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A model for hadron-hadron scattering proceeding via the exchange of mesonic systems
with isospin is constructed. The result can be cast in eikonal form with an effective Regge-
pole potential. Extensions of the model are discussed and comparisons with other models
are made.

I. INTRODUCTION

In the quest for an understanding of the phenom-
enon of high-energy hadron-hadron scattering,
many different approaches have been used. One
of the oldest, the so-called eikonal approximation', '
has recently received a great deal of attention in
the literature because of major theoretical ad-
vances in its employment. A gigantic program has
been carried out by Cheng and Wu' using Feynman
diagrams to calculate various combinations of elec-
tron, positron, and photon scattering and produc-
tion; and other authors, ' using a variety of differ-
ent field-theoretic techniques, have studied large
classes of diagrams using a variety of models.

The hope of course is that these studies will pro-
vide important clues for a realistic description of
the physical hadron scattering amplitudes.

All of these eikonal-model calculations are
based, however, on very simple field theories,
which neglect both isospin and the possibility of
exchanges of particles with spin greater than one;
though following the work of Chang and Weinberg,
Eichten has considered the possibility of an ei-
konal approximation for a particle acting in an ex-
ternal field with arbitrary spin.

What we have done is to calculate the scattering
amplitude a+b-a'+b', where a, a', b, b' are
arbitrary one-particle hadron states (either stable
hadrons or hadron resonances in the narrow-
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width approximation) in the limit of infinite s
= (p, +p, )', taking into account exchange of an arbi-
trary number of mesons and allowing excitation
by the mesons of the hadron states a, 6 to arbi-
trary hadron resonance states. The mesons are
constrained to lie on the p-A, -fo exchange-degen-
erate trajectory and the hadron states to have no
self-mass or vertex corrections.

The organization of the paper is as follows: In
Sec. II we analyze the amplitude for the scattering
a+5-c+d by absorption and emi, ssion of an ar'bi-
trary number of isospin-one, spin-one, massive
p mesons. Using infinite-momentum techniques
we sum the leading terms of each order of per-
turbation theory to obtain an exponentiated eikonal
form for the scattering .amplitude. The key to
the procedure is an '.effective commutativity of the
vertices, which'holds even though the exchange
particles have isospin; this is a consequence of
the superconvergence relations for p hadron-p hadron scattering. We emphasize this point
since this is precisely what distinguishes our work
from other attempts along these lines; if we had
considered exchange of fictitious charged as mell

as neutral photons whose sources were the iso-
spin currents, the commutativity condition would

not have held and one could not obtain an expo-
nential result for the scattering amplitude. The
difference lies in the well-known fact that the cur-
rent hadron- current hadron' scattering amplitude
has a fixed pole at J =1 whereas the p hadron-p hadron' does not.

In Sec. III me review the derivation of the nec-
essary superconvergence relation in the approxi-
mation of saturation by narrow-width resonances,
much along the lines of the work of Bardakci and

Segre, ' and extend these considerations to super-
convergence relations for higher-spin particles,
namely the mesons lying on the p-A, -f, exchange-
degenerate trajectory.

In Sec. IV, using the general class of relations
derived in Sec. III, we extend the calculations of
Sec. II to include exchange of not only p mesons,
but all the mesons on the p A, f, trajecto-ry. -We
then use the van Hove' model to sum all meson
exchanges in lowest order of perturbation theory
and our techniques of Sec. II to sum up all orders
of perturbation theory. The final answer is a
Reggeized eikonal expansion, i.e., an amplitude
in which a Regge propagator appears in the eiko-
nal function, rather than an elementary-particle
propagator.

An alternate approach which bypasses many in-
termediate steps is also sketched. The idea is to
start directly by exchanging Regge trajectories
rather than elementary particles and then to ob-
tain the analog of a superconvergence relation for

Reggeon hadron Reggeon hadron' scattering by
considering the six-point function in the triple-
Regge limit region.

In Sec.V, me present an algebraic derivation of
the results of Sec.0, analogous to the canonical ap-
proa, ch to massive quantum electrodynamics (QED)
developed in Ref. 3. The various restrictions me
have imposed on our model are further clarified,
this time within a purely algebraic framework.
The algebraic approach also indicates that we
have, in all probability, within our system an in-
finite isotopic-spin multiplet with a resultant E(3)
algebra.

Section VI contains a discussion on inelastic
scattering within our model. The algebraic for-
malism introduced in Sec. V is useful for such a
discussion, and suggests ways of realizing in-
elasticity effects. Of course, the basic premise
of eikonalization has little to say about such ef-
fects, and here is where additional assumptions
have to be made. Within the context of the effec-
tive Regge eikonal introduced in Sec. IV, we con-
struct a model based on duality to simulate in-
elastic scattering. Such a construction is consis-
tent with the Regge eikonal picture, although by
no means necessitated in any way by our consid-
erations up to this point. A fem remarks on the
Pomeranchuk singularity are also included in this
section.

II. EIKONALIZATION WITH p-MESON EXCHANGE

In this section we consider the scattering of an
initial state consisting of two hadrons a and 5
with momentum p„p„going to a final state of two
hadrons a' and b' with momentum P, , p~ . The
kinematics is such that s= (p, +p,)'- ~ while f
= (P, -P, )' remains finite with of course p, +p,
=p, i+p, i. Vfe do not treat the process in its full
generality, but restrict ourselves in this section
to the class of diagrams depicted in Fig. 1, namely
exchange of an arbitrary number of p mesons,
i.e., isospin-one, massive vector mesons. The
hadrons along the g to a' line and b to b' line,
which we henceforth call a and 5 lines, are arbi-
trary hadron resonances, whose excitation is
allowed by the quantum numbers of the reaction.
Two important restrictions are that we allom no
self-mass diagrams, i.e., the hadrons are all
considered in the zero-midth approximation, as
in dual-resonance models, and also that we take
the hadron-hadron-p coupling to be pointlike and
given by its on-mass-shell value; this means that
there are also no vertex corrections taken into
account. We realize these are severe restrictions,
but it is all we are equipped to solve at the mo-
ment.

The approach we shall use is to employ infinite-
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n&

Pb'

N-1

(4)

where the above equation is to be interpreted not
as an operator equation, but as a relation between
matrix elements which follows after a complete
set of intermediate states, approximated by zero-
width hadron resonances, is inserted. This equa-
tion, a consequence of the helicity-flip-two AI=1
superconvergence relation, will be discussed later
on in the article. For the moment let us just
assume that it holds.

The vector-meson propagator is

-g~.„.+ qp, q„. m p2

q2-m 2j

FIG. 1. Hadron-hadron scattering proceeding by meson
exchange.

momentum variables P, =P, +p„p =p, -p„with
p being a two-dimensional vector perpendicular
to the third axis. The N exchanged p mesons have
of course their momenta q,. restricted by the con-
dition Q", , q, =k where k'=t. We let s-~ by
having in the center-of-mass system p, +, pb
-Ws —~, i.e.,

~a+Pb-+Pa-Pb+ pa pb Pa+pb- '

The approximation we adopt for calculating our
vertices and propagators is analogous to that of
Chang and Ma' in that we keep only the leading
term in s. Thus the vertex on line a at which the
jth vector meson with isospin n,. is absorbed by
the nj, th hadron is approximated by

(n&, I VP(q&) ~ n&) = 5„. , v s M„"& „.(q,.),

and its emission by the rK, th hadron on line b by

(rr, ) V„" (q, )~Irr) = 6„vs. M„"s, (-q ).
(2)

The important kinematical feature to note about the
above equations is that the matrix M depends only
on qj, not on qj or qj+. This is a consequence of
working in the infinite-momentum frame (it is
tacitly assumed throughout that qj is a finite four-
vector, i.e., we assume q, /p„, q /p, -0). The
key to our results will be a dynamical feature of
the Ply matrices, namely, that they commute,

[M"*.(q, ), M"~ (q, )]„,„.=0,

Dny pa++ qK j 2

P. ie.)
— ." ~

K=1

(P ) Qg )
+RE

K=1

r' p q, ). ~
K=1

(6)

to the leading order in vs in the denominator. We
have assumed that all other terms which are at
most O(1) may be neglected; of course this is only
true, as we stated earlier, if q, /p, -0 and if the
masses of the excited hadron resonances remain
bounded, m„'/s-0. The integrals over q,. give as
volume element

However, a, a' have infinite momentum along the
positive z axis and 6, b' alorig the negative z axis
so that p, , p, , pb+, pb + - 0 and hence k, k,-0 which reduces the above expression to

but we have made the assumption that the matrix
elements of Sec. V, the p-hadron-hadron vertices,
have no off-mass-shell corrections and hence

q"'(
I V„",I &

= o, (~)

so the q„q„ terms may be dropped from the p-
meson propagators. The hadron propagators have,
of course, poles; the typical such term corre-
sponding to the njth resonance on line a, i.e., the
state g reaches after absorbing j vector mesons is

N N

2(2v)'~6 P q,
2i(2m)'j =1

N N d d d N

=2(2.)'6 g 6 g D ""'."'- " ' t *" "II '"'"
( )2t(2~)' (2w)' Jj =l j =l
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Combining all these factors we find that the sum of all N-meson-exchange diagrams is

db -- "d d d e'q~~( s" 1

j=1 i p

x
permutations

on line a
+ sE q, +q+iE ~ qK +ZE

aa'

per mutations
on line b

M "& (-q, ) . M"2(q, ) ~ ~ „,Ot

qr+ + ie
K=1

M "& (-q~)

where the permutation sums mean we must include all orderings in which the mesons are emitted at line b

and absorbed at line a. Since the permuting is done separately on lines a and b, we must divide by ¹ to
compensate for the overcounting. The s"/s" ' factor arises because we have 2N vertices and 2(IV'-1) prop-
agators each with a v s factor.

The M matrices all commute with one another so that they can be arranged sequentially as
M &(q, ) ~ ~ M &(q„) for any ordering. For the hadron resonance propagators we use the relation

N N N

(q +k) '(q, +q + Lf) . .'Q .q +Ze g q, =(- ni)" "g 5(q,. )
permutations 0=1 /=1 9=1

(10)

and the analogous one for the denominators on line b, with q replaced of course by q+. The end result is
then

P dbe-jk b

T„-Bsms,— „[y(b)]„
4

M (q)M (-q)dq+dq dq 5(q )5(q+)e'"' "
(2m)'(q'- m ')

r d~ sqo bdqei) ( ) (-)M(q) M(-q), (12)

where the dot product of the M's is in isospin space.
We finally obtain then an expression for the scattering amplitude by summing over N

T= Q T„=-2is db e '"' (e"~ &-I)«, », .
N=1

(ls)

The total amplitude sums to an eikonal form, with the eikonal function y expressed in terms of the p-had-
ron-hadron amplitude. It is proportional to s and, even though we exchange an arbitrary number of iso-
spin-one mesons, the whole amplitude is an isoscalar in the s channel. From the t-channel point of view
all isospin exchanges are present, which violates our intuitive notions of decreasing amplitudes for higher
t-channel isospin exchanges; we will return to this point in Sec. IV. Finally we would like to comment that
the extension to SU(3) is obvious.

III. SUPERCONVERGENCE RELATIONS

In this section we would like to explain why it is that the M(q) matrices discussed in. the previous section
commute.

Consider, for arbitrary hadron states c, c in the s- ~ limit, the difference of the scattering amplitude
for p" +c-p~+c' minus that for ps+c- p +c', where p and p~ are p mesons with momenta, respectively,
of q and q'. We write this difference in the approximation that the scattering amplitudes are completely
dominated by s- and u-channel resonances, which we label as n. We approach s —~ by having the z compon-
ents of the momenta of c and c' tend to infinity, while q and q' remain finite to leading order p„=p, ,=p,
and (p, +q)'-+p, q, (p, , +q)'-ap, q; we take as p-hadron-hadron vertices the form found in Sec. II, Eq.
(1), and thus find for the difference n,T„,of the scattering amplitudes, nT„, = 6'„5',~T„,

P +M (q)P +M '(q ) P +M (q )P 'M "(q) P 'M (q)P+M '(q) P+M (q)P +M '(q (14)
P+ q —tpg„

n
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We now assume the mass spectrum of intermedi-
ate resonant states is bounded, i.e., m„'&& p+q as
P+ - ~, which implies

Its coupling to hadrons is described byI &I 2 ~ v~
a vertex analogous to that of Eq. (1) in Sec. II for
arbitrary hadron resonance states c and c',

6T„- + [M"(q},Ma(q')]„, (15)
N

(c~ I'„.. . , (q) (c') ll &„«"[M"„(q)]

where the above is meant not as an operator equa-
tion, but as a relation between matrix elements
after introducing a complete set of resonant states
in the commutator.

We now note, however, that the p trajectory is
the leading trajectory contributing to hT++, which
asymptotically behaves therefore as

&p, q for (q —q')'&m'

since the p trajectory np(t) &1 for t=(q —q')'& mp'.
From Eq. (15), we see that 6T++ behaves like P+
as P+ -~ whereas from our above general argu-
ment we have seen this cannot be true; the resolu-
tion is to impose

(20)

from which we can immediately deduce the super-
convergence relation (in the usual sense of a rela-
tionship between matrix elements)

(21)

with M previously defined equal to M, (we must
have ¹ 1). There is of course a much larger
class of superconvergence relations than the sim-
ple one we have written above for high-spin par-
ticles, because of the possibility of large helicity
flip Eh with a consequent asymptotic behavior of
s ~I' ' ", but we shall not discuss these in this
article. Finally we remark that one may con-
sider the scattering of a hadron by a spin-N, par-
ticle leading to hadron- plus-spin-N, particle, and
derive then the condition

[M"(q), M'(q')]„, = 0, (17) [M"„(q),MNn (q')] =0. (22)

the desired condition. This is nothing other than
the well-known AI = 1, helicity-flip-two super-
convergence relation in the resonance saturation
approximation. To refresh the reader's mind,
what this says is that by writing

T p~=' ——P„P„A(s, t)+ ~ ~ ~

one can show that A(s, t) -s p~'~ ', and hence, us-
ing a dispersion relation

(18)

lim sA(s, f) = lim s, ' ds'=0
" ImA(s', t)

S~ao S~ s —s

~ J~ ImA (s', t) = 0 (19)

and saturating the integral over the absorptive
part with zero-width resonances, one recovers
Eq. (17). (For a discussion of this problem and
its potential applications, see the paper by
Bardakci and Segre. ')

A minor point is that we probably could have
made our argument directly for T+, rather than
having to consider the difference AT++, since ex-
perience with notions of duality leads one to be-
lieve that saturation with s- and u-channel zero-
width resonances is consistent with the leading
Regge trajectory being the meson one, i.e., dif-
fraction scattering is generated by-effects neglect-
ed in this approximation. We shall return to
thi. s point in Sec. IV.

These arguments may be extended to higher-
spin fields. Consider an isospin-one, spin-N field

D„„(q)- -g„„6(q'- m ')(-in), (23)

and placed the p mesons of course on the mass
shell. Since the relation of Eq. (10) in Sec. II
means that contributions only come from q =q+ ——0,
we then had to continue q to g'=iq in order 'to have
a nonvanishing 5 function above. However all this
is unnecessary in the approximation of neglecting
all vertex and self-mass corrections, in which
case on- and off-mass-shell propagators and
vertices coincide (of course we take the physical
value for the masses).

IV. REGGEIZED EIKONAL MODEL

There is an important conceptual problem which
has been glossed over so far and that is the rela-
tive consistency of our expression for the scatter-
ing amplitude in Sec. II, Eq. (13}, which says the
scattering amplitude behaves asymptotically like
-s, i.e., as if there were a fixed pole at J=1, with
our assumption of Regge asymptotic behavior
necessary for the superconvergence relation which
in turn ascribed an asymptotic behavior of s~&~'

to the scattering amplitude. Furthermore, our re-

This will allow us to sum the contribution of higher-
spin particles as well in our eikonal approximation.

The superconvergence relations of course only
hold for on-mass-shell particles, which is why in
our previous note' we only calculated the t-channel
discontinuity of the amplitude. This had the effect
of replacing the p-meson propagators by
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suit says that in terms of t -channel exchanges,
the amplitude for AI =1, 2, . . . , etc. , as well as
EI = 0 (I is isospin) behaves like s asymptotically,
which is inconsistent with experiment. We believe
the source of our difficulty to be in the fact that p
exchanged in the p-hadron scattering amplitude
from which the commutativity condition Eq. (3) is
derived is assumed to be a Reggeon, whereas the

p exchanged in the eikonal sum is treated as an
elementary particle. We shall show two different,
but practically equivalent ways to circumvent this
difficulty. The first allows for arbitrary spin ex-
change in the eikonal and then uses the van Hove
model' to sum; the second starts by having the
exchanged particles be Beggeons.

A. van Hove Model

,
( )

M„„(q)~ M„„.(-q),
(24)

which can be summed for s&1 and then analytically
continued to s & 1 to give Regge asymptotic behav-
ior

mn'(q')s~& "&-
2) nn'(q) ™rr~(q) ' (25)

This may be inserted into our calculations of
Sec. II. Note that factors of V s x v s have to be
removed from the above to cancel the I/V s factors
in the hadronic propagators at the sides of the gen-
eralized ladders. When this is done we obtain an
expression for the scattering amplitude identical

In Sec. II we discussed the general supercon-
vergence relations which led to the commutativity
of M„(q) with M„(q'). A simple solution to the
algebraic problem of the M„'s is to assume that
for all N, M"„=M/=M". [A relative factor with
the dimensions of (mass) "necessary for dimen-
sional reasons has been set equal to unity. ]

In the van Hove model" one allows for the ex-
change of the whole set of particles lying on a
Begge trajectory, with the mass relation, i.e., the
functional dependence of m'(J) on J; being that of
the trajectory so that for an infinitely rising tra-
jectory we have a mass spectrum that goes to in-
finity. In addition we must allow M to be a two-
by-two matrix in isospin space so that we allow
isospin-zero as well as isospin-one mesons to be
exchanged (e.g., the u and fo in addition to the p
and A, ) all lying on the same trajectory; i.e., ex-
change degeneracy holds. We then have instead of
a single p exchange a sum over exchanges

&~l v"„(q) I
~'&a&" (q)& ~l v„"(-q)

I
~'&

, M„„,(q) M„„,(-q)—SZ
P

to that of Sec. II, Eq. (13) except for the fact that
y(b) is replaced now by an effective Beggeized lt(5)
which we call gs(b):

jq» b

gs(b) = i d q, „wn'(-q')
4

s~(-q')
x .

( ), M(q) M(-q). (26)

Note that this coincides with our previous result
if, instead of a variable n(-q'), we fix n at the
value one and have

wn'(-q') 1
sinvn(-q2) q'+ mp2

' (27)

B. Triple-Regge Limit

The superconvergence relation (17) can also be
derived directly by examining Beggeon + hadron- Beggeon + hadron scattering or alternatively a
six-point function as depicted in Fig. 2. In the

If, however, we use a physical value for the tra-
jectory, we discover that n(-q') & 1; in fact, using
the approximately known intercept for the p trajec-
tory n~(0) --,', we are led to surmise n(-q') ~ —,'.

This has important consequences for the asymp-
totic behavior in s of the amplitude. First of all,
we discover that the asymptotic behavior is no
longer T —sf (k') but rather (c, is independent of
s)

2 2T-cs'~ "~+cs' & ~ & '+ ~ ~ ~
1 2

so we see that the leading term has conventional
Begge behavior. A further consequence is that the
M = 1, 2, 3, . . . now no longer all have the same as-
ymptotic behavior in s; to get AI =N one needs
the Nth term in the expansion of e'"& and this
falls very rapidly to zero.

What we have derived here is the so-called
Beggeized eikonal expansion first discussed by
Arnold. ' In fact in his multichannel derivation
there is an interesting analog to our supercon-
vergence relations, namely, he requires all poten-
tials to be the same just as all our M's are, and
furthermore he needs

[v(~), v(~')l = 0, (29)

where V(r) is the potential.
A Begge eikonal form has been derived by sev-

eral other authors, "basically by iterating t-chan-
nel ladders which give Begge behavior. We shall
discuss some of these calculations in Sec. VI;
though the results appear similar to ours, they are
of course very different from our calculations,
relying as they do on an underlying field theory to
obtain the scattering amplitude and hence neglect-
ing isospin, hadron resonances, etc.



HADRONIC EIKONAL MODEL 2237

I
0 j

b

I
C I

a

b
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a j

a &

c

(a}

FIG. 2. (a) Amplitude for a+5+ c~a'+b'+ c' in
Reggeon-resonance scattering approximation. (b) Triple-
Reggeon description of a + 5 + c a'+ b'+ c' .

limit of (P~-P, )~=q', (P, -P, ) =q" finite with

(p, +pt, ) =s and (p, +p, —p, )2=r both tending to
infinity, we deduce the asymptotic behavior of the
amplitude in Fig. 2 using the well-known triple-
'Regge limit as depicted in Fig. 2(b). Assume that
particles b, c and b', c' are such that the leading
trajectory is the p, i.e., the bc and b'c' states
have I =1, etc.; furthermore let us antisymmetrize
in o. and P so that the trajectory coupling to a, a'
also has I =1. For simplicity let us go to the for-
ward direction in particle c, i.e., P, =P,i and then
write (p, +p, ,)'=s', (p, +p, . -p, .)'=r'=r. The as-
ymptotic behavior of Fig. 2(b) is then given by

s "(")(s' "('")
(r

(3o)

21
x [sr"(r)), sr'(r(') ] (—

(31)

The coupling of the p trajectory to the state of an
incoming particle labeled by a and an outgoing res-
onance n is given by [M (q)],„x r/q with
r =(p, + q)'=(p, +q')'. A comparison of (30) and
(31) leads once again to

[~"((1),~'(q')] = o, (32)

which allows us to derive directly the eikonal ex-

where the P's are residue functions, yi is the tri-
ple-Beggeon vertex, and the trajectory functions
o.(t} are all taken to be the p trajectory.

Alternatively, one may calculate in the reso-
nance approximation, as shown in Fig. 2(a), and
find for r» (resonance mass)'

s ~(") s' ~("2)
antisymm. , resonance ptr (q2)p8 (q2)

pansion with the eikonal function y„as given in
Eq. (26}.

As a final comment to this section, the forms
(s/r) &' &, (s'/r) &' & appeared in Etls. (30) and
(31) because the cosines of scattering angles z,~,
z, ,r for s, r, s/r - ~ and s', r, s'/r -~ be-
haved, respectively, as s/r and. s'/r One might
wonder then why our Reggeon propagator in (26)
had the form s"&' ) rather than (s/r) &' &; the rea-
son is that after eikonalizing, as we saw in Eq.
(10}, we introduce a 5(q ) so r -p+q - ~ in the
considerations of this subsection, but does not in
the eikonal formula whereP+-~ but q -0. One
might then call into question the assumption that
~ » m„', the resonance mass squared; such are the
ambiguities with which our procedure is fraught.
Our chain of limits is to first take r -~, neglect
resonance masses, sum the exchanges, which leads
to the 5(q ) factors, and then write the formal sum.

It is even more difficult to test the validity of
our model than to test conventional field-theoreti-
cal eikonal models, since we have no underlying
Lagrangian. The one relevant remark that we can
make is that the dual-resonance model does satisfy
the superconvergence relations which are the base
of our calculatiori; however, the intermediate-
state resonances in that model do have masses go-
ing all the way to infinity and it is not a correct
approximation to say that the beta function, B(s,t),
when expressed as a sum over s-channel poles,
has the large-s behavior

B„(s,f) = g '" "'-—g r, „r„,,I' j." 1

(33)

where the F's are vertices between initial. or final
states and intermediate resonances. It is possible
that we are taking the correct meson propagator
but our expression for meson (Reggeon) + hadron- meson (Reggeon) + hadron is incorrect.

V. OPERATOR FORMALISM

A. Dynamical Aspects

We present in this section an operator descrip-
tion of our previous results. Let B"„(k)denote the
field operator for the p meson, in momentum
space. We shall define 8m~(k) to be that operator
whose matrix elements are the form factors of p
coupling to the systems considered. We shall
suppose that the dominant matrix elements of 8"„(k)
in the infinite-momentum limit are between single-
resonance-particle states. Under such circum-
stances, the effective interaction Hamiltonian for
the system may be written as"

II „=g: 8„"(k)B.)'"(k):+H. c.
(' d'k
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Within the eikonal approximation~ we shall be
interested only in those II. t which involve integra-
tion over "slow" k's. We normalize the operators
by

[B&~"(k), B8(k')] =g„„(t)~()(')(k-k') .
When we look at fast-moving sources along the
z direction, we get

(35)

(38)

to leading order. The resulting scattering opera-
tor can now be obtained by.going to the interaction
picture, just as before, ' and we get

y (f') et(Htt +tt~)t ye t(&tt+l/1) t-
int. piet.

„... 0",(k)g"(-k)
(39)

where II~ and II~ are the free Hamiltonian for the
resonances moving with infinite momentum to the
right and left. The scattering operator simplifies
by virtue of the commutativity of 4's:

S= T xp -i V,„t „,.„g
g(x k gQ

d k~ (4o)

t' d3a. , = g: [Ja(k)B"(k)+ 8"(k}B,"(k)]:+ H. c.
2(dp

(36)

to leading order in the energy of the sources.
To sum multiple meson exchanges we first per-

form a canonical transformation to get rid of all
explicit B dependence. (We shall defer all dis-
cussions of inelastic scattering. ) The relevant
unitary transformation U= e~~ we require is gen-
erated, as in Ref. 3, by

" d'k pa+(k)B" (k) g"(k)B",(k)
2'& (d+ k

(37)

In evaluating the result of this transformation,
we shall need to know [g~(k), gf(k)J. It is clear
that within the eikonal approximation g+ and 4 8

will commute, to leading order. What is not clear
is the commutator of 8+ and 8 .

The key observation we are making is that this
commutator is, in fact, zero, to leading order.
The basis for this observation lies in the validity
of the superconvergence relations discussed in a
previous section. With this additional piece of in-
formation, we may go through a procedure anal-
ogous to that carried out in the analyses of massive
QED, ' and obtain for an effective potential for
quasi-elastic scattering

which is our previous result, of Sec. II, written
in an operator language.

The derivation of this final equation parallels
that of the analogous equation for massive-neutral-
vector-meson theory. ' The resulting amplitude
gives a constant cross section just as before; our
resonance approximation is unable to produce any
suppression for charge-exchange cross sections.
Possible ways of bringing about charge-exchange
suppression have been discussed in Sec. IV.

B. Algebraic Aspects

[qa q8] .
~ 8yqy

[q",g '] = t~ "8yyy,

[ga t)8] 0

(4l)

q" is the isotopic group generator, while g" is
the operator whose matrix elements give the cou-
plings of the p quanta to the matter system.
Therefore, the states used in evaluating the eiko-
nal operator are representations of E(3) algebra.

The algebra of E(3) is noncompact, ;and these
representations therefore contain infinite isotopic-
spin multiplets. It should be noted, however, that
these multiplets are all moving very fast; the
E(3) structure is one that is true only to leading
order in the infinite-momentum limit. The situa-
tion is then analogous to the one in strong-cou-
pling theories. "

It is probably true that conventional Yang-Mills
type models do not possess such a structure, for
in such models the source of the Yang-Mills quanta
is in fact the isotopic-spin current. The only
algebraic structure is that of SU(2).

The source of the p field in such models is
mostly generated by a gauge principle, and,
while eikonalization cannot be proved, it is prob-
ably also true that the amplitudes of such models
do not superconverge. The defining statement for
the model considered is superconvergence, so
that we are not analyzing the class of gauge models.
The gauge principle, normally, will generate a
source for the p field which is diagonal in the
multiplets of hadrons. Within our resonance ap-
proximation, no excited states will be included
in the intermediate states. To simulate excited-
st3;tes contribution in our scheme, we must add
an interaction Lagrangian which is explicitly off-

It is interesting to look at the implications of
the commutativity conditions on the algebraic struc-
ture of the theory. Let us, for the sake of argu-
ment, suppose that our system possesses only
isotopic symmetry. The generators of SU(2) and
the effective source of the p field at high energies
then define the algebra of E(3):
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diagonal in the multiplet fields. However, the
precise form which this coupling takes will not be
determined by the gauge principle. Therefore,
the source function need not satisfy any algebraic
relations characteristic of the symmetry of the
effective Lagrangian. The requirements on the
asymptotic behavior of the amplitudes (i.e., the
superconvergence relations), however, do place
constraints on our system, and it is these con-
straints that enable us to eikonalize.

VI. INELASTIC EFFECTS

In all of our considerations, we have implicitly
assumed that the dynamics of fast-moving states
is decoupled from that of slow-moving ones. The
final eikonal form for scattering is valid only in
the approximation that slow-moving dynamics is
absent. We have, of course, not proved that such
a separation is always possible, although studies
of explicit field-theory models" suggest the val-
idity of such assumptions. Here, we take it to be
one of the properties defining our model considera-
tions.

Now, the states defining the eikonals interact
via exchanges of slow-moving particles, and these,
once emitted, may interact among themselves.
The final form of the scattering operator, sug-
gested by model field theories, ' is

S=S,Texp i V' t dt (42)

where So is the eikonal scattering operator, and

H;„, V, is the Hamiltonian controlling the time
evolution of the exchanged states.

As long as we are interested in elastic or quasi-
elastic amplitudes, we may suppose that S, is
adequate to describe scattering. We have, in

Sec. V, taken into account the V' effects, within
our approximations, by means of resonances of
arbitrarily high spins. As we saw in Sec. 7, the
net effect of such exchanges is to convert the ex-
ponent of So into effective Regge eikonal factors.
The full scattering operator is then

2

S=expi
( }, d'k M (k )M (-k )n.„"„„(k)

5" 741'( k, ')(,) „& -„g
Regge sin)) &( g 2)

(43)

The fact that absence of V' implies absence of
inelasticity can be seen from. the derivation of $0
given in Sec. V: The effective potential contains
no bremsstrahlung. The construction of 8, is ex-
actly analogous to that of Ref. 3. We are, how-
ever, neglecting the important mechanism of pro-
duction by evaporation from the exchanged par-
ticles (see first paper of Ref. 5}.

We write the total Hamiltonian following the
notation of Ref. 3 as

H=H +H +H+H, ,

~ gQggtx
int p

(44)

Once again, B„(k)describes slow-moving particles,
and g",(k} consists solely of the fast-moving par-
ticles. Within the eikonal context, we require
that these commute. Suppose now that we wish to
evaluate the cross section for scattering into a
final state involving N slow-moving mesons. De-
note such a state by

~ b, k, ~ ~ ~ k„)& &. Following
standard reduction procedure, as, for instance,
spelled out in Schweber, "

Ib, k, k„)( )
Bt i (k,)B——t"g(k, ) . B™N(k„)Ib)

+ B ... . [P + (k, )B + (k,) B™()((k„)+ + g "(g(k„)B™1(kk)' ' ' ] ~ b) .
(45)

(46)

() k'(kk) .") (k)
k

() ",'(k )llg) (k)
k)B,» k„k,) =

(+) &a ~», —&n «(-) (+)
E~+ (dg —E„—zE ( )

i
&al[~" (k.),S" (k, )] I».

2

All states above are exact eigenstates of H. Let us now say that %=2; the relevant cross section then
depends on the amplitude

(,)(al [&"'(kk)B'"'(kg)+&"'(kg)B'"'(k,)] Ib)( ) =&.»(k„k.).
We may, if we wish, rewrite this in a form independent of Bt"k (k,.):

R.,(k„ k, ) = (k ()
" (k, ) . () "'(k,) k .+ a k "'(k,) . ()" (k, ) k . (47)

1 1
—H —~~ (- ~ ~+~ E~+ ~ —H —~~ ' (-

This final form for B„(k„kg}may be used as the starting point for a perturbative evaluation of R,»(k„k,).
Within the context of our resonance approximation, this is equivalent to examining only the Born terms.
Therefore,
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Ktot =HR+HL+Hs+ V+ Vs

H+ Vs ~ (49)

Notice that inclusion of V, into H„, , where V,
describes the interaction of slow-moving states,
will modify the definition of the scattering states.
Where previously we had built up the complete
scattering states perturbatively from eigenvectors

Here, we have used infinite-momentum kinematics,
with E„E„-~,and we have also supposed that
the 0"s came from the right-moving system.

We have gone to some lengths to arrive at this
result, which is quite apparent using the method
of canonical transformation of Sec. V. W'e have
done so to bring out a formal analogy with strong-
coupling models. " Hecall that in such models one
normally solves for the equation of motion within
the static limit, allowing for no inelastic effects.
This forces the commutativity of the coupling
matrices through a set of equations analogous to
Eqs. (45)-(48). In our considerations, P, =2W
plays the role of the nucleon mass in the static
limit, while our resonance approximation parallels
the Born approximation used in strong-coupling
theories.

Of course, at high energies, we expect highly
inelastic effects to occur. To handle this, it will
be necessary to consider one or both of the follow-
ing alternatives, in light of the above circum-
stances. First, we may relax our resonance ap-
proximation, and second, we shall have to include
slow-moving-particle dynamics. With respect to
the first alternative, let us remark that the kind
of inelastic effects we were talking of above is. the
analog of emission of slow particles by brems-
strahlung in massive QED. There, such processes
are forbidden if one uses the eikonal approxima-
tion, and the result is true even if we were to in-
clude fragmentation. Thus, we expect that the
first alternative, by itself, is insufficient to give
inelasticity. We must, therefore, consider slow-
moving dynamics. In Feynman-diagram language
we must sum over lower diagrams. The actual
inelastic cross sections are then proportional to
the various s-channel discontinuities.

The total Hamiltonian H„, of the system may be
written as

Pb

P Pb

FIG. 3. Meson-meson scattering correction term in
two-meson-exchange diagram.

)5, k, ). =a'(k, )[5). + )}t),.„,
where

(50)

(51)

The nonvanishing of
~ }t) will most certainly intro-

duce widths into the resonances. In Feynman-
diagram language, the nonva, 'nishing of y is respon-
sible for nontrivial vertex and mass corrections
to the resonance approximations. We shall, in
the following, explicitly see how this comes about.
The form of the corrections will, not unexpectedly,
depend on V'.

The exact nature of Vs is, of course, at present
unclear, and we must, once again, resort to mod-
els. One such model is presented in Sec. IV,
where the effect of V' is approximated by the ex-
change of resonances of arbitrarily high spin. The
result sums up to a Regge eikonal form.

An equivalent way of understanding the result
is by supposing that Vs is actually that potential
that causes the scattering to take the form as
prescribed by dual-resonance models. Consider
then the resulting amplitude to the first nontrivial
order as shown in Fig. 3. Then, temporarily ig-
noring isospin, the amplitude is

of -IIR+HL, assumed to be given by narrow reso-
nances, we must now build these from HR+HL+ V, .
If in a given step in the perturbation we have a
state with one or more slow-moving p's, denoted
by ~b, k, ~ ~ ~ k„), ~b) being a narrow resonant
state, then, say for n=1,

1 |.
~(p„p, ; p„p, ) = J) d E(p+)p( )

(p p f)2 m2 I2 m2

1xa, (s, t} 5(k, )(p )&d'k+permutations.-m [(py -py — —m

The integration is over slow-moving momenta while B4 is the standard beta function":
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r (n —n(s) ) I (m —u(t) }
r(p —o.(s) —a(t) )

s=(l+k)', t=(P. P.-)',

(p,)., (p ).-2~--;
n, m, p integers.

Therefore,

B,(s, t)
(Pat Pa't Pbs Pb')

J + - J. + - J. (k2 m2)(l2 m2) [(p p l)2 m2][( p k)2 m2]

2l l 2 2 ~
~

~
a l ~ I 2 2

1
'[t+l' —m' —2(p, . —p, ), I,] (l' —m')

J dk d k~ 1 ~ r"(s)
k' —m' [t+k' -m' —2(p~ —p~}, k,] ~ t —m„'

(53)

'[t+l'-m' —2(p, , -p,), 1,]
1 dk d'k~

X
t —m' " ' f (tt' —m') [t ~ t —m''

1 , I;"(1,p., p. .)

1
2(-, -

) .1, )
I'i(»PI Pa')

—= Qi' (l, p„p, , t)1" (k, p, p, t) " ', . (54)
tf tf

We have explicitly written out the B function as a sum over its resonance poles,

I'"(s} I""(l,p„p, ')f'"(k, p, p )P„(z,)
B4 s, t t-m 2 t-m 2

n n n n
(z, is the scattering angle). (55)

B(s, t ) = ReB(s, t ) +i ImB(s, t ) . (56)

For fixed t, ImB(s, t) 40 along the s and the u cuts.
The basic commutativity of the eikonal vertex
means that we shal, l be interested in the s-u cross-
ing-symmetric part of B(s, t). Then we may write

The summation is over all dual resonances; I"„"

and I'~ are, in general, some Pockhammer poly-
nomials. "" I'~, I'I, represent the vertex-connec)
ed residue functions. If we assume that f's(t)
= f's(m„'), f'~(t) = f'~(m„'), and only sum over the
leading trajectory, we obtain the result of Sec. IV.

As explained in Sec. IV, the resultipg expression
yields an amplitude that goes to zero asymptotical-
ly, and therefore does not contain the Pomeran-
chukon trajectory. The above scheme of under-
standing the multi-Regge exchange, however, does
give us a means of building up the Pomeranchukon
singularity; it comes from nonplanar loop contri-
butions of V'. We make no attempt at this time to
sum up such contributions, but merely point out
that the model does have a means of generating
such diffractive singularities.

The explicit use of the 8, function in the above
arguments is actually unnecessary. Thus, in
place of B„we may write B(s, t), where

A = d —' J —' d')id'k D

S N l

x f ds'ttett(s', t)+i f ds'tmts(s', t)
SO SO

(57 }

where Z(l, /k ) is the Jacobian of the transforma-
tion from k, l, to k l, and l,/k, ( D f refers to
the various propagators, and N is the slow-moving
kinematic cutoff.

To get the results of Sec. IV, we employ the
finite-energy sum rules" on the integral over
ImB(s, t) to get a sum over Regge poles. As N
gets large enough, we may neglect the first inte-
gral, and we recover the first term of the Regge
eikonal. The integrations over the other variables
give the vertex corrections referred to above.

VII. CONCLUSIONS

We have derived a formula for large-energy
hadron-hadron scattering which in eikonal form
sums the effect of excitation of hadron resonances
and exchange of an arbitrary number of p mesons
or p trajectory Beggeons; the result is the so-
called Beggeized eikonal model. If nothing else,
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it is interesting as a complement to several cal-
culations which derive a scattering amplitude of
a similar form by using field-theoretical tech-
niques. Our calculation does not have an under-
lying model skeleton, and the key ingredient is a
class of strong-interaction sum rules. Unlike
field-theoretical models, our calculation includes
the effect of isospin and high-spin resonances; it
does not give constant cross sections, however,
i.e., we are unable to introduce a vacuum trajec-
tory into our calculation.

There are several points at which our approxi-
mations may breakidown, and we have tried to dis-
cuss them as we went along; a key limitation is
our neglect of all vertex corrections and self-
mass or finite-width corrections for resonances.
Just as in the dual-resonance model, these may
well play a key role in obtaining constant cross
sections, but we are unable to handle them sys-
tematically. We also neglect production, though

some remarks on these last points are contained
in Sec. VI.

One of the reasons that keeps us from examining
in more detail the structure of our results is our
basic ignorance of the p(p trajectory)+hadron- p(p trajectory)+hadron scattering amplitude.
From the asymptotic behavior of the graph with
two Reggeons exchanged calculated [Figs. 4(a) and

4(b)] in our model, we see that our model must
allow for a wrong-signature nonsense fixed pole
at j=1 (Ref. 20) in the p hadron- p hadron scat-
tering amplitude; otherwise our calculation of the
asymptotic behavior is erroneous. At first glance,
it might appear that the form for this p+hadron-p+ hadron scattering amplitude employed contra-
dicts our basic assumption of Hegge-behaved am-
plitudes in that we are using

(58)

a' b

FIG. 4. Contributions to two-meson-exchange terms.
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but note that once 'we have eikonalized, our
eikonal form requires only a knowledge of the cor-
rect imaginary part of the amplitude T, not of the
full amplitude, and the imaginary part of T is com-
patible with Regge asymptotic behavior. Note that
this does not mean that we are calculating the
imaginary part of the hadron-hadron scattering,
as we are clearly doing more than this in our
eikonal expansion; it is just that a knowledge of
the imaginary part of the p hadron-p hadron am-
plitude is all that is needed to calculate the full
hadron-hadron amplitude generated by p exchange
in the eikonal approximation.

A final point on which we plead ignorance, un-
fortunately, is the connection, if any, with the
Gribov Reggeon calculus. " Though these tech-
niques may supersede what we have done, allow-
ing for Pomeranchukon exchange, " etc., it is not
clear that they will provide solutions to the ques-
tions discussed about asymptotic behavior.
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The content of the (3,3*)+ (3~,3)-symmetry-breaking model (including an isospin-violating
interaction) is explored by using the spin-zero meson-dominance approximation for two- and
three-paint functions. By fully exploiting the pole-dominance approximation it is shown that
a number of the assumptions made by Gell-Mann, Oakes, and Renner are unnecessary. The
results indicate that the Hamiltonian is nearly SU(2) x SU(2)-symmetric and that a small
isospin-violating interaction is present. One can conclude that (3,3*)+ (3*,3)-symmetry-
breaking models with Hamiltonians very different from this must contain large violations of
pole dominance.

I. INTRODUCTION

Because of its simplicity the proposal ' that the
approximate SU(3)x SU(3) symmetry of the strong
interactions is violated by a term in the Hamil-
tonian which belongs to a (3, 3*)+ (3*, 3) represen-
tation of operators remains the most attractive
possibility. A number of authors' ' have explored
the physical content of the model by assuming that
the matrix elements of at least some subset of the
eighteen (3, 3*)+(3*,3) operators u,. and v,.
(i =0, '. . . , 8) are dominated by spin-zero meson
poles. In the present work the pole-dominance as-
sumption is further applied to the study of the two-
and three-point functions which can be formed
from the u, and v,

By following the approach of Auvil and Desh-
pande, ' simple expressions for the masses and
decay constants of the spin-zero mesons which
couple to the current divergences are found in
terms of the parameters which characterize the
nature of the symmetry breaking in the Hamilto-
nian. and in the vacuum. These expressions permit
a number of independent evaluations of the param-
eters which measure the strength of the SU(3)-
symmetry violations. These evaluations are in
reasonable agreement with each other and support

the idea that the symmetry-breaking Hamiltonian
is approximately SU(2) x SU(2)-symmetric ' and
that the vacuum state is nearly SU(3)-symmetric.

The present results depend on the assumption
that the divergence of all nonconserved SU(3)x SU(3)
currents are dominated by spin-zero meson poles.

. Although such neglect of continuum contributions
represents a great simplification, it may still
give a reasonable first approximation, and it pro-
vides a basis for estimating departures from this
idealization of the physical world. In particular
it emphasizes the fact that (3, 3*)+(3*,3)-symme-
try-breaking models which incorporate symmetry-
breaking Hamiltonians which are very different
from that of Gell-Mann, Oakes, and Renner (see
Ref. 6, for example) must either tacitly or ex-
plicitly assume that the pole-dominance assump-
tion is very badly violated.

The term, H', of the Hamiltonian which breaks
SU(3) x SU(3) symmetry is assumed to have the
form

H = epup+'E8us+63u3 p

where 6p E'8 and ~, are constants. The up u8,
and u, are members of a nonet of scalar operators
u, , which together with a nonet of pseudoscalars
v,. transform according to the (3, 3*)+(3*,3) rep-


