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The partial differential equations with respect to strong and electromagnetic coupling
constants are established for the S matrix, Heisenberg operators, and "out" field opera-
tors. The macrocausality relations —vanishing of derivatives with respect to coupling con-
stants for free "in" field operators -are important in the formalism. As a consequence of
macrocausality relations, observable masses do not depend on strong and electromagnetic
coupling constants. This makes the observable n-p mass difference uncomputable. Thus,
our approach goes along the lines of divergent (but renormalizable) field theory. We are
assuming (although not discussing) the existence of nonelectromagnetic interactions which
make m„-m& & 0 when e = 0. The partial differential equations with respect to strong and
electromagnetic coupling constants are derived for bare n and p masses. In order to inte-
grate these differential equations, the observable n and p must be known a priori. After
integrating these differential equations, a formal expression for the observable n-p mass
difference is obtained. This expression, compared with the usual expression from the lit-
erature, besides containing the difference of n and p mass shifts due to the electromagnet-
ic interactions ("renormalized" by strong interactions), also contains the bare n + mass
difference and the difference of n and p mass shifts due to strong interactions. One cannot
"recover" the usual expression for the n-p mass difference since our expression, as far
as the observable n-p mass difference is concerned, is an identity and not the relation from
which it can be computed.

I. INTRODUCTION

It has been shown on various occasions in quan-
tum field theory that the differential equation with
respect to the coupling constant for the S matrix,
Heisenberg fields, and "out" fields can be quite
useful. ' They enabled one to reduce the S matrix
into the closed normal form in free-field "in" op-
erators for some models of quantum field theory.

However, if the interaction cannot be character-
ized by only one coupling constant and, in parti-
cular, if one is much larger than the other, for
practical applications we shall need more than
one set of partial differential equations for the S
matrix, Heisenberg operators, and "out" field
operators. This, for example, will happen when
the system of particles interacts through strong
and electromagnetic interactions. We shall char-
acterize the strong interactions with just one cou-
pling constant, g, while as usual, the electromag-
netic coupling constant with e. We will vary them
independently between zero and their physical
values, signifying that the electromagnetic and
strong interactions are different in nature. '

In the derivation of these partial differential
equations with respect to strong and electromag-
netic coupling constants, the macrocausality re-
lations (&Q. /&g= &Q. /&e =0) are important. These
relations require the observable masses to be in-

dependent of coupling constants. This means that
our development will be based on the divergent (re-
normalizable) field theory, in which the observ-
able masses are given as input parameters. (For
example, we do not know yet how to incorporate a
deuteron into this formalism. }

Once having these partial differential equations,
one has the means to tackle practical problems
where both strong and electromagnetic interactions
are important. Of all possible problems, however,
we shall discuss only the question of the electro-
magnetic mass difference of hadrons, in particu-
lar, the n-P mass difference. As is well known,
the calculated values for the n-P mass difference
usually predict the proton to be heavier than the
neutron, contrary to the experiments. However, ac-
cording to our formalism one should not try to
compute the observable n-P mass difference since
by the assumption of the formalism it is not neces-
sary to assume that the observable masses depend
on coupling constants g and e.

In Sec. II, besides listing the assumptions of our
formalism, we derive partial differential equations
with respect to coupling constants for the S ma-
trix, Heisenberg fields, and "out" fields,

Section III is devoted to the derivation of the de-
composition of the S matrix as S=S,S, , where S,
describes the strong interactions only, while S,
is responsible for electromagnetic transitions
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("renormalized" by strong interactions).
In Sec. IV we show that partial differential equa-

tions with respect to coupling constants have to be
formulated with the total Hamiltonian density, if
its free part contains bare masses.

Finally in Sec. V we derive partial differential
equations with respect to coupling constants for
neutron and proton bare masses. From them we
further derive the partial differential equations
for the self-masses. The Cottingham formula for
the hadronic electromagnetic self-mass is also
deduced. The formal expression for the observ-
able n-P mass difference is derived. It differs
from the usual expression by having some addi-
tional terms. Because of these additional terms,
the expression becomes an identity as far as the
observable n-p mass difference is concerned,
which makes it uncomputable. Of course, we as-
sume that there are some other (nonelectromag-
netic) interactions which make m„4 m~.

In concluding Sec. VI we make some remarks
about n-P mass difference with respect to SU(2).
We show that if m„- m~ is neglected and strong
and electromagnetic interactions are present
[SU(2) is broken] the bare n Pmass -difference is
calculable, and it turns out to be 0.66 MeV.

In the Appendix we discuss the SU(2) transforma-
tion properties of proton and neutron "in" field
operators for cases when SU(2) is broken and ex-
act.

8 8—m= —m=0,
8g 8e (2b)

which means that the observable masses are given
as input parameters. Thus our approach goes a-
long the lines of renormalizable-divergent field
theory. On the other hand, a bare mass m, will be
gener ally a function of g and e and, as usual, we
assume that it is connected to the mass shift hm
by the relation

m, (g, e) = m —d,m(g, e) . (2c)

Finally, we take that the S matrix in the absence
of all interactions is equal to unity; i.e.,

S~. .. ,=I. (2d)

Taking into account that the Heisenberg field op-
erators and their canonical conjugate operators,
which we denote with common symbols Q(x} and
v(x), are connected to Q. (x) and n. (x) by the re-
lation

y(x)=StT(y (x)S),

v(x) =S'T(n (x)S),

then because of (21), in the absence of all inter-
actions (e=o, g=o), we have

where Q and n are common symbols for all free-
field "in" operators and their canonical conjugates.
As a consequence of relations (2a), no observable
mass m can depend on coupling constants g and e:

II. THE DIFFERENTIAL EQUATIONS FOR THE S MATRIX

AND HEISENBERG OPERATORS WITH RESPECT

TO THE COUPLING CONSTANTS

y(x)~. .. , =y. (x),

m(x)i. . .=n,.„(x). (2e)

We shall assume that the system of particles in-
teracts strongly and electromagnetically only.
Then, formally we can write the S matrix in the
Dyson form:

S= T exp -i d4xX.. , x

8 8—y (x)= —y (x)=O,ill 8e ill

8 8—
m (x) = —r. (x) = 0,

(2a)

X, denotes the interaction Hamiltonian expressed
in terms of incoming field operators and their ca-
nonical conjugate operators. We denote with g and
e the strengths of strong and electromagnetic cou-
plings, allowing them to vary independently be-
tween zero and their physical values. However,
before we vary the coupling constants, let us write
down the most important assumptions and relations
which we shall need later. The basic assumptions
are macrocausality relations,

1 8 4
8'

—.—S = -S d'x —X. ,(y(x), v(x)),

1 8 4
8'

—.—S=-S d'x —X (y(x), w(x)).lilt

(3)

The partial derivatives 8'/Bg and 8'/Be in (3) mean
that while they act as ordinary derivatives S/Sg and
8/Be on the coefficients that multiply Q(x) and m(x)

As a consequence of relations (2), there might be
some other relations which we shall write down
when needed. Let us say that macrocausality re-
lations (2a} can be understood from the point of
view of asymptotically switching-on the interaction:
The system does not know anything about the inter-
action in the distant past. '

Let us now proceed with our derivation of partial
differential equations with respect to coupling con-
stants. Again using

f (x) = S~ T (P (x)S) and n'(x) = St T (i (x)S),

we get at once from (1) the following differential
equations for the S matrix:
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in X;„,, they do not act on p(x) and m(x) at all. ~ Thus
we may write formally'

differential equations (3). We obtain

8 8—e(x) = —e(x) =0,
Bg Be

8/ 8/—v(x) = —w(x) = 0.
Bg Be

(4)

8/
—.—y(x) = — g(x4 -y4)d~y y (x), —X;„(y)i Bg Bg

(6)
—, —y(x) = — e(x' —y')d'y y(x), —X )(y),i Be Be

The partial differential equations (3) connect the S
matrix with the Heisenberg operators Q(x) and )()x).
8 X g /Bg and 8 'X, /Be pick up the parts of X. , that
correspond to strong and electromagnetic interac-
tions. However, one should note that 8'K, /Bg and
8'X. ,/Be are dependent in general on both g and e.
8'X,/Bg and 8'X ~/Be are, of course, Hermitian
operators in order that S~S=SS~ =1.

To obtain the partial differential equations with
respect to g and e for P,„,(x) and n',jx), we note
that g„,(x) =S~P (x)S, w,„,(x) =S~v (x)S. Then using
(3) we have at once

—.—4..~(x) = —4,~(x), d'y —X &(y),
1 8 4 8

g18~48'
—.—,(j),„,(x) = —Q,„,(x), d'y —X,(y)Ogt

and the same equations for n,„,( )x'
The partial differential equations for the Heisen-

berg field operators &P(x) and their canonical con-
jugate operators )) (x) are obtained by help of the re-
lations Q(x) =S~T((I() (x)S), ))(x)=S~T(n (x)S) and the

and the same equations for v(x).
Suppose now that we have an operator F which is

a function of Q's and m's, and their space deriva-
tives, for simplicity all at the same space-time
point, Furthermore, let E depend also explicitly
on coupling constants g and e. Then from (6) we
have that F satisfies the following relations:

8/
E(x) =—— e(x' -y')d'y E(x),—K. ,(y)i Bg Bg

8/
+ —, E(x), —i Bg

8/
E(x) = ——8(x' —y')d4y E(x), —X. , (y)i Be 'Be

18'
+ —.—E(x) .i Be

From (7) we can derive an interesting property
which the partial derivates 8'/Bg and 8'/Be general-
ly satisfy: their noncommutativity with- the time de-
rivative 8/Bx4. Let us apply 8/Bx" to the first
equation in (7),

1 8 8 4 4 4 8 8
E(x) = — 8(x' -y') d'y E(x),—X. , (y)i Bg Bx" Bx" 'Bg

8/ 8 18'—y ' d'y y'(x, x'), —y(, (y, x') + ——y(x)) .

On the other hand, BF/dx can be expressed in terms of Q's, &'s, and their spatial derivatives Thus, .we
can write according to (7)

1 8 8. 4 4 4 8 8 1 8 8
i Bg Bx")x(x) = — X(x' y )d y—y''(x), '—yC, (y) +—.— y(x)) .Bx~ Bg i Bg Bx~

From these two equations we get that'

1 8 8 8'
„E(x)= -g„' )t

d'y5(x'-y') E(x),—X. , (y) (8)

The same relation we get with respect to e. In the above derivation, we assumed [8/Bg, 8/Bx)']=0 and
[8/Be, 8/Bx ]=0, since we are treating x, g, and e as independent variables. The relation (8) might be
useful in current algebra in view of the fact that on the right-hand side we have an equal-time commutator.
We shall not pursue this idea in this article.

III. DECOMPOSITION OF THE S MATRIX
AS A PRODUCT OF TYCHO S MATRICES

The partial differential equations (3) when solved
should give us, at least in principle, the S matrix

reduced into the normal form in free-field "in"
operators and as an analytical expression in the
coupling constants g and e."So far, this has been
possible to achieve only for simple cases of one
interaction (see, for example, Refs. I and 8).
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S=S,S,

where

s, =s/, ,
Then S„according to (3}, satisfies the following
differential equation:

(10)

——S, = -S, d x —Sd, (x))
8 4 8

i Bg Bg

Indeed, (&'X. ,(x)/Sg), , will now depend on Q'(x)
=p(x)~, =() an«'(x)=-a(x)~, , It is easy to verify
by help of (11}that S, is unitary. Finally, from
(9}, (3), and (ll) we get for S,m

Thus, presently we shall pursue a less ambitious
goal: to write the S matrix as a product of two S
matrices.

First, let us show how one can write S=S,S, ,
S, describing only strong interactions and S, de-
scribing the electromagnetic interactions ("renor-
malized" by strong intera. ctions).

We start with the definition

Sem= s emSs &
(14)

where S'm =S,m~s, d, . Since xssm/sg= xssm/se =0,
it does not depend on dynamics, so we can choose
S~ = 1. Thus

S, =1. (15)

Now we can write the solution of (12a) in the form

shou]d be able to get from (12b):

S, = S', , d'x —X,(x) (13)

However, before we discuss E(I. (13), let us note
that the fact that we defined S, =S~, , re(Iud, res
S,' =1 [see E(I. (9)]. In order to show that the
same result follows from (13), we note with the
help of (11)that we can write formally the solution
for S,' satisfying (13) as

S, =-S, d x —K. , (x),
s (' s

i Be
(12a)

where

—.—S..= -S d'x —X-, (x)
1 B 4 8

2 Bg Bg

+ d x —Sd„,(x)) S. .4 8

e=o
(12b)

are determined by the help of (15), (12a), and (16).
Let us compute the first few terms. The zeroth
term is unity according to (15). The first term is

It is clear that S, depends on both e and g. Thus,
in order to be able to integrate (12a.), we have to
know S, =S, ~, , for every g. This information we

1 8 . 4 8ie —.—S.m= ie d-x —X. , (x)i Be Be

while for the second term we need

8 1 B 1 8

= ——.—S }I d x —R. , (x) —S, )
d x —.——3C. ,(x).i'

identifying a'Z. , (x}/se with E(x) in (7), we finally obtain

Bl BI
4 1 8 I2

S. = d'xd'yy —SS„,(x} —SS„,(y) —f d x —. X,SX„,(x'))
i Be ' Be e=o Be e=o-e=o

Thus, up to terms to the second order in e, we have

8' & e' 8"
Sem= 1 —i d x e —Kist x + 2X

(BI 8+-'(-~)'e' d'xd'y 7 I

—36., (x) —&., (X)+2- .=0-

(16)

It is not difficult to find the nth term in the expan-
sion, and the result can be cast into the Dyson
form

en 8tn
Sem= T exp '2 ' d X

t
nK~t

Ã1 Be" —0

(17)

Let us yet note that when evaluated
(8'"V.- (x}/se"), will depend on (t)'(x) = (I)(x) Is=a

and 7) 0(x}=))(x)~,
Secondly, we can write S equivalently as

S = SemSs t
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where we now define

Sem= Sle = o ~ (19)

8 I BI 8 I BI
+int

Bg Bg Be Be

It is clear that this second possibility is obtainable
from the first by formally interchanging the roles
of strong and electromagnetic interactions. Then
according to (11) we write at once

i Be ' ' Be

where now (s'X , /se. ), ode=pends on 0 "(x)=-4(x)l~=o
and &T "(x}=- )((x)l, , Similarly we get

1 8 I I 4 8
—, —S'=-S' d'x —K. (x),

Bg s s Bg lilt

1 8 I I 4 8
—.—S,'= -S,' d'x —K,(x)
2 88 Be

BI
+ d4x —X tx S'

1ll g p

g=0
(21b)

where again we find that S,"—= S,'l, , = 1. We now

see that S,' depends on e only, while S,' depends
on both g and e. S,' is obtainable in principle from
(21) if strong interactions are given. Of course,
we expect to know S,' -as a power series in e since
it only depends on electromagnetic interactions
[see (20)]. To get this let us first write down some
useful identities.

The S matrix must be the same no matter how we
write it: i.e., '

S=S,S, =S,' S,'

from which we get
I

sem semlg = o 1

S,=S,'l,

Thus utilizing (17) we get S,' at once,

(22a)

(Z2b)

n (8tn
S,' =Texp -i d'x —, „X,x

n=l +t +e" '
e=o,g=o.

(23}

Of course, we get the same expression directly
from (20).

IV. REFORMULATION OF THE THEORY IN TERMS
OF THE TOTAL HAMILTONIAN DENSITY

Everything we said so far is correct providing
that the total Hamiltonian density operator is split
in such a way that the free part contains observable
masses of particles that interact. Since, accord-
ing to our basic assumptions —macrocausality re-
lations [see (2a) arid (2b)] -the observable masses
do not depend on the coupling constants g and e,
O'Kf/se =s'Kf/sg=0. In this case we can freely
make the substitutions

where

f ++int

X& being the free part of the Hamiltonian density.
Then all the equations can be written with S'X/Sg
and O'K/se in place of O'K)m/sg and (&'X,jse. On

the other hand, if our decomposition of the total
Hamiltonian density is such that Xf contains the
bare masses" rather than the physical ones, then
we can claim that in formulas such as (3), (5), (6),
(7), (8), (11), (12a,), (12b), (13), (16), and (17) the
total Hamiltonian density must appear; i.e., in all
these formulas we must have O'X/sg and s'K/se
instead of O'K ~/Bg and a'X, /Be. The proof is
quite simple. X& is a sum of individual terms cor-
responding to each particle that participates in in-
teraction:

Kf(x) =QXf(')(x) .
i

A typical expression for X& if the ith particle is
a spin- —,

' fermion is

(24)

X,"=-s&((,.)y'[-rye+ m,'(g, e)]y(.)

(i) sj, ~4(i)+ sj(&) (&)

(25)

where, as already mentioned earlier [see (2c)], a
bare mass m,'(g, e) is assumed to be generally a
function of the coupling constants g and e. Now,
since the hypothesis of the adiabatic switching of
the interactions in the far past and future means
considering the coupling constants weakly depen-
dent on time in these regions [g(t) = ge e~",
e(t) = ee '2 ', e, , -+0], then it follows that the
bare masses become the observable masses m,.
when both g = 0 and e = 0 (Ref. 12):

m,'(0, 0) =m, . (26)

Equation (26) will be quite important later for the
partial differential equation with respect to g and
e which m,'(g, e) will satisfy. Namely, in solving
those differential equations (26) will be used a,s an
initial condition which m,' will have to satisfy. Let
us introduce 6m, as

Sm, (g, e) = m, —mo(g, e),

am, (0, 0}=0. (27)

Now we shall have for the case of a spin- —,
' particle

Xf -i&T(&y [-iyV + m; ]&4)(& +i Am; (g, e)&((&y g(&.

(28)

Of course, in usual formulation the term
ib, m, (g, e)m(, &y'(I&(;& is simply added to X t. In our
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formalism this is done automatically since, for
example,

Bl BI—X~&') = —[-i&((,.)y'y(, ) m,'(g, e)]

= -i))),)y'e);) (
—m,'(g, e))

BI
= —

[im(;&y ((;&6m;(g, e}]

= $&&'( )y $( ) Am (g 8) ~

when O'X/se is written instead of O'X t/se. Let us
point out that relation (8), which now reads as

8'
E(x) = -g„4 d4y5(x4-y4) E(x), —X(y)

—.—S = -S d'x —X(x),
1 8 4 8

i 8g Bg

—.—S = -S d'x —X(x),
8 4 8

8e Be

(3')

8I
—.—y(x) = — d'y8(x4 —y4) y(x), —X(y)

(6')
—.—y (x) = — d'y 8(x' —y') g (x), —X(y),i Be ) Be

and the same equations for &((x). If E depends on
Q(x)'s and &T(x)'s and explicitly on coupling con-
stants g and e, we have

(8')

is fully consistent with Heisenberg equations of
motion. Thus, we see that in all our relations like
(3), (5), (6), etc. , we can write 8'X/ae and O'X/Bg

regardless of whether the free part of the Hamil-
tonian density operator contains observable masses
or bare masses. In view of this, we rewrite some
relations here from Secs. II and III:

Sem = Sem
~ e = o (12a')

1
A"(x) = A,"(x)+ ie —. —A"(x) + O(e'),

8e e=o

A t(x) =- A&'(x) ~. ,
(29)

According to (6')

Bl
—.—A"(x) = - I d4y8(x4 -y4) A,"(x), —X(y)i Be e=o e =o-

(30)

As we see from (29) and (30), we have to know
what Ae~(x) is. Since, according to (29), we as-
sumed that A"(x) is well behaved at e =0, we then
can write according to (6')

1
—.—A&"(x) = —.—A,"(x)~~

1 B

i Bg o i 8g

The solution (17) for S now becomes

8 ln

S, =T exp -i d'x g —, „X(x) . (17')
n=1 ' 8 e= 0

From now on we shall assume that the free part of
the Hamiltonian density has bare masses depen-
dent on the coupling constants. With this assump-
tion we must use the total Hamiltonian density in

relations (3'.), (6'), (7'), (11'), (12a'), and (17').
It will prove to be very useful to have m, (g, e) in-
stead of Am(g, e} later in the discussion of mass
differences of hadrons.

In order to proceed any further, we have to say
something about the interaction. We will not as-
sume any particular model for strong interactions
in this paper. However, with the correspondence
principle, we will be able to write down the first
term in the expansion in e that occurs in (17') and

make reasonable assumptions about higher terms.
To see how this comes about, let us write the solu-
tion for the Heisenberg electromagnetic field as

E(x) = — d'y 8—(x4 —y') E(x), —X(y)

1 8'
+ —.—E(x),i Bg

(7')

d4y8 X4-y4

8/
x A,'(x), —X(y)

e=O

(31)
E(x) = — de—y8(x'-y') E(x),—X(y)i Be 'Be

18'
+ —.—E(x) .

z Be

S, and S, defined by (9) satisfy

1 8 8

Now comes the important point: According to (11'),
(O'X/Dg), , defines pure strong interactions, i.e.,
the interactions between hadrons only. Thus, when
we expand (O'X/()e), , in terms of a complete set
of "in" fields only hadronic "in" fields come in the
expansion. Then seeking the solution of (31) for
A,"(x) as a power series in g, we get

.4
8'

em——.—S = -S d'x —X(x),
Ae~(x) = A"(x) ~,

=A",, (x), (32)
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8/
-i —m, g, e d'x p'Ss emttpxy p p = x p sSem +yx

8l-i —moog, 0 d x p'S, mpxy4 ~x, op = — d4x p'S, —Kx -K~~x p,
e=p

where we used

(38a)

(38b)

X~P(—x) = im-(px) y4(c)p(x) m—P( g, e),

etc. The terms that multiply BmoP(g, e)/Se and BmoP(g, 0)/Sg are kinematic factors and can be computed ex-
actly because of our assumption that strong interactions are already renormalized, "

d x p'Ss, z&xy &x p =-i d x p'$, 7t&xy~ px -pp

=
Jl d'x&p'I:(, . (x)tp. (x):Ip&

= 2vd'(p —p')u(p')u(p) .

We also see that X(x) -X~p(x) can be replaced by X,(x) in (38a) and (38b), since similarly s'Xl" (x)/sg and
s'Xl"'(x)/se give no contribution for i sp. Thus, we have

8l»g'"(P —P')e(P')e(P)e m'(g, e)= fd'x(P —S —ye', (x) P),8e
(39a)

l
(P P') (P')g(P) —em ( -g0)= fd x p-' g, yee (x)—p,

e=p

where in (39a) we have put (p'IS, =(p'I which is consistent with (37b). With

(
8l—X. , =-(J"+ j)')A„,

e=p

we see at once that I Sm, (g, e)/Se], =, =0 is satisfied. It is not difficult to see that this is true for any other
mass mo(g, e).

The equations (39a) and (39b) are two differential equations necessary to solve in order to know mo(g, e).
As we can see, in order to be able to integrate (39a) we have to know ppc(g, 0). This we can know in princi-
ple by solving (39b). Now, since we are interested in knowing m, (g, e) only to the order e', we need to
know the right-hand side of (39a) only to the order e. Thus, we first expand O'X, /se as

1 8 8—X,(x) = —X;„,(x) + ie —. ——X,„,(x)8~ mt

8 l 8l 8lX,(x) —ie d'y e(x4- y4) —X,(x), —Xh„(y)
e=p

1 8'
+ i e ~ 2 Xint (x)i 8e

Second, we use the expression (17 ) for S, , expanding it to the first order in e, and obtain

8l 8 l r 81 8 l2

S, —X,(x) = —X g(x) —ie d'y T —X;„,(x) —X,(y) + ie , X;„,-(.x)8e ' 8e e o ~ 8e '"' , , 8e '
e 0 i 8e '

e 0
(40)

The first term in (40) does not contribute to the mass renormaiization since (S X. ,/Se), , is proportional
to A~~. The last term in (40), although it may be necessary for proton or neutron field-operator renormali-
zation, need not be known explicitly since the mass renormalization can be achieved without it." Thus we
can continue with only the second term in (40) and have for either proton or neutron

dec (p-p )g(p )(p) —me'(ge)'=ief x d'de([p, ((xy) de(x)ed(„e(y)d" (y)]IP)

=e d'xd'y D (x-y)(p'I TIJ„(x)Z"(y)]Ip&. (41)

Qr from here
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u(p) u(p) —ma(g, e) =—jl d xd k
& 2 (P I T[J&(x)J&(0)] ( p) .

We integrate (42) as

(42)

m, (g, e) = m, (g, 0) + de
0

Denoting

6 m(g, e)=- l de™
0

we have"

(44)

e 8u(p)u(p)6, m(g, e) =-——
J

d'xd'k ~, (p) T[J„(x)J"(0)]('P) . (45)

m, (g, 0) in (43} has the meaning of the bare mass
due to the strong interactions only. In principle we
could find m0(g, 0) from (39b) if we knew the right-
hand side of (39b) as a function of g. Taking into
account that the observable mass m is equal to
m, (0, 0), we write

&ma g, 0
m, (g, 0)=m+ ' dg

40
(46)

where we assume that Bm, /Bg is well behaved at
g=O. If we denote

6. (g)=-I'dg' (g}, (4 I)

we see that the total self-mass is

Am(g, e}=m —m, (g, e)

=6, m(g)+6, m(g, e). (48)

6, m(g) is the nucleon self-mass due to the strong
interactions only, and it satisfies

»6"'(P -u')u(P ')u(u) —&.m(g)
Bg

X P ~S X1Ilt + P

(49)

with the initial condition 6, m(0) = 0. Thus we get
for the n-P mass difference two equivalent ex-
pressions":

m„—m~=m,"(g, e) —m~0(g, e)+6,m„(g) —6, m~(g)

+ 6 m„(g, e) - 6 m~(g, e), (50a)

m„—m~ = m,"(g, 0) —m~0( g, 0) + 6, m„(g) —' 6, m~( g) .

(50b)

Relations (50a) and (50b) reflect the assumption
that the observable masses are independent of
coupling constants g and e since (50b} follows from
(50a} by putting e =0. In view of this, both ex-

pressions, when read from left to right, should be
viewed as identities rather than the expressions
from which to compute m„—m~.

In the literature the expression from which one
tries to compute m„- m~ is

m„-m~=6. m„(g, e)-6 m~(g, e). (51)

VI. REMARKS AND CONCLUSION

It is not difficult to see that in our formalism we
have adopted a viewpoint which one meets in the
usual formalism of divergent (renormalizable)
quantum field theory: The observable masses m's
are given, while the bare masses ma's and self-
masses 4m's are to be determined in such a way
as to satisfy m = m, + Am. Since it is 4m that one
usually computes, m, then is given as m, = m —Am.

Equation (51) definitely assumes the observable
masses to depend on g and e coupling constants.
We believe that this is an unnecessary assumption
for most of the calculations. For example, when
computing the amplitude for the Compton scatter-
ing in quantum electrodynamics, one never ex-
pands the "in" states of the electron and the pho-
ton in terms of e.

Even if (51) were numerically satisfied, that
still would not mean that the observable masses
must be functions of g and e coupling constants.
Namely, according to our formalism this would
simply mean that m,"(g, e) —m~0(g, e) + 6, m„(g)
-6, m~(g) happens to be numerically equal to zero.
Of course, we admit the existence of some other
(nonelectromagnetic) intera, ctions which cause
m„- m~~0. An example is quark-gluon interaction
which gives the observable hadronic mass spec-
trum in terms of bare quark mass. Since the bare
quark mass depends on the quark-gluon coupling
constant, the observable hadronic mass spectrum
will depend on the quark-gluon coupling constant
too.
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= 0.66MeV, (52)

where the numerical value is valid to the order
O(e')." In other words, even if pure strong inter-
actions are SU(2)-invariant [5,m„= 5, m~, and
therefore m,"(g, 0) —mo~(g, 0) = m„- m~ = 0], the de-
generate incoming system of neutron and proton
acquires the nondegenerate bare masses under
the influence of electromagnetic interactions ("re-
normalized" by strong interactions) and, of course,
becomes again a degenerate outgoing system.

The case of e =0 and A. small is quite interesting
since now we have only strong interactions. We
expect that they break SU(2) only slightly. To show
this we rewrite (50b) as

X = m,"(g, 0) —mf( g, 0)+ h(g, X), (53)

where we defined

Of course, what we get for 4m depends entirely on
dynamical assumptions. For example, if we use
the tree-diagram approximation for strong inter-
actions (an approximation very popular for effec-
tive Lagrangians with chiral symmetry), then
5, m„(g) =0 and 5, m~(g) =0. This simply means
that in the tree-diagram approximation strong-
interaction dynamics does not change the mass
which means that m„=mo(g, 0) and m~ =m~~(g, 0).
However, in general (no tree-diagram approxima-
tion) 5,m„g0 and 5,m~t0.

Next we would like to bring SU(2) into the discus-
sion. In view of assumption (2b) that the observ-
able masses do not depend on coupling constants
g and e, we shall ha, ve two independent SU(2}-
symmetry-breaking parameters: e and, say,
A.
-=m„- m~ (see the Appendix). A. o 0 is due to

some nonelectromagnetic interactions. In other
words, the exact SU(2) symmetry is achieved only
if independently e = 0 and A, = 0 (all other observable
"electromagnetic" mass differences we assume to
be expressible in terms of A. ). In the Appendix we
show that for A. =0 and e 40 [SU(2) symmetry still
is broken by electromagnetic interactions], we
have 5, m„(g}=5, m~(g). Therefore, from relation
(50a) we have

m,"(g, e) —m~0(g, e) = -[5, m„(g, e) —5, mp(g, e)]

Equation (54) shows that when X is small, which
is true in our case,

m,"(g, 0) —m~0(g, 0) = Z .
Now, since the mass differences of the type mo(g, 0)
—m~0(g, 0) determine the nature of SU(2) breaking,
we see that it will indeed be small as long as A, is
small.

However, (54) opens another completely unex-
pected possibility. Namely, let us suppose the
following academic case: that A. is not too small;
i.e., we really have to retain the terms up to the
second order in A. . This presumably resembles
the case of "medium-strong" breaking, which one
meets in the case of broken SU(3). As we know,
the "medium-strong" SU(3) symmetry breaking is
caused by mass differences of the type m„- m~,
which are considerably larger than m„- m~. How-
ever, despite the fact that now we take A. to be not
too small, the symmetry breaking could still be
quite small. This possibility could happen if k, (g)
in (54) is numerically very close to unity, in which
case

mo( g, 0) —ma~(g, 0) = -k, (g)A.',
which, of course, could be quite small.
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APPENDIX

In this appendix we wish to substantiate the claim
in Sec. VI that when m„—m~=0 and (&'X~, /&g), =,
is invariant under SU(2) transformation, 5,m„(g)
= 5,m~(g).

We start as usual: In the presence of SU(2) sym-
metry breaking, the doublet of proton and neutron
Heisenberg (interpolating} field operators is as-
surned to obey the linear transformation law,

a(g, A.) =5, m„(g) -5,m~(g) [q,(t), g„(x)]= ——,'(7, )„&8(x). (A1)

(see the Appendix). In the Appendix we argue [see
(A12)] that we should be able to write

~(g, X) = k, (g)~+ k,(g)~'+ O(X') .

From (53) we then have that

m,"(g, 0) —m~(g, 0) = [1 —k, (g)]X —k,(g)a'+ O(X') .
(54)

(,(x) and g, (x) are proton and neutron Heisenberg
field operators (we ignore Dirac indices). Q;(f)
(i = 1, 2, 3), the generators of the SU(2) transforma-
tions, obey the well-known commutation relations

[Q;(i), Q, (t)] = i;„Q,(t) . (A2)

Relation (A1) usually suggests a simple expression
for Q; in terms of Heisenberg fields. However, Q;
can also be expressed in terms of asymptotic "in"
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fields by the fact that the Heisenberg fields can be
expressed in terms of them ("in" fields) by solving
the equations of motion. Since the connection be-
tween Heisenberg fields and "in" fields is general-
ly nonlinear and nonlocal, then nobody will be sur-
prised that the doublet of proton and neutron "in"
field operators (t), and g,'") will in general trans-
form nonlocally and nonlinearly with Q; (i =1, 2, 3)
as generators:

[q, (t ), t) -(x)]= --.'(T,.)„'|),(x) + o,. „(x), (A3)

where 0, (x), a complicated fermion field, de-
pends nonlocally and nonlinearly on "in" field op-
erators. " [Note that in (Al), (A3), and in what
follows summation occurs only when contravariant
and covariant isospinor indices are the same. ] We
can demonstrate the complicated nature of 0, „(x)
by working out the Jacobi identity between Q;, Q, ,
and @:
[q,-(t), o, „(x)]—[q, (t), o,. „(x)]

X -=m„- m~ (all other "electromagnetic" observable
mass differences we assume to be expressible in
terms of X). Furthermore, since Q; (i=1, 2) are
not constants of motion, they generally depend on
all coupling constants. Thus Q; (i =1, 2) will de-
pend ong as well.

In view of the fact that we have two independent
parameters of SU(2) symmetry breaking, of in-
terest to us are the following three cases: (a) A. =0,
ec0; (b) A. t0, e=0; and (e) X=O, e=0.

(a) X=O, ee0. Here the SU(2) symmetry is bro-
ken only via electromagnetism. From (A5) we have

[iQ;(t), y'(„'"( x)]=- D (x)0; „(x), i=1, 2. (A6)

This relation clearly indicates that since Q, x 0
(i = 1, 2), 0; „(x)e 0 and the doublet of proton and
neutron "in" field operators tom(x) (n =1, 2) still
transform nonlocally and nonlinearly. On the other
hand, we know that the total Hamiltonian for the
Heisenberg fields H(t) equals the free-particle
Hamiltonian for the incoming fields HP(t):

= x e ...0, „(x)——,(r;)„O, 8(x)'+ 2(T,)„og 8(x) . H(t) =H,'"(t). (A7)

We see that 0, „(x) definitely does not transform
as a product of isovector and isospinor since if it
mere me mould have to have 2ie;,.~ instead of ie;;~
in (A4).

Let us now apply the Dirac operator

8
D„„(x)=- iy„+m„(m—, = m~, m, = m„)

P

to both sides of (A3):

i[q,.(t), y'q m(x)] = —,'(~,.)„'(m. —m, )y, (x)

-D„(x)O,. „(x). (A5)

The case of i =3 is quite simple. Since Q, is a
constant of motion from (A5), we get D (x)0, (x)
=0. On the other hand since 0, (x) is a fermion
field, its vacuum expectation value is zero [no pos-
sibility of a spontaneous breakdown of SU(2) sym-
metry]. Furthermore, since Q, and the total
Hamiltonian are diagonal at the same time, it then
follows from (A3) that the matrix elements of
0, (x) between physical "in" states vanish. There-
fore

O, „(x)=0,
which is not a surprising result.

The cases of i =1 and i =2, however, are not
that simple. It is quite clear that Q, and Q, depend
on the parameters of SU(2) symmetry breaking.
Since, as we mentioned before, in our formalism
the observable masses do not depend on g and e
coupling constants, we shall have two independent
SU(2)-symmetry-breaking parameters, e and, say,

-D. (x)O, „(x). (A8)

One would think that because g =0 maybe now

0; „(x) vanishes. This, however, is not the case.
Namely, since Q, (t) {i= 1, 2) are not constants of
motion, they will depend on strong interactions
and, again, in view of equations of motion, we
conclude the nonlinear and nonlocal transformation
laws for doublet of proton and neutron "in" field
operators [see the general discussion after (A2)].

(c) X=0, e=0. This is the case of exact SU(2)
symmetry Now we h.ave Q, =0 for all i From.
(A5) we get D (x)0; „(x)=0. However, as in the
case of i =3, we again conclude that 0; „(x)=0,
i =1, 2, 3. Now, of course, we shall have that
(Q, + iQ, ) ~neutron) =~proton), q; (0) =0, and simi-

Thus Hz (t) should reflect the breaking of SU(2)
symmetry despite the fact that me have m„= m~,
mz, =mz =bozo, etc. Hz (t) is not invariant under
SU(2) transformations simply because in view of
(A6) 0; „(x)o 0 (i = 1, 2). Namely, it is the non--
linear transformation law (A3) which makes Hz (t)
noninvariant. Furthermore, since Q, g0 {i=1, 2),
Coleman's theorem2' is not violated; i.e., Q,-)0) e0
(i = 1, 2), (Q, + i Q, ) ) neutron) o ) proton), etc.

(b) XeO, e =0. Here the breaking of SU(2) sym-
metry is due to mass differences of the type
m„- m~, m~++ m~ —2mzo, etc. This case is in-
teresting in view of the fact that we have only
strong interactions. According to (A5) we can still
write
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lar relations.
Let us now justify relation (52) and the conclu-

sion in Sec. VI. There we claimed that 5, m„(g, e)
—6, m~(g, e}q-'0, 5,m„(g) =5,m~(g) when X=0, eqs0.
For the sake of clarity, we shall use the symbols

p and n to denote proton and neutron, respectively,
while four-momenta we shall denote with q and q'.
From (39a) we get for 5, m~(g, e) the following
differential equation:

2&d@(q —q')m —5, m~(g, e)

8 I

dx q', q S, —qq,.„(x) q, q),~e

(A 9)

where we use the normalization u~(q)u~(q) = m (note
that now m~ = m„= m}. Using the fact that Q, is a
constant of motion and that [Q+, Q ] = 2Qs

(Q, =Q, +iQ, ), we can write

(
8I

q', q S. —Sq, (x) q, q)

e ~

8 I
= q', q S.

q
qq (x)[Q„Q ) q q).

Since for X=O and ess0, Q ( q, p) Q-') q, n) and

S &'X s (x)/&e is not invariant under SU(2) trans-
formations, we conclude that in general

(
a' 8 I

q', q S. —Sq ,(x) q, S q q', x S. —Sq , (x) q, x},

which in turn means that in general 5, m„(g, e)
V 5.mm~(gq e}.

Let us now justify the claim that 5,m„(g) = 5, ms(g)
when A. = 0, ess 0. From (39b) we can write

2&5~"(q —q') m —5, m~(g}

(A10)

Despite the fact that we are interested in the case
of A. =O and eg 0, we see that the right-hand side
of (A10) is independent of e. Therefore, when we
write

q &P Ss &lnt & q&P

g I
= q', q S, —qqq (x) [Q„Q ) q)t)

e=o

we can take Q, to be from the case of X = 0 and
e = 0, which is the case of exact SU(2) symmetry.
Now, since S,(B'X,(x)/&g), =, is SU(2)-invariant
and Q (q, p} =( q, n), we have

P Ss =&1t& SP

=q', nS, —X tx qn

which in turn means 5,m„(g) = 5,m~(g).
This result can be further used for the case of

e=0, A. Qs0. Namely, if we now denote 5,m„(g)
—5,m~(g) = A(g, A.), then A. =0 is definitely included
in the domain of convergence when &(g, X) is ex-
pressed as a power series in X. On the other hand,
from the physical point of view, we expect that
X = m„- m~ lies between X = 0 and the radius of con-
vergence of the power series. If this is so, then
we can always write

(A11)

a result used in Sec. VI.

*This paper is an updated and revised version of a
1971 work under the same title done at the Department
of Physics, University of Illinois-Chicago Circle,
Chicago, Ill.

)Present address.
~J. Soln, Nuovo Cimento 32, 1301 (1964); 37, 122 (1965).
The simplest thing is to assume that g multiplies the

strong-interaction Lagrangian (or Hamiltonian) and that
it varies between zero and unity, unity being its physical
value. This would ensure that the strong interactions are
switched off when g tends to zero. On the other hand,
one may assume that the coupling constants describing
the interactions of hadrons with hadrons are functions of

g, and asg 0, they tend to zero, and as g tends to its
physical value (which one can choose to,be g& ), they
tend to their physical values. As a matter of fact, in
view of the SU(3) symmetry, universal coupling of p

mesons to other hadrons, the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin relation, '.etc. , there is a strong
indication that the strong interactions are characterized
by only one independent coupling constant. [See, e.g. ,
M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman,
Nucl. Phys. 26, 222 (1961); S. Okubo, Progr. Theoret.
Phys. (Kyoto) 27, 949 (1962); M. Gell-Mann and F. Zach-
ariasen, Phys. Rev. 124, 953 (1961); J. J. Sakurai, Phys.
Rev. Letters 17, 1021 (1966); K. Kawarabayashi and
M. Suzuki, ibid. 16, 255 (1966); Riazuddin and Fayya-
zuddin, Phys. Rev. 147, 1071 (1966).] The chiral La-
grangians and field algebras suggest further the non-
linear dependence on the coupling constant. [See, e.g. ,
S. Weinberg, Phys. Rev. Letters 18, 188 (1967);
J. Schwinger, Phys. Letters 24B, 473 (1967); J. Wess
and B. Zumino, Phys. Rev. 163, 1727 (1967); L. S.
Brown, ibid. 163, 1802 (1967); J. Soln, Phys. Rev. D 2,
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2404 (1970).]
3To show the convenience of relations (2a) and (2b),

let us take a scalar "in" field operator o' (x) associated
with a particle of a physical mass p, and assume that
both are functions of a coupling constant g. Then from
the differential equation (Q —p2)o' (x) = 0, we get

(fj-p2) —a~(x) =~
—p'[o~(x).0 /a

Bg ,Bg

From here we see that unless BP /8 g = 0, the matrix
element (0(0&r~(x)/Bg)k) = ~ for k2 = -pt. Now we know
that the S matrix can be expanded in terms of free-field
"in" operators W.hile some matrix elements of S~e
would not be singular when evaluated between some
states, suddenly we would find that for the same states
the matrix elements of S(e+&e are singular. Of course,
80~ (x)/Bg still may contain an arbitrary term
[Bojii (x)/Bg ]0 satisfying

8
(2 —p2) —o.- (x) = 0.

Bg 111

Because of its arbitrariness, we have chosen this term
to be zero.

There is no doubt that with observable masses being
dependent on coupling constants, the formulation of a
perturbation theory would be quite difficult.

Let us finally point out that the above example is
actually a different demonstration of Haag's theorem,
which states that the field operator 0' (x) of mass p, and
the field operator 0. (x) + 6 o~ (x) of mass (p + 6p )
cannot be connected with unitary transformation
[H. Haag, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 29, No. 12, 3 (1955)] .

To clarify this point further, let us take the case
where X

& (x) = g@ (x). Then we have 8'X
& (x)/Bg

= y'(x), O'Z~, (x)/ae = 0.
5Since, in general, X~& can also depend on space

derivatives of P's and m's, relation (4) will hold for
them too ~

6It may look strange that P,„q(x) and x „q.(x) should
depend on g and e while P. (x) and x~(x) do not. How-
ever, the explanation is very simple. Namely, the free
physical system long after the collision, besides carry-
ing the observed masses, charges, etc. , will also have
to carry the information about the collision. Thus
/ply (x) and ~p„q'(x) will have to depend on coupling con-
stants g and e. This dependence, of course, comes
through the S matrix, since Qpu~ = S ~Q~ S, mph~ = S ~m. S.

~We can verify relation (8) on a simple model of
spinor field P(x) interacting with a scalar field a(x)
with Zm~=gy yp & 8 "cr. From Sjilg we get

+j.~ = -g V y 4&~-g 4y'4~. + 2 g'(0y'4)',
from which

8
8—&j ~= -Pyl«-ly44~. + g (Iy40)'

Choosing E = o. (8'o. /Bg= 0), relation (8) gives us
(1/&) (8'&/Bg)'= i g y4$. This we rewrite as

1 8
(0+gory'y) = 0.

Bg

But o+ g g y P we recongnize to be x, a canonically
conjugate operator to field rr. This example shows us

that relation (8) could be useful in finding a canonically
conjugate operator 7(z is some operator E is chosen to
be a Heisenberg field operator.

J. Soln, Nuovo Cimento 18, 914 (1960).
SIt is not difficult to check (17) in quantum electro-

dynarnics. There S, = 1 and P (x) and x (x) are "in"
operators. Thus

Bn
„R~g(x) = —

( „X„"q(x)~Int

, (x)

with the condition (Rea (x)), 0
——0.

~OQne shall feel the "difference" between S=S, S and
S = S~ S,' in practice, however. To see this let us dis-
cuss the transition amplitude (out, r'~inr), where com-
mon indices r and r' specify states according to a com-
plete set of commuting observables.

For choice S=S,S, we have

(in, r'(S, S~(in, r) = (out(str), r')S, ]in, r),
where (out(str), r'( is an out state in the presence of
strong interactions only. We can expand (out(str), r'

j

x S ~in, r) in a power series in e quite easily, since
the whole matrix element depends on e only through S, .

For choice S= S,'m S,', we have

(in, r'(S,' S,'] in, r') = (out(em), r'
[ S,'( in, r),

where now (out(em), r'
~

is an out state in the presence
of electromagnetic interactions only. While we can, at
least in principle, expand (out(em), r'

( S,'(in, r) in a
power series in g straightforwardly since the dependence
on g comes only through S', its expansion in a power
series in e is slightly more involved since both (out(em),
r'

~
and S' depend on e and must be expanded. Of course,

regardless of whether one uses S = S, S,m or S = SemS&&
one gets the same result. As a Inatter of fact, to the
order O(e) we get exactly the same expression as in the
literature [see, e.g. , J. J. Sakurai, Currents and Mesons
(University of Chicago Press, Chicago, 1969), p. 38;
K. Nishijima, Fundamental Particles (Benjamin, New
York, 1963), pp. 192 and 193] .

~~The term "bare masses" should probably be renamed
"interacting masses" for the following two reasons: It
is the interaction that changes the observable mass into
the coupling constant dependent mass. Secondly, while
the experimentally observed masses are associated
with "in" and 'but" fields, the bare masses are associat-
ed with the interacting (Heisenberg) fields.

~2A very nice discussion of the asymptotic conditions
at t + ~ can be found in an article by G. Kall6n, in
Fundamental Problems in Elementary Particle Physics—
Proceedings of the Fourteenth Conference on Physics at
the University of Brussels, October 2967 (Interscience,
New York, 1968).
t~The solution A" (x)(, 0

——A(' (x) is also clear in view
of the fact that photons have only electromagnetic inter-
actions with other particles,

- This is equivalent to saying that the part of the Sjgg
responsible for the electromagnetic interactions does not
contain derivative couplings. See, for example, K. Nish-
ijirna, Fields and Particles (Benjamin, New York, 1969),
Chap. 5.

The assumption is that the theory is renormalizable in
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the presence of strong and electromagnetic interactions.
We assume that the theory can be described by a Lagran-
gian formalism. Then as in the case of quantum electro-
dynarnics, we assume that the renormalization requires
a finite number of counterterms in the Lagrangian. From
the Lagrangian we can obtain the Hamiltonian density,
and if we are satisfied with the perturbation theory in
both coupling constants g and e, then from (3') we can
get that

4 1 B BS=Texp —i d x
t g +e R(x)

n=i &' . Bgo Beo ~ gp=o eo=o

This expression for 8, of course, is equal to expression
(1), since

n

+ e X(x)
0 gp=p, ep=p

a) 1 ( B B n

ig —+e —3.
'

(x)
n=g&' ( Bgp g =0 e =0t

= ~~ (x)

X (x) here is obtained from X (x) by replacing Heisenberg
operators with corresponding "in" operators. Under
summation signs, X and K depend formally on gp and
ep. Now it is clear that terms like

g~~
~ e~~

t
~

g~~
~ e~~

j ~ t
B /2 Bl 2

, X(x, X(x), etc. ,
gp =0 BgBe gp =0

are computable if we know the original K;„t and all count-
erterms [including those with ~; {g,e)] . On the other
hand, it is also clear that in the perturbation theory the
form of terms like

(
B)2 ) Bi2

, X(x)j, X(x), etc. ,Bg ) -p -p BgBe 0 0

is influenced by renormalization requirements like, for
example, the stability of one-particle states and making
matrix elements of interpolating (Heisenberg) field
operators finite which for t + ~ should approach the
matrix elements of corresponding "in" and "out" oper-
ators, respectively.

However, if the expansion with respect to g is not
possible, which is true in practice, then it is more prac-
tical to use the expressions for the S matrix in form (9).
Now it is customary to assume that strong interactions
are already renormalized; i.e., we assume that condi-
tions which go with renormalization are satisfied. For
example, one assumes that interpolating {Heisenberg)
field operators, due to pure strong interactions, have
finite matrix elements and that, for t + ~, they
approach to corresponding "in" and "out" operators,
respectively. However, in order that these conditions
still hold when the electromagnetism is switched on,
terms like

Bl2 Bt3
2 X(x), 3 &(x)

Be e=p e=o

should be properly chosen.
~6To see this, let us compute

i.fd'x (P I-S, S(; 7(p (x)y'())p (x) IP) .
Since we are interested in 8m~0 {g,e)'/Be, to the first
order in e, we expand S,m and 7[& (x)y4 g& (x) to the first

order in e according to (17') and (6'). Since the term
proportional to e contains A&, its contribution is zero.
Thus, we have

ff-d'x&P'IS, S, xp(x) ) '(), (x)lp&

f-fd'x(p I S,(xp (x)y'yp(x)). , I p&.

Now according to (37b), the strong interactions are such
that (p'I S, = (p'

I
. Then, with the assumption that there

exists an energy-momentum operator. P& which generates
translations, we have

-( Jd x(P I S, S 7)p (x)'Y )))p (x) IP)

= -i (2x) 6(') (P -p') &p'I [7)p(O)y'(I'p (O)], 0 Ip& .
The matrix element

&p I[;(o)y'~p(o)I, =, IP)

is to be computed at x = 0. However, we can compute it
at any x because of 5~ function, P'=p, Now the assump-
tion that strong interactions are already renormalized
means that the matrix elements of Heisenberg operators
are finite and in the x -~ limit they approach the
matrix elements of corresponding "in" operators. In
our case, because of arbitrariness of x4, the matrix
elements are equal. Therefore,

-~ Jd'y&p'I s, s, vp(y)y'g, (y)IP)

= - (2 )'b'"(p -p ) &p I [;( )y'y, ( )),=, lp&

= -f (2x)'B" (P P') &P'I: 7(p. (x)-v')['. (x) ' lP& .
With ~~(x) =i/&. {x), we get result (39).

~~To clarify this let us assume for the moment that
states lp) and I p') are off the mass shell, and expand
the right-hand side of (39a) in terms of (p'+ mp):

Bl
Jd4x p'S, —~ , (x) p

=2~a&"(p -p )g {p)
8 B—a(g, e) + (f/+ mp) B

b (g, e)

B
(~ -~*,—..(..'.~.-,)).~)

The assumption that the mass renormali. zation can be
achieved without

2 X,„,(x)

means that this term can be chosen in such a way that
it gives no contribution to Ba(g, e)/Be. Bb(g, e)/Be will
get contributions from

f~' r'(—,")(.,(.
)) (,"x., (,

))

and from

e 2 K. t(x)

but since we are interested in the limit (P'+ mpu (p) 0,
it is of no concern to us. As a matter of fact, in quantum
electrodynamics (formally obtained by putting g = 0), the
electron field-operator renormalization will give b = 0.

~ Expression (45) is known in the literature as the
Cottingham formula for the hadronic electromagnetic
self-mass [W. N. Cottingham, Ann. Phys. (N.Y.) 25, 424
(1963)] . See also R. P. Feynman and G. Speisman,
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Phys. Rev. 94, 500 {1954); A. Petermann, Helv. Phys.
Acta 27, 441 (1964); G. C. Wick, in &roceedings of the
Seventh Annual Rochester Conference on High-Energy
Nuclear Physics, 1957 (Interscience, New York, 1957);
M. Cini, E. Ferrari, and B.Gatto, Phys. Rev. Letters
2, 7 (1959).

~One could start with the equivalent expression for the
S-matrix S= S,'mS' [see relation (18)] . Since now the
roles of strong and electromagnetic interactions formally
are interchanged, instead of 6, m(g) and 6,mm(g, e), we
shall have 6,' m(e) (the self-mass due to electromagnetic
interactions only) and 6,' m(e, g) (the self-mass due to
strong interactions "renormalized" by electromagnetic
interactions). Clearly now the "initial" conditions are

m(0) = 0 and 0,' m(e, 0) = 0. However, since the total
self-mass Am(g, e) must be the same as before, we
shall have the equality

&m(g, e) = &,'~m(e) + &~m(e, g)

= 0, m(g)+5, m(g, e) ~

Since Am(g, 0) = 6~m(g), we have that 6, m(g) = 6,'m(0, g).
Substituting this above, one also gets

6,~m{g, e) = 6emm{e) + hs m(e, g) —bs m(0, g) ~

In other words, we can again proceed with the discussion
in terms of 0, m{g) and 6,m m(g, e) . Let us point out
that it would be quite difficult to invoke SU(2) into the
discussion without writing d m in terms of 6~ m and

m.
Most calculations give the negative values for
m„(g, e) —6, m&(g, e). The value we quote was cal-

culated by M. Cini, E. Ferrari, and R. Gatto, Phys.
Rev. Letters 2, 7 (1959).

2~For the case of broken chiral symmetry this has
been demonstrated in a simple field-theoretic model
[J.Soln, Phys. Rev. D 1, 2882 (1970)] .

S. Coleman, J. Math. Phys. 7, 787 {1966).


