7'|S; S mlin, ) = (out(str), #’|Semlin, » ,

where (out(str), 7’| is an out state in the presence of

strong interactions only. We can expand (out(str), 7’|

X Sem [in, 7) in a power series in e quite easily, since

the whole matrix element depends on e only through Sem.
For choice S= S¢m S;, we have

(in, 7'|S&mS¢ [in, 7' ) = (out(em), »’|Si|in, 7},

where now (out(em), #’| is an out state in the presence
of electromagnetic interactions only. While we can, at

least in principle, expand (out(em), »’|S’|in, 7) in a
power series in g straightforwardly since the dependence
on g comes only through S, its expansion in a power
series in e is slightly more involved since both (out(em),
7’| and S s depend on e and must be expanded. Of course,
regardless of whether one uses S =S, S, or S =Sim S},
one gets the same result. As a matter of fact, to the
order O(e) we get exactly the same expression as in the
literature [see, e.g., J. J. Sakurai, Currents and Mesons
(University of Chicago Press, Chicago, 1969), p. 38;

K. Nishijima, Fundamental Particles (Benjamin, New
York, 1963), pp. 192 and 193] .

The term “bare masses” should probably be renamed
“interacting masses” for the following two reasons: It
is the interaction that changes the observable mass into
the coupling constant dependent mass. Secondly, while
the experimentally observed masses are associated
with “in” and ‘out” fields, the bare masses are associat-
ed with the interacting (Heisenberg) fields.

25 very nice discussion of the asymptotic conditions
att —¥ « can be found in an article by G. Killén, in
Fundamental Problems in Elementary Particle Physics —
Proceedings of the Fourteenth Conference on Physics at
the University of Brussels, October 1967 (Interscience,
New York, 1968).

The solution A* (x)|,=, = Al (x) is also clear in view
of the fact that photons have only electromagnetic inter-
actions with other particles.

YThis is equivalent to saying that the part of the Sin;
responsible for the electromagnetic interactions does not
contain derivative couplings. See, for example, K. Nish~
ijima, Fields and Particles (Benjamin, New York, 1969),
Chap. 5

15The assumption is that the theory is renormalizable in
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the presence of strong and electromagnetic interactions.
We assume that the theory can be described by a Lagran-
gian formalism. Then as in the case of quantum electro-
dynamics, we assume that the renormalization requires
a finite number of counterterms in the Lagrangian. From
the Lagrangian we can obtain the Hamiltonian density,

and if we are satisfied with the perturbation theory in
both coupling constants g and e, then from (3’) we can

get that

0 1 al al d
S=Texpl—i [d%> — g——+e—>3€(x) .
{ f nZ=>1 n! [( 98y dey/) £=0,20=0

This expression for S, of course, is equal to expression
(1), since

© 7 r\n
(e o) )
= &  9eg £p=059=0

0 1 a 8 n .
O N [ PRAA L

w=n! [(g 68" ¢ 390) <x):|go=0,eo=0
= K (x).

3" (%) here is obtained from 3¢ (x) by replacing Heisenberg
operators with corresponding “in” operators. Under
summation signs, J¢ and 3¢ depend formally on g, and

ey. Now it is clear that terms like

(G (s )
—3 ¥ (x , € (x ete.,
g’ (g=0.e=0 9goe e=0,e=0"

are computable if we know the original ¥Cjn¢ and all count-
erterms [including those with Am; (g,e)] . On the other
hand, it is also clear that in the perturbation theory the
form of terms like

( o2 ) ( 72
33 (x) s 3¢ (x) ete.,
og? e=0,e=0’ \9g%e =000

is influenced by renormalization requirements like, for
example, the stability of one-particle states and making
matrix elements of interpolating (Heisenberg) field
operators finite which for £ - ¥« should approach the
matrix elements of corresponding “in” and ‘“out” oper-
ators, respectively.

However, if the expansion with respect to g is not
possible, which is true in practice, then it is more prac-
tical to use the expressions for the S matrix in form (9).
Now it is customary to assume that strong interactions
are already renormalized; i.e., we assume that condi-
tions which go with renormalization are satisfied. For
example, one assumes that interpolating (Heisenberg)
field operators, due to pure strong interactions, have
finite matrix elements and that, for ¢ —  «, they
approach to corresponding “in” and ‘“out” operators,
respectively. However, in order that these conditions
still hold when the electromagnetism is switched on,
terms like

972 973 s "
— —z ete.,
aez x (x)>e=0 ’ 863 (x) e=0 ’

should be properly chosen.
160 see this, let us compute

-7 fd4x <P'[ S5 Sem Tp (x)')"izl)p (x) |P> .

Since we are interested in 8m} (g,e)/ de to the first
order in e, we expand S¢y and 7, (x)y? ¥y (x) to the first

JOSIP SOLN

jo

order in e according to (17’) and (6’). Since the term
proportional to e contains AF, its contribution is zero.
Thus, we have

~i [@% (D" | Sy Sem T (2) Y40, (x)]1)
= i [d% (p"| S (M, (1Y% 5 (2) g ) -

Now according to (37b), the strong interactions are such
that (p’| S;= (p’|. Then, with the assumption that there
exists an energy-momentum operator. P* which generates
translations, we have

=i [d% (0’| S g Sum Ty ()7 1y () )
= -1 @n*%@W (p =p") (b [ my (0)Y4 %y (0] o= [p) -
The matrix element
(b7 |lm, (00 %, (0 = 12D

is to be computed at x = 0. However, we can compute it
at any x because of 6® function, p’=p. Now the assump-
tion that strong interactions are already renormalized
means that the matrix elements of Heisenberg operators
are finite and in the x*— —w limit they approach the
matrix elements of corresponding ‘“in” operators. In
our case, because of arbitrariness of %, the matrix
elements are equal. Therefore,

=i jd 4_’,V ('l SsSem Ty (_’,\7)')/41/Jp (y)‘P)
=~ 2m% 6" (p —p") ("I [m, ()74 ()] o= |6
= =i @0 (p —p") P’ : ()Y, (03 10) -

With m, (x)=iy} (x), we get result (39).

1776 clarify this let us assume for the moment that
states [p) and |p’) are off the mass shell, and expand
the right-hand side of (39a) in terms of (# + m,):

fd4x<p' on 2 3 (9
=2m6Yp —pu ()

><<a%a(g,e)+ #+ mp)a—z'b (8, ¢)

+(F + mp)2 %c(g,e;pw m,,))u(p).

The assumption that the mass renormalization can be
achieved without

( 312
—5 3G, (%)
862 int )e=0

means that this term can be chosen in such a way that
it gives no contribution to da(g,e)/0e. 8b(g,e)/de will
get contributions from

. o’ Y
_zefd4y T[(;—e— JCin.(x»ew <¥ Hint (y)eﬂ)]

and from

312
e(a—ez- ICint (x))e=0 .

but since we are interested in the limit (# + mpu(p) —~ 0,
it is of no concern to us. As a matter of fact, in quantum
electrodynamics (formally obtained by putting g= 0), the
electron field-operator renormalization will give b= 0.

18Expl:'ession 45) is known in the literature as the
Cottingham formula for the hadronic electromagnetic
self-mass [W. N. Cottingham, Ann. Phys. (N.Y.) 25, 424
(1963)] . See also R. P. Feynman and G. Speisman,
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Phys. Rev. 94, 500 (1954); A. Petermann, Helv. Phys.
Acta 27, 441 (1964); G. C. Wick, in Proceedings of the
Seventh Annual Rochestev Confevence on High-Energy
Nuclear Physics, 1957 (Interscience, New York, 1957);
M. Cini, E. Ferrari, and R. Gatto, Phys. Rev. Letters
2, 7 (1959).

190ne could start with the equivalent expression for the
S-matrix S= S¢n Sy [see relation (18)] . Since now the
roles of strong and electromagnetic interactions formally
are interchanged, instead of 6,m(g) and demm(g,e), we
shall have 6%, m(e) (the self-mass due to electromagnetic
interactions only) and 6] m(e,g) (the self-mass due to
strong interactions “renormalized” by electromagnetic
interactions). Clearly now the “initial” conditions are
Oemm(0) = 0 and 65 m (e, 0) = 0. However, since the total
self-mass Am(g, e) must be the same as before, we
shall have the equality

Am(g,e) = 6lym(e) +6,mle, )
=06sm(g) + 6 ,mm(g,e).

Since Am(g,0) = 6sm(g), we have that 6,m(g) = 6;m(0,8).
Substituting this above, one also gets

Oemm (g, €) = 6¢mm (e) + 65 mle, g) —6sm(0,8).

In other words, we can again proceed with the discussion
in terms of 63 m(g) and demm(g,e). Let us point out
that it would be quite difficult to invoke SU(2) into the
discussion without writing Am in terms of 6;m and

6em m.

20)Most calculations give the negative values for

Oem My (g, €) — 6 m, (g,€). The value we quote was cal-
culated by M. Cini, E, Ferrari, and R. Gatto, Phys.
Rev. Letters 2, 7 (1959).

UFor the case of broken chiral symmetry this has
been demonstrated in a simple field-theoretic model
[J. Soln, Phys. Rev. D 1, 2882 (1970)] .

223, Coleman, J. Math. Phys. 7, 787 (1966).



