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Light-cone commutators are used to derive fixed-mass sum rules for structure functions
evaluated away from the forward direction. Both spin-averaged and spin-dependent sum rules
are considered. As in the forward direction these sum rules relate the structure functions to
form factors of bilocal operators. The bilocal operators can, in turn, be related to the deep-
inelastic limits of the structure functions by Fourier transformations. %e derive these rela-
tions for the spin-averaged case. In addition we use the Mandelstam representation to show
the consistency of the scaling hypothesis with crossed-channel unitarity.

I. INTRODUCTION

Starting from assumed forms for light-cone com-
mutators of currents, ' ' a variety of conclusions
can be drawn regarding the properties of electron
and neutrino scattering structure W(q, v) and their
scaling limits E(v).' Since these functions are
forward absorptive parts of the four-point. current-
particle amplitude it is natural to inquire into the
properties of the off-forward absorptive parts
W(q, ', v, t) and E(&u, t) 'Althoug. h these latter are
not soon likely to be measured experimentally, any
requirements on them are important constraints
for any model dealing with the forward amplitudes.

In the present work we apply the methods of
Dicus, Jackiw, and Teplitz (DJT)' to the nonforward
vector amplitude and deduce several sum rules.
That work, and this, is performed under the as-
sumptions of the canonical commutators of a vec-
tor-gluon fermion-quark model. "

We derive fixed-q' sum rules for the W's [see
Eq. (2.18)] and formulas giving the E's as Fourier
transforms of the form factors of bilocal operators
(2.27). In Sec. III we find fixed-q' sum rules for
the nonforward spin-flip absorptive parts (3.5).
Our conclusions are 16 fixed-q' sum rules of which
six are extensions of t=0 sum rules; of the new
sum rules, three are expected to converge in a
Hegge model.

Finally in Sec. IV we make a natural first step
toward a model-independent dynamics by discuss-
ing the analyticity of the off-forward scalar-cur-
rent scalar-target amplitude in the framework of
the Mandelstam representation. ' We show the con-
sistency of the scaling hypothesis with the two-
body t-channel unitarity approximation and the ab-

sence of anomalous thresholds in E(&u, t) Using.
this we evaluate the box-diagram contribution to
E(td, t). The answer is given in Eq. (4.15).

In Appendix A we relate the structure functions
W used in the sum rules to the t-channel helicity
amplitudes and also find the q'-0 conditions on the
structure functions. In Appendix B we provide the
free-quark-model Born approximations to the am-
plitudes under discussion.

II. SPIN-AVERAGED SUM RULES
AND TRANSFORMS

Cab (pl~ qli P2& 'q2)

d'xe""-", V." —,'x, y& --,'~ p, .

(2.1)
C,'," satisfies the relation

Cg (P„q,;P~, q2) = -C&,'(P~, —q2; P~, —q~) . (2.2)

Following Gross, ' we expand C,'," in terms of con-
served tensor covariants

5 Ij U P Vc'~ =~w" g
"' —q'q' a', , g ~ ~- q' q'

ab ~ i 8 2 Ij'P'
i=1

where the A,'& are taken to be

A,p=PpPp,

Ap~ =P~hp —Pp4„,

(2.3)

(2.4a)

(2.4b)

(2.4c)

A. Fixed-Mass Sum Rules

We consider the Fourier-transformed commutator
function
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A.,p =P~Ap+ PpA„,

App =ApAp,

where

P =2(Pi+Ps) ~

Q = 2(qi+ q.),
~ =02 —9'j. =Pa-P2 ~

(2.4d)

(2.4e)

(2.5a)

(2.5b)

(2.5c)

The structure functions W,. depend on the Lorentz
scalars v, t, Qa, and 5 where v =P Q =P ~ q,
=P q„ t=6', and 5=2Q b..

From (2.2) we see that

WI'~~(v, 5}=-Wtf~~ (—v, -5), i =1, 2, 4, 5 (2.6a)

W&'"(v 5) =W&'"(-v, -5), (2.6b)

while the opposite symmetries hold for W,.". Note
that W, and W4 are not related to the spin-flip am-
plitudes called W, and W4 in DJT.

To obtain fixed-mass sum rules from (2.1) we
follow the method of DJT and integrate (2.2) over
Q . On the right-hand side we interchange the Q
and x integrations. The Q integral then gives a
factor of 5(x'). This operation is only valid in the
absence of Class-II singularities as discussed in
Appendix D of DJT; it is not, however, invalidated
by Z graphs.

This procedure yields sum rules of the form

dQ-W(v, Q', t, 6) =
Jf dx d'x-, e"* "e "'-"~"(p,[[V,(-,'x), V,(--',x)][p,&~„,.

77 QQ

~

~ (2 'I)

The right-hand side is a light-cone commutator which we may then evaluate from the results of Ref. 1. On

the left-hand side the initial and final virtual photon masses squared are given by

g2
(2.8)

To ensure q,
' and q,

' being constant as Q varies we may take Q'=b, '=q,'=q,'=0.
Returning to (2.1) we choose v =+, p =+, i (i =1, 2) in order to limit our derivation of sum rules to those

commutators found by Cornwall and Jackiw to be interaction-independent. ' Integrating over Q gives

1 p P

dQ g+"W' +P+ P& — W' +P+ 6"— (W' +W' )1 q2 2 q2 3 4

dx d'x~e ~ ~
2 V~~ 2x ~ V~ 2x Pi +=0

= J/dx d'x, e '""&P, I [V."(x), V:(o)] IP,& I „+=.

(2.9)

The current commutators which emerge in the interacting fermion theory of Ref. 1 are the following:

[V;(x), V,"(y)],+,+=if„,V,'(x)5(x —y )5'(x —y ) —,'is" 8"[S—„(x~y)e(x —y )5'(x —y )],
[V,.'(x), V;(y)],. ..=if.„V;(x)5(x- —y-) 5'(», —y, )

~f.„f8*[a(x - y )6'(», —y, )'0, (x~y)] + -,'s",. [e(x —y )&'(x, -y, )V,'(x (y)]

- 2s~ ~"[e(x —y )5'(x, -y, )&&.(xly)]]

-~ad.~.&~'-*[&(x -y )5'(x.-y.»c(xly)1+2sl [&(x -y )5'(xi-y. )&.'(xIy)]

+-,'s*, ~'~[.(x- —y-) 5'(x, —y, )e„(x~y)] J

+i~(x —y )6'(x, y, )M„(x~y—) --', iS.,(x~y)e(x —y ) , s5's(x, -y, ).

(2.10)

(2.11}

These results were obtained in a quark model with a vector-gluon interaction, and a symmetry-breaking
mass term. In (2.11) all terms, except S„(x~y) emerge with canonical manipulations; however, S„(x~y)
can be shown to have nonzero vacuum expectation value. The inability to compute it canonically is a reflec-
tion of the fact that the ordinary Schwinger term is not evaluated canonically, and is related to the nonoc-
currence of dimension-2 fermion operators in the theory. We shall assume that S„ is a c number; S„(x~y}
=5,,S. This assumption, which is equivalent to setting F~(&u) =0, is not true in perturbation theory.

The term involving M„(x~y) is present in (2.11) only when the currents are not conserved, and need not

concern us any further. The remaining bilocal operators are defined as follows:
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V."(xly) =-', y(x)y" ~.q(y),

A,"(xly) =
~2 g(xh'y'&A(y) .

(2.12a)

(2.12b)

These are bilocal non-Hermitian generalizations of the vector and axial-vector currents. We now extract
the Hermitian and anti-Hermitian parts, as these are the objects which occur in (2.11):

~&(x(y) -=-,'V~(x(y)+-', V&(y ~x),
=1u~(x~y) -=—.[V~(x(y) —v~(y ( x)],

et'(xly) =-,Au(xly)+-'A!(y lx)

1
~~(xly) =-

—,. [A."(xly) -A."(y lx)] .
22

(2.13a)

(2.13b)

(2.13c)

(2.13d)

Finally, we expand the bilocal operators '0, 'U, al, and 8, of (2.11) in terms of real form factors. We
keep, for use in Sec. III, terms involving the nucleon spin:

&p I v!(0) I p &
=P"f.(t) +P. "(Pt s)f:(t),

&p. I'U."(x I0) I p, &
=p"V;(x', x p, x t, t) + x"V;(x', x p, x t, t)

+i~"V;(x', x P, x b. , t)+i@~"'~P.b, ,s, V;(x', x P, x~, t)

+ ~"""P„x,s, V; (x', x P, x a, t) +is~"'~t „x,s, V; (x', x p, x g, t),

(2.14)

(2.15)

where s"=u(p, )y"y,u(p, ). Time-reversal invariance requires that, when x b. =0, V; and V; must be zero.
As long as we are dealing with ++, +-, or +i commutators in (2.1) we evaluate the bilocal form factors at
x ~=0.

In the same way A,', A,', and A', are zero at x 6 =0 in the following:

&pm IA!(0) I pi& = s"a'.(t),

&p, ~ R,"(x
~
0)

~ p, ) = s"A;(x', x P, x 4, t) + P"x sA;(x', x P, x b, , t) + x"x sA;(x', x P, x b. , t)

(2.16)

+iP"6 sA'(x', x P, x b, t) +ix"b, sA;(x', x P, x 6, t) +i~"x sA;(x', x P, x r, t)

+t ~a sA,'(x', x P, x t, t)+ie~ "P„t,x,A;(x', x P, x &, t). (2.17)

Similar decompositions hold for 9 and 8. Summing matrix elements over initial and final proton spins as
required in this section puts s equal to zero in (2.14) and (2.17).

With the above formulas, fixed-mass sum rules are readily derived. Setting p equal to + in (2.9) and
using (2.10) gives the t c0 generalization of the Dashen-Fubini —Gell-Mann (DFGM) sum rule. Setting p,

equal to —in (2.9), using (2.11) and (2.14) through (2.17) to evaluate the right-hand side, and equating coef-
ficients of 1/P+, P ~ Q/P', P ~ A/P+, and P gives three new sum rules in addition to the DFGM rule (which
comes from the coefficient of P ). Because 5 is nonzero, interchanging p and v and considering

yields two new independent sum rules. The resulting six sum rules may be written as follows [with o. =P'x
and W~=W, +(v'/q, q, )W,]:

J dv W; (v, Q', t, 5)

=iaaf,

~,f'(t),
0

(2.18a)

(2.18b)

J0 0
(2.18c)

dvW&' &=0,
0

(2.18d)
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2 d W'" — ' ' ' d 'W~"+6 ' d W' ' d W'
Oo t( 2+ 2) g2 ao 52 t( 2 ~ 2) ca

2 2 2 + 2 2 4 n 2 2 3
0 271 q2 Ql @2 0 o ql @2 o

2iwtf-„, dn nA;(0, n, 0, t), (2.18e)
0

oo 2p 2) 52
d W~' ~=5 ,' 'f„—, d @TED;(0, , 0, t). (2.18f)

0'1 ~2 O 0'1 ~2 O ~1 ~2 O 0

In each of the six sum rules (2.18) the structure functions W;.' stand for
—', [W;.'(v, Q', t, 5) + W;. '(v, Q', t, -5)], i = 1, 2, 3, 5

and

—,'[W (v, Q', t, 5) —W (v, Q', t, -5)]
as can be seen from the crossing relations (2.6). There exist an additional six sum rules which are
identical in form to (2.18) except that the W;.' stand for

—,
'

[W;.'(v, Q', t, 5) —W;. '(v, Q', t, -5)], i = 1, 2, 3, 5

—', [W4"(v, Q, t, 5) + W4~(v, Q, t, -5)],
the right-hand sides are all zero, and the structure functions have the opposite symmetry under inter-
change of a and b.

Equation (2.18b) is the t I 0 generalization of the sum rule of Cornwall, Corrigan, and Norton. ' Note
that no sum rule involving W, can appear from the present method in a commutator involving V' since both
b, " and Q' are set to zero.

No new sum rules are added to the spinless case by considering the (+, i) commutator. All the sum rules
in (2.18) except for (2.18a) are apparently divergent for t= 0 in a Regge model in which

W~- V W Vcx —2 W ~ V(x 1 W ~ Vo 1
2 3 4 (2.19)

The sum rules are, in principle, convergent for t sufficiently negative that the leading j-plane singular-
ity o. has retreated the necessary distance into the left-hand plane. As pointed out by de Alwis the t= 0
case may then be evaluated by analytic continuation. "

B. Deep-Inelastic Transforms

As in DJT the bilocal operators are measured by the deep-inelastic limits of the W',.'. We consider the
Fourier transform of the time-ordered product

T."~&(P„q„P„q,) =i~td'xe*' ""(P,~(V."(-',x) V ~&( ,'x)), ~P, )-.-

This can be expanded in terms of the A.,'„,
1 5

Tg=if„ f~(t) [g~" v —P"qg-P" q~]+g T~ g» — 'q' A~ ~ gv v

9'2 i=1 gl

(2.20)

(2.21)

where the A',„are given in (2.4) and the W in (2.3) are the discontinuities of the T", .
We can now relate (2.21) to the light-cone commutator by using the Bjorken-Johnson-Low theorem on the

light cone, "
-1

T,'," ~ dx d'x~e' " "e ' ~'"~"(p~[V;(-,'x), V,"(-—,'x)] ~p,) ~„+,+polynomials.
Q

(2.22)

The starting point for determining the large-Q behavior of the T;'~ is their dispersion relations. We can
assume for convenience unsubtracted dispersion relations since in the end we will keep only the imaginary
parts:

, W (v', Q', t, 5)
VP P q -2 V

V —V
(2.23)

We write the W," in terms of functions of the scaling variable v = —Q'/2v which go into the scaling functions
when Q' and v go to infinity (with ~ fixed),
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Wz (v, Q', t, 6) = —
2

Ff'. ((d, Q', t, 6) ~ —
2

E~~((d, t, 6)+—,G~ (m, t, 6).g2 2(d
(2.24a)

vW "(( v, Q', t, 6) = F&'((d, Q, t, 6)

Then we can rewrite (2.23) as
' d&o' E$ ((O', Q~, t, ())

L tt0 t 4 tm . t t
-1

p&b( t rP

-1

Letting Q get large makes v and Q' get large with (d fixed; Eq. (2.25) becomes

(2.24b)

(2.25a)

(2.25b)

(2.26a)

(d —4)
(2.26b)

Now we simPly use (2.26) with (2.21) in (2.22), setting tf. v equal to ++ and + —,and using (2.10) and (2.11)
in the right-hand side of (2.22). The results are five deep-inelastic transforms:

Ff,'((d, t, 6) =0,
F' ((d, t& 6) =0,

Dt'(a, te) = Dta f-,dec '' a [f„V (Da, 0, t)+,d„', 'V,;(0, a, D, t)]

—24Pt dQ e ' + abc's 0~ Q&0~ t —d~bc~s 0

(2.27a)

(2.27b)

(2.27c)

V: (a, t, 0) = taf da e ' "[f„V;(D,a, D, t)+d„, ,V,*(D, a, 0, t)],

Es (»tt ~) =2 Ea ((d, tt ~)+& «e * "o'[f„,A;(0, c(, O, t) —d„,A;(0, n, 0, t)].1
2' 00

(2.27d)

(2.27e)

The bilocal form factors on the right-hand side of

(2.27) are evaluated at g' =0 and x. td. =0.
The fact that Ef"((d, t, 6) is zero for all t and 6

follows from assuming there is no q-number
Schwinger term in the commutator just as it did

for 1=6=0. But now we see that

G(~(Du, t, )6

is not zero as in the t =0 case DJT but is propor-
tional to t. There is no transform formula for I'„
its coefficient goes as (Q ) '; hence it only appears
in higher-order commutators.

Equation (2.27) shows that all the scaling func-
tions are in fact completely independent of 6. This
is an explicit verification of what has been argued
should be a general rule. "

Comparing (2.27d) with the fixed-mass sum rule
(2.18a) we find

f'(t) =&'(0 o, o, t) (2.28)

I'd 'd—F'" ((de t, 6)=,E,' '(fdt t, 6) .
p (d p CO

(2.29)

But this also follows from the fixed-mass sum
rules (2.18b) and (2.18c); we conclude that A; has
no pole in n.

III. FIXED-MASS SUM RULES FOR NONZERO SPIN

If we do not sum over the nucleon spin in (2.3)
there are many additional tensors to be added to
the list (2.4); Gerstein" has solved for the 13 ex-

which states that the bilocal operator goes into the
local operator (the current) as x-0.'

Finally, if A;(0, o., 0, t) has no pole in o. then
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tra independent ones. We write them in the form

13 P V PC"&=~R"g"'- q'q' B', , g~'~- q q
a~ ~ g

8' 2 U'p' 8'
i=1

(3.1)

1
u(P, )y"u(P, ) =

pq u(P, )u(P, ) — ~ e (Pt s),
(3.4b)

u(P, )(xq'u(P, ) =—cq'(Ps)

where C,"', is the spin-dependent part of C,",', and
the B„'„are taken to be u(P, )u(P, )[t qP"-~'Pq]

1
B~q =g

Uq ~ E(PQEs)

B,q = Pp P—
q e(PQb, s),2 1 (s.2b)

B „=—e(PQb, s)(E„Pq —bqPp],3 1
(3.2c)

1B „=——e(PQAS)[b Pq+b qP ], (3.2d)

(3.2e)

1
B~q =

epq .s~Qs ——[Pq6p(Qsk) +Pp 6
q( Qs+)] ~

+ + [hqe'(pb s) —b "eq(pcs}].

(3.4c)

Again the invariant amplitudes are functions of v,
Q', t, and 5. To simplify the algebra we will set
6=0 immediately. Then time-reversal invariance
requires R4, Ra Rypp Rllp and R» to be zero.

We notice that, as P -0, only B',„and B',„are
not zero. In this limit the amplitudes R,"and R,"
become the amplitudes we called W3 and W4 in
DJT. (Here we have already used the notation W,
and W~ for spin-independent amplitudes. )

From (2.2} we find that

R""(v Q' t O) =R&;"(-v Q' t, O)

B'„„=Q se,q qP"Q, (3.2f) for i =1, 2, 6, 9, and 12 while

B',„=—[ Pq ~, (Pb s) + P, eq (PSs)),
1

(3 2g) R (v Q' t, o) =-R (-v Q' t, o)

B'„„=—[P„~„(Pts) -P„~„(P~s)],8 (3.2h)

1
B,q =~ [&q e„(Pb s) —A„eq (Pb,s}], (3.2i)

10B',
q

= —~ [&qe, (Pb s) + b,, e
q (Phs)], (3 2i)

B'„„=Pq e„(PQS) +P„cq (PQ s),

B'„q = hq s„(PQS) +E„e„(PQS),

B',„=b.
q e„(PQS) —b.,eq(PQS),

where we have introduced the notation

(3.2k)

(3.21)

(3.2m)

sq(&BC) -=sq"'a„B.C, , (3.3a)

c(ABCD) = e"""A
q B,C „D8 . (s.sb)

iu(p, )y"y'u(p, ) =—s", (3.4a)

The set of B„'„ is related to Gerstein's by using

for i =3, 5, and 7 with opposite symmetry for the
amplitudes that are antisymmetric under inter-
change of a and b.

It should also be noted that the projection opera-
tor (g"' q" q'/q') could—be replaced by (g"' —Pqq'/
v). The first choice leads to conditions among the
R, at q' =0 ensuring the absence of q' poles in C~'

(or alternatively the vanishing of helicity ampli-
tudes with longitudinal photons). The second
choice leads to v =0 conditions. The presence of
a 1/v term in (3.2e) follows from using the second
choice for the (5) amplitude and then reexpressing
the result in terms of first choice amplitudes.
This somewhat awkward procedure has the advan-
tage of displaying the generalization of the Drell-
Hearn" sum rule in a straightforward form but
introduces an extra condition R~"~ (v =0}=0.

We now proceed as in Sec. II and DJT to derive
fixed-mass sum rules. We use the ++, +-, and
+i commutators. The only difficult problem is in
determining which "reduced" tensors (that is, the
tensors B'„q with vp, =++, + , or +i) are ind-epen-

dent. We find, for the+, i case, for example,
the following independent tensors: P'e'(Phs),
Q'e'(Pb, s), b, 'e'(Phs), Q'e'(PQS), b. 'e'(PQS),

'sP'e( EQ), Q's'e(Qb), 6's'c(QA), and (sPS),
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where e(QA)=e"Q, t&. », j,k=1, 2. For the +, —

case we find +
' e+(Pt&s), e(Qs),

—,c (Qhs), P c'(Qb, s),

P+ e '(Qt&,s ), ', e'(Qhs ),

P++ E (pcs) ~ ~ E (pt&.s),

P;P', &'(PQs), P f'(Phs),

P,.Z',
e'(PQs) .

We find 12 independent sum rules:

oo 1
dv —R,~ (v, Q', t, 5 = 0) +R2" (v, Q', t, 5 = 0) = 0,

0

(3.5a)

J dv[P'Q'R &"& —t(vR,"&+R';")]=--.'i~ d, tP' dnV~
0 0

(3.5b)

dvR~', ~~ = 0 (3.5c)

dv [vR, —2R, ]= mf„,f,'(t),
0

(3.5d)

dv [vRi' ~+R'"~]= nf f (t-) - ', mf [ d-n[A'+ nA;]
0 0

(3.5e)

J dv R~"&+ (vR "&—tR~"& —2R "&) = ,imd dn —V4—nV6
0 0

(3.5f)

J dv v[vR2~' & —2Rt"&]=»mP d, », q, 'q~ dn V'
0 0

(3 5g)

t dv vR~"~+-,'P' R~"~+2R~"~ ——vR&"~ —2R~ "~ + P' R~ ~ —I; vRI "~+R~"~
0

7&f„,P' f,'-(t)+-,' dnAf
0

(3.5h)

dv [Ri"&+vR~ "~- tR~»»&]=--'~f f dna'+ n& ]
0 0

(3.5i)

0 0
(3.5i)

where we have omitted the argument v, Q, t, 5 =0
of the amplitudes R in most of the sum rules.
Similarly on the right-hand side the bilocal oper-
ators are each a function of x' =0, ~, g ~ 6 =0, and

t. The form factor f,(t) is defined in (2.14). The
bilocal operators are defined in (2.15) and (2.17).

The sum of (3.5a) and (3.5b) is a generalization
to q'c0, tt0 of the Drell-Hearn sum rule. '4 As
q' and t go to zero the absence of q' poles in C"'
requires that 2R, =R,/v (see Appendix A), and the
difference o~„,„„—v,„„„„,»,I is proportional to R,
+ vR„as is well known. The sum rules (3.5b)

R -v~+' i=1 9

R;-v, i=3, 5, 7

R;-v ', i =2, 6, 12.
(3.6)

When the integrands in (3.5) are expressed in

and (3.5i) are extensions to t 40 of sum rules de-
rived in DJT. Equation (3.5i) is the generaliza-
tion of the Bbg sum rule.

The R, in (3.5) have apparent Regge asymptotic
behavior (see Appendix A) as follows:
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terms of the helicity amplitudes (from Appendix A)
some cancellations of leading powers occurs.
Moreover it is shown in Appendix A that if we re-
strict ourselves to the contributions of even-sig-
nature trajectories to the isospin-symmetric (I,
=0) amplitudes and odd signature to the I, =1 am-
plitudes the convergence of some of the sum rules
is still further improved. The end result is that
the integrands in (3.5) behave with v as follows:

(a) v" ', (b) v" ',

(c) v" ', (d) v" ',

(e) v" ' (f) v" '

(g) v" ', (h) v,
(&) v (j)

Thus (3.5a), (3.5d), (3.5e), and (3.5i) are conver-
gent in a simple Regge model. Still further im-
provement in the asymptotic behavior of the inte-
grands may be expected to result from the proper
insertion of factorized Regge poles into the t-chan-
nel parity-conserving helicity amplitudes and, at
t =0, from use of the conspiracy conditions. "

As in DJT the right-hand sides of the sum rules
may be replaced by the scaling limits of the left-
hand sides. Again, as in Sec. II and DJT, the
fixed-mass sum rules are only valid up to the
neglect of contributions from Class-II diagrams.

We could derive, as in Sec. IIB, Fourier-trans-
form sum rules for the deep-inelastic limits of the
R, Although in principle there is no difficulty in
doing this, the algebra is sufficiently tedious, and
the expected results, beyond those found in Sec.
IIB, are sufficiently unimportant, that we have
not carried out the derivations.

IV. ANALYTICITY OF THE SCALING FUNCTIONS
IN TWO VARIABLES

In this section we ignore the nontrivial compli-
cations introduced by the spin of the photon and

dz'dz" W, (q', v', t) Im T/',

[z yz' +z" I 2zz'z" ]

(4.2}

where the structure function W, is the s-channel
discontinuity of T„and T' is the strong (pion-
kaon) amplitude. The z's are given by (with p.

the pion mass)

v = ,'[(t 4M;-)(t ——4q')] "'z,

v' =-,'[(t —4p')(t —4q')]"'z',

v" =-,'[(t —4M, ')(t - 4t1')] "'z" .

(4.3a}

(4.3b)

(4.3c)

The integrals in (4.2) are from threshold up to the
curve in v' and v" on which the denominator

k2'"(z, z', z")=[z'+z~+z" —1 —2zz'z "]'"
(4.4)

vanishes. The Mandelstam double-spectral-func-
tion boundary s =s(t) is found by setting s' and s"
equal to their threshold value and solving k~ =0
for s(t). W can be found from dispersing (4.2) in t:

study the scaling limit of the Mandelstam repre-
sentation' for the "scalar structure function" of
the kaon.

We begin with the Mandelstam representation
for the scalar photon-kaon scattering amplitude
Tz(q, s, t), in the approximation of keeping only
the first (s t) do-uble-spectral function

Tz(q', s, t) =
t, t, pz(q', s', t'). (4.1}

dt ds

In the approximation of two-body t-channel unitar-
ity, p~ is given by

dt' t' —4p, ' "', „W,(q' v', t')ImT'
Wz(q', v, t) = (4.5}

It is not surprising that scaling is consistent with the Mandelstam representation in the sense that, letting
Cd = -2vt q (4.6a}

QY = —2v jq
and taking the limit q'- ~ with Cd fixed gives

d(d dv
4 W

-1/2dzsdzr z [g (tl 24~2) + +t2(t 4M 2) 6++I vti] -1/2
(p 4+2)l/2 !C

(4.6b)

(4 7)

Thus the kernel in the Mandelstam iteration procedure scales.
Setting v" and 2 equal to their threshold values (v~= —,t+MV, and Cd =1) the zero of k~'/2 in the denomi-

nator of (4.7) gives the double-spectral-function boundary &D(t) for the scaling function
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F(&3, t) = lim W(q, v, t) .
q ~~; (3fixed

The result is

(v=1+, (p, + ,'Wt)-.4(M+ p, )

t —4p,
(4.8)

The curve cu(t} is asymptotic to the normal threshold 9=1 and t=4p'. It has negative definite slope; hence
there are no anomalous thresholds in the scaling function. The result (4.8) must remain valid when photon,
and hadron, spin are included. Any new singularities generated by spin will merely be "kinematic. "

Taking the scaling limit of (4.5) gives an integral for Fx,

F„((3,t) =fr(t)5(a —1)-4, , „, F,((o', t') ImTx'(v", t'),1 dv cf(d

F

with

k~((o, (u', v", t) = ~'(t —4 p,') + 2"(t—4M') —8ruru'v" .

(4.9)

(4.10)

Similarly, an integral equation for F„(Co, t) can be found by considering W„(q', v, t) in the (t-channel) two-
body unitar ity appr oximation

F,(ru, t) =f, (t)5(ur —1) —4, ~ „, F,((u', t')ImT"'(v", t'),dt' 1 dv "dCo'

f 7I

with

k~ „=((u' +&3")(t—4p, ') —8~Co'v".

(4.11)

(4.12)

Equations (4.9) and (4.11) can be used to find the contributions of nontree diagrams to Fr and F, from
lower-order diagrams. Consider for example the contribution of the diagram of Fig. 1 to I,.

In this approximation, F„under the integral in (4.11) is 5(&3' —1) and ImT""(v", t') is 5(s" —MR' ). The
contribution to I', is

Oo I

(4.13)

with

1 2 4' 4p
2 (t P)I xl j-'1%2 y x2

R IVY R

It is straightforward to find from (4.13)

(4.14)

M„((3—1) I (x —x,)(x+x,)]"' x, —x+ [(x—x,)(x+ x,)]"' (4.15)

For t = 0 this is, of course, the same as the re-
sult of Jackiw and Waltz' for the forward quark-
model box-diagram contribution.

Second double-spectral functions (t-u) can be
included in the above with no extra difficulty.
Third double-spectral functions, however, require
a model for the scaling limit of the photoproduction
amplitude. Since only t =0 is currently accessible
to experiment the first double-spectral function is
more than sufficient.
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APPENDIX A

We give here the t-channel helicity amplitudes in terms of the (5 =0) scalar functions used in Secs. II and
III and also the q =0 conditions which follow from the vanishing of helicity amplitudes involving longitudi-
nal photons.

%e calculate Tq z, , using

1

~. (p,) = 2ou Ix., (E' p' =m-'),
(E.m)

" (Ala)

( 2cg)
v, (-p, ) =I z+m I}t

1
(Alb)

s"=i(m, o, o, o),

=i(0, p, -tp, o),

&1=O2 =
2

10'1=-02 =
2

(A2a)

(A2b)

P"=(0,0, 0,p},
~~=(2z, o, o, o),

Q"=(0, -qsin8, 0, -q cos8) = —,'(q, —q, )~,

1
2

(0, cos8, +i, -sin8), X =+ 1

(A3a}

(A3b)

(A3c}

(A4a, )

1= + ~ (0, cos8, +i, —sin8), X = -I (A4b)

1
(q, +Esi 8,n0, +E cos8), X =0 (m, =E —q').2

a

(A4c)

It is then straightforward, albeit tedious, to compute twelve independent t-channel parity-nonconserving
helicity amplitudes in terms of the twelve scalar amplitudes W„W„W3, W5, R4, R„R„R„R„R„R„
and R~. (W4, R„R„R,O, and R» are zero for 6 =0 by time-reversal invariance). We choose as indepen-
dent helicity amplitudes:

-1,-1 — k~ T1.-1 -k k~ T40:2.ky

T-10' $y& T 10'- $ —
& TOO'$ p& 00' -—

The 12x12 matrix may then be inverted giving the (s-absorptive parts of the} scalar amplitude in terms of
the (s-absorptive parts of the) t helicity amplitudes. We find"

(A5a)

2W2=-
p3

2W2E cos8
~ 1 1 T . 1 1 ~ T 1 13 2~2zp2q sin8 10;1', K -1,0: z z m sin8 -1,1; z, ~

a

(A5b)

(A5c)

~ Szq (T'"-'-" — —
2q

.
8

' 2Z'

m, cos8 mQ+ ~ 1 J T .g 1 T, 1

2~2zpg sjn8 10' T q -10:2, p 4E2q p 00;T 2 t
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-1
(7 V"1 2E g

i ll -g- --ll —— — 1-1 - — —
4 E2

V 1 1 1 1 1 1, + 7 . 1 1 —7 . 1 1

2EQ s]ng 0 t 2 p zs 2 o zo 2 4m E + g ) ~ ' ~ ~ ' ~2) ~ ill z z
—-1, 1;2, 2 ~

1 1
((1 —cose)T, , i ~+(1+cose)T. .. i i) —

g (Tg, ~„i —T,, g, ~„i),

(ASe)

(A5f)

1 E2 +q2
3 6ZR ( l, l; i.l -l, -l 3, a 6Z& &p

cos8
8 (Tl, l; —P, I T-l, ll- P, l Tl, -li-i, 2)

1 cos8
(1 + sill 8)(T ) g. +Tg

&2m, cose
(

v 2m,
yp, 1 I+T gp, l 1 +

8mz'q sine "'"' "'"' Bz'q'p

1
R, = (T„,, —T, , ),

1 1
-' -')+ ~ a ~ p2y 2 4Epq sjn g e ' 2 ~ 2» zo 2

m, ' cos8

(A5h)

R
E+q 1

2Ep'q' sin 9
E cos8(-T... i ~+T». i i+T, , i i)+ Q 3 3 (( —cose)T ~, . i i —( +cose)T~ ~. i t)

m. '+ 2 T2Zp'q' sine

-1 1
T ... , , —T .. . ,) —

4 (T.,. . .—T. .. , ,),

(A5i)

(A5j)

P cos0 E'+ q'
Rp = 6, ( T„, , +-T. .., ,)+ 6, sine(-T. . . , +T .. .+T. . . , )

—
4

. (T ~~ ~~ i+T~. ~, i ~

4~2 p sme(Typ. i ~ +T yp, l ~)

2
mq / w mq+ ~, cose(T „. —T„,,)+ ., sine~T„ (A5k)

m,'-=-2nz g ..e"':-'-'"-':-'-" (A51)

A somewhat surprising feature of the results of (A5) is the presence of an anomalously large v behavior
in some of the amplitudes Rg for example, behaves as v ". Since its coefficient in the expansion of
C,„(B'„„)is constant as v-~, one would off hand expect R, to go as v". The extra power is the result of
the vanishing of the determinant of the leading v coefficients in the inversion required to derive (AS). Al-
ternatively defined amplitudes may be constructed without the v anomaly; however the convergence of a
given sum rule must be independent of the definition of the amplitudes in terms of which it is expressed.

There are signature and parity constraints on which trajectories can give (leading) contributions to the
R's. %e note the following:

(1) The leading contribution in v to the absorptive part of a i-channel helicity amplitude is odd (or even)
in v according to whether the trajectory signature is even (or odd).

(2) For the isosymmetric amplitudes, W ~ and R~"~ (i =1, 2, 6, 9, and 12) are symmetric in v while
W~~'" (i =1, 2, and 5) and R~" (i =3, 5, and 7) are antisymmetric in v.

(3) From (A5) we see that the leading contribution to WI"~ (i =1, 2, and 5) and RI"~ (i =3, 5, and 7) are
related to the leading v contributions to helicity absorptive parts by even powers of v; the other R,. and
W, by odd powers. These three facts imply that only even-signature trajectories contribute to the leading
behavior of the I, =0 structure functions. Odd-signature contributions are reduced by (at least) one power
of p. The opposite results hold for the I, =1 structure functions.

The i =0 results may be recaptured from (A5) by means of the derivative conspiracy conditions. " Al-
ternatively, they may be found directly by setting 6 =0 in (2.4) and (3.2), expressing T... i i, T.
Tp p 1 1 and T1p . 1 1 in term s of Wl W2 R5 and R„and inverting the resuiting matr ix. One finds the
same v behavior and signature rules as above.

DJT are incorrect on this point: They give (in the present notation) incorrectly R, - v" ' and R, - v
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(The correct "anomalous v" results are v" and v '.) From this they deduce an incorrect signature rule.
The principal result that the leading power of the leading odd-signature trajectory drops out of the com-
bination R~5' + vR~6' at t =0 is, however, given correctly by DJT. This combination behaves as v

Results of this latter type appear in the present work: By the symmetry arguments above, combinations
of amplitudes in which the leading power of a "right-signature" (even for I, =0, odd for I, = 1) trajectory
cancel must have the convergence of the contribution of that trajectory improved by v' —not just v.

The q&q& =m, 0 relations may be found by requiring the absence of m, ' poles in C"' or by requiring the
vanishing of Tyo x i Top &is in the above list. The relations are

vW, +q, q,W, -O(q'),

Wz+q, q'W, -O(q),
2

RI —-R2+ vR, —,'P R6+—R9-O(q),
qg' q2

-vR, +q, q,R, +-,'R, + ,'vR, +R—,-O(q'),
-', (v' P'Q')R-, —vR, —q, ~ q,R, -O(q'),

qg'qgRgg O(q)

q, qQ'+2v'R, —2vq' q+3 2vR, —2q VR6 —2vR, —2q' q+9+ql'q+12 O(q').

(A6a)

(A6b)

(A6c)

(A6d)

(A6e)

(A6f)

(A6g)

It should be noted that these relations only hold for the parts of the W's and R's which are free of 5 func-
tions, i.e. , for the non-v-pole parts of the amplitudes. A diagram which gives a v pole for fixed q may
give a q' pole for fixed v (see, for example, W,"" in Appendix B and compare with the Dashen-Fubini-
Gell-Mann sum rule).

APPENDIX B

In a free-field theory with no magnetic coupling the one-nucleon contribution to the amplitudes W", and
R;.' is (with 6 =0)

W2' = v —if,„,A.,[6(Q'+ 2v —~t)+ 5(Q' —2v —,'i)]+ m + d„—,X,[5(Q'+ 2v ——,'I) -6(Q' —2v —4t)],

W: = 2m
—if,„,X,[5(Q'+2v —4i) -5(Q' —2v —,'t)]+ 'm —~d„,A.,[5(Q'+2v —4t)+6(Q' —2v —4t)],

3
R = ———8'

1 4

1 I 1
2 m v

1=——W5 2 2

1= ———W7 2 m

1= ———W
2 m

with W", W,'~, R,", R,', and R" equal to zero.
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Singularity Structure of the Double-Regge Vertex in the Nonplanar Venexiano Model~
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Previously studied models of the double —Regge vertex have exhibited only right-hand cuts in
the Toiler variable. We show that the nonplanar dual model of Mandelstam has left-hand cuts
in the Toiler variable. We also use this function to calculate all possible total (planar plus
nonplanar) Reggeon-Reggeon-particle vertex functions.

I. INTRODUCTION

For planar Veneziano formulas, double-Regge
limits and vertex functions have been calculated,
and the contribution of double-Regge poles to the
full amplitude was worked out. ' In this paper, we

will perform similar calculations for the nonplanar
amplitudes of Mandelstam. ' We will see that,
whereas the planar amplitudes have only right-hand
cuts in K (=s/s, s„see Fig. 2), the nonplanar
terms contribute, in addition, left-hand cuts in K.
We will then introduce a vertex signature factor 7~
(Ref. 3) in order to obtain the most general possi-
ble expression for the total amplitude. Finally we
will use the result thus obtained to calculate the
various Reggeon- Reggeon-particle vertex functions.

where A, B are arbitrary, the product is over all
channels(12, 13, 35, 45, 14, 25), and Jisa Ja-
cobian factor which transforms suitably,

@~2845(Q-+@45) f ~ 45
(Bgg+ @45+Q35)

The Q's are constrained by the conditions

Q25Q~~+ Q~2Q35 = 1
~

Q25Q~4+ Q~2Q45 —1,
Q35Q~4+ Q~3Q45 = 1

q

Q25+ Q35+ Q45 Q~~ Q~3 Q~4 —0 .

(2)

(3)

(4)

(5)

We wish to study the double-Regge limit, s, s„s,-", K=sjs,s, constant (see Fig. 2), of this non-

Il. DOUBLE-REGGE LIMIT

Mandels tarn's Veneziano formula' corresponding
to the minimal nonplanar five-point diagram, Fig.
1, 1S

A= CfB.tgZlgJ

+BED

4 p

L

FIG. 1. Nonplanar five-point diagram.


