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in many equations for notational simplicity.
6If the vertex is, for example, between equal-mass

meson states, the complete vertex functions are Eqs.
(20) and (21) multiplied by (P + P') &, where q 2 = (p -p')2.
In other cases this kinematic factor will always be such

that it is orthogonal to q&, i.e., the current is conserved.
The form factors, Eqs. (24) and (25), remain un-

altered since such kinematic factors are removed from
their definition.
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The method of constructing unitary S matrices developed in a recent paper is generalized
and applied to two versions of the multiperipheral model. In these models the standard per-
turbation expansion of the S matrix diverges, so an alternative expansion with improved con-
vergence properties is developed. It is shown that the unitarity condition generates a new type
of cut in the angular momentum plane which is dynamical in origin in contrast to the essen-
tially kinematical Mandelstam cuts. This new type of cut ensures that the Froissart bound on
the total cross section is obeyed. In an exactly solvable model it is shown that the contribu-
tion of the multi-Regge region of phase space to the total cross section always decreases as
a power of the energy if the input Regge trajectory is unity or less. It is argued that the
qualitative features of the models discussed here will hold for a wide class of multiperipheral-
like models.

I. INTRODUCTION

In order to discuss diffraction scattering and par-
ticle production at high energies it is essential to
take into account the constraints of multiparticle
unitarity. In a recent paper' a class of solvable
models was constructed for which the multiparticle
S matrix is exactly unitary at high energies. 2 As
in the multiperipheral model, it is assumed that
particles are produced and absorbed from chains;
however, in order to satisfy unitarity it is essen-
tial to take into account diagrams, such as those
shown in Fig. 1, in which production takes place
from more than one chain. In I we considered a
class of models in which only one particle is cre-
ated or destroyed on each chain. In the present
paper we generalize our results to include chains
from which an arbitrary number of particles can be
created or destroyed.

The classic multiperipheral and multi-Regge
models have well-known difficulties with unitarity
which can lead to violations of the Froissart
bound. ' This problem can be overcome by includ-
ing multiple exchange or absorptive effects. One
then finds that the Froissart bound is saturated

from the multi-Regge region of phase space. This
is unsatisfactory experimentally, since particles
produced at high energies tend to have rather low
relative energies. The region of large relative
energies, the multi-Regge region, is sparsely
populated at best. We find that the unitarity condi-
tion, properly enforced, produces a new type of
cut in the angular momentum plane which pre-
serves the Froissart bound arid decreases the im-
portance of the multi-Regge contribution. This
unitarity cut is of a dynamical origin which is to
be contrasted with the almost kinematical origin of
the familiar Mandelstam and Amati-Fubini-Stang-
hellini' (AFS) cuts. The Mandelstam cuts are also
present here. The unitarity cut actually forces the
contribution of the multi-Regge region to decrease
at large energies except for rather narrow ranges
of the parameters of the theory.

In Sec. II we present our procedure for construct-
ing unitary models. The input is the amplitude for
the production of n particles from a single chain,

W„, shown in Fig. 2. For a wide range of input
functions it is possible to construct a multiparticle
$ matrix that is unitary for all physical values of
the total energy.
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FIG. 1. General production graph.

The essential feature of our procedure is that
production from more than one chain is taken into
account. Suppose the amplitude W„is taken from
the multiperipheral model and that the elementary
particle or Reggeon being exchanged has spin z.
Then W„will have a high-energy behavior of the
form s~. On the other hand, amplitudes corre-
sponding to the exchange of N chains will have
asymptotic behavior of the form s'+ &" '~, aside
from logarithmic factors. Clearly when n =1 as in
the case of Pomeranchukon exchange, multichain
exchange is important. As we shall see in specific
models, even when z is much less than unity, mul-
tichain effects are important whenever the cou-
pling constant associated with particle production
becomes large.

For the models discussed here the standard per-
turbation expansion of the $ matrix diverges. In
fact each $-matrix element has a branch point at
zero value of the coupling constant. This diver-
gence is of a general nature and is probably pres-
ent in many field theories. Nevertheless, it is
possible to develop a convergent series expansion
for the S matrix whose form guarantees that unitar-
ity is satisfied. In Sec. III we consider a specific
form for W„which is based on the multiperipheral
model, but which is simple enough so that every $-
matrix element can be written down in closed
form. It has two parameters, the coupling con-
stant of the produced mesons and the position of
the fixed pole which is exchanged along the multi-
peripheral chain. The most striking features of
this model can be seen by studying the elastic scat-
tering amplitude. This amplitude has contributions
from ladder graphs shown in Fig. 3(a). As in the
multiperipheral model, the leading singularity in
the angular momentum plane arising from these
graphs is a pole. However, the elastic amplitude
also has terms arising from checkerboard dia-
grams of the form shown in Fig. 3(b). If one sums
over all checkerboard graphs with N vertical lines,
the leading /-plane singularity is again a pole. In
addition, after summing over all N one obtains a
square-root branch cut in the l plane. It should be
emphasized that this singularity is of a completely
different origin than the familiar Mandelstam cut.
It arises only after a sum over an infinite number

of exchanges. This cut has its origins in the di-
vergence of the sum of the perturbation expansion
mentioned above. The l-plane structure is depicted
in Fig. 4.

For small values of the coupling constant as-
sociated with particle production the cut is far to
the left of the l plane, and the leading singularity
is the pole arising from the ladder graphs. As the
coupling constant is increased the dynamical poles
move to the right; however, the branch point
moves even faster and overtakes them. As each
pole collides with the branch point, it moves
through it onto an unphysical sheet. For large
enough values of the coupling constant all of the l-
plane poles are to the right of one; however, no
pole reaches one before passing on to the unphysi-
cal sheet, so there is no violation of the Froissart
bound. For most values of the parameters in the
model the branch point never reaches unity. After
colliding with the last pole it turns around and re-
treats towards minus infinity if the coupling con-
stant is increased indefinitely. Nevertheless, for
a very restricted range of values for the coupling
constant, the leading singularity reaches the point
l=1. In this case the Froissart bound is saturated.
This occurs only if the input pole is itself above
unity.

In Sec. IV we test the generality of the cut mech-
anism by considering a model in which W„is es-
sentially the amplitude of the multiperipheral mod-
el. In this case the S-matrix elements cannot be
written down in closed form. However, after in-
troducing 6j functions into W„which guarantee that
the subenergies along each chain are large, it is
possible to write down an integral equation that
sums the checkerboard graphs with N vertical
lines. It is then shown that the square-root branch
cut found in the previous model is also present
here and that all singularities in the l plane to the
right of one are on an unphysical sheet. It appears
that these properties are far more general than the
simple models that we have studied explicitly.

For the models discussed in Secs. III and IV it
is possible to write down cross sections for parti-
cle production in both inclusive and exclusive ex-
periments. These results are also given in Secs.
III and IV.

In Sec. V we conclude by briefly summarizing our
results.

II. CONSTRUeTION OF THE S MATRIX

In the present work we shall discuss models
with two types of particles. Those whose momenta
are labeled by p, and p~ will be referred to as nu-
cleons although we shall neglect spin and internal
quantum numbers. All of the states of interest will
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contain two nucleons which will be treated as non-
identical particles. The S matrix will be taken to
be unity when acting on states with other than two
nucleons. The second type of particle, whose mo-
menta are labeled by q;, will be referred to as
pions. The pions can be created and destroyed,
and we shall consider states with arbitrary num-
bers of them. The pions will be treated as identi-
cal particles. We take the beam direction to be
along the g axis, and write a general four-vector
q in terms of the transverse momentum, q, which
is a two-dimensional vector in the x-y plane; and
the longitudinal rapidity, y, defined by

»[(qo+0 )/(9o 0 )].
Let us start by considering the amplitude, W„,

for the production of n pions from a single chain.
This amplitude is shown in Fig. 2. A complete set
of variables for describing W„is

Y'= in(s/m'),

~ =- —.(p.' -p.) ——.(p» -p~),

and

q.;, Xi& &=1, 2 . . . n.
Here m is the nucleon mass and s the square of the

['a

kp

Pb

——~~n

~b

FIG. 2. Basic form of W„.

center-of-mass energy. At high energies Y is the
difference of rapidities of the incident nucleons.
From rotational invariance W„canonly depend on
the scalar products of & and the q;, so there are
just the required (Sn + 2) -independent variables.

By crossing symmetry W„also describes chains
in which some or all of the pions are incoming. It
is convenient to introduce a single operator which
handles all possible processes described by W„.
To this end we introduce creation and annihilation
operators for the pions. In our normalization the
commutation relations are given by

[~(q, y), ~'(q', y')] =2(»)'6'(q -q')6(y —y') (3)

Recalling that under crossing q- -q and y-y, we
can write the required operator, Z„,in the form

n

Z„=,d' dp, dp dp,'dp,' P dq; —,W„(Y;Z;q„y,, . . . , q„,y„)~p,', y,';p,', y„')(p„y„p„y,~'n!

xe'" ~~+~' ~~ ~t:g [a(q;, y;)e"~ "+at(-'q, , y;)e " ]:~ .

Here )p„y„p„y,) is a two-nucleon state, and q;
is the four-vector obtained from q; by making the
substitution q; - -q;. The Lorentz-invariant phase-
space volume is given by dq=d'qdy/2(2w)3. We
have normal-ordered the creation and annihilation
operators of the pions so that a pion which is emit-
ted from the chain cannot be reabsorbed on it. The
important point to notice is that g„is a Hermitian
operator provided W„is real and is invariant under
a change of sign of all the transverse momenta.
These are the two major restrictions which we
place on the W„. Since we wish to consider chains
involving an arbitrary number of pions it is con-
venient to introduce the Hermitian operator

Z=gz„. (6)
n=o

The unitarity of the S matrix can now be guaran-
teed by writing"

N-o
iz (6)

What is being said in Eq. (6) is that all of the
chains exchanged between the nucleons are uncor-
related except for the constraints imposed by en-
ergy -momentum conservation. This is certainly
the simplest ansatz that one can make. It is sug-
gested by the relativistic eikonal model'; however,
in this case there is no requirement of straight-
line propagation for the nucleons.

Equation (6) provides a convenient definition of
the S matrix when the model is exactly solvable or
when the matrix elements of the power series in Z
converge. An example is the model of production
amplitudes discussed in I. However, in the models
to be discussed below the matrix elements of Z
grow like exp(cN'), so the defining series for S
diverges rather badly. In such cases it is neces-
sary to use an alternative construction procedure.
We first introduce the auxiliary operator S(z) de-
fined by
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and then write the S matrix as

1 ~oo

S = dxe ' S(ze'"*), (8)

where d is a parameter chosen so that the sum in
Eq. (7) and the integral in Eq. (8) converge. When-
ever it is permissible to interchange the order of
integration and summation Eqs. (7) and (8) reduce
to Eq. (6). Even when this interchange is not pos-
sible, Eqs. (7) and (8) define an explicitly unitary
S matrix. To see this notice that formally

1
S(Z) = du e "'exp(iZe" ").

7f J

Thus,

1 oo ~ oo ~ oo p oo

StS= —, i dx dx' du I du'
oo 4 -oo 4 oo oo

x exp [2Z(e2d(x+id) e2d(x' ix')}-]

(10)

The right-hand side of Eq. (10) has a power-series
expansion in Z that converges magnificently. One
easily sees that the coefficient of Z~ vanishes
identically for iV &1 and that S~S =SS~ =1. We real-
ize that certain orders of integration have been
freely interchanged, but there is no doubt that this
new construction procedure is more general than
the standard expansion.

Once the W„are specified the S matrix is com-
pletely determined by Eqs. (4), (5), (7), and (8).
The model is clearly broad enough to allow us to
investigate a wide range of production and ab-
sorption mechanisms. The major problem is to
extract the predictions of the model for a particu-

lar choice of 8'„.For the remainder of this paper
we shall be concerned with a particularly simple
class of 8"„which is suggested by the relativistic
eikonal model. As was mentioned above, the only
correlations between the chains are those imposed
by energy-momentum conservation. These can be
greatly simplified by introducing 8 functions into
the W„which restrict the range of the pion rapidi-
ties. Energy-momentum conservation requires
that in the center-of-mass system

I y; I
~ -'1'+(-,

where C is a constant which depends on mass ra-
tios. We now introduce the further requirement
that the W„vanish unless

Iyil& 2(1 —c)1', (12)

where c is an arbitrarily small positive number.
At very high energies the restriction of Eq. (12)
forces the nucleons to have energies of order 2vs
and equal but opposite longitudinal momenta. ' As
long as the average multiplicity does not grow as
fast as s'", the pion variables can be dropped
from the energy- and longitudinal-momentum con-
servation 5 functions. '

It is convenient to introduce the variables

P =p~+pg

and

P= 2(Pd P2) ~

and write the two-nucleon state of definite total and
relative transverse momentum as I P, p; y„y,).
Equation (4) now becomes

d2 f 1 1 n n

Z„= I dp, dp, , „gdq;——W„(1',A;q„y;)P —Qq;, p';y„y, P, p;y. , y2 . +[a(q;, y;)+a (-q;, y;)]: ~

i=1

(14)

At this point it is useful to introduce the coordinate, B, conjugate to p. 8 can be interpreted as the trans-
verse distance between the nucleons. Defining the two-nucleon state of definite B by

I P, 2; x., x, I f(2~ I,
e-"='

I &, i; x., x I,

Eq. (14) becomes

Z„=
J

d&
( )

' Q dq; ——W(&, B;q;, yi)IP —pq;, B;y., y )&P, B;y., y I

i =1
n

X: g [a(q;, y;) + a (-q;, y;)]:,

(15)

where

W(Y', B; q;, y;) =
J (

„e''2W(Y, &;q;, y;).2F)

Clearly the S matrix is diagonal in B.

(17)
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At this stage the only function of the two-nucleon projection operator is to give rise to the energy-mo-
mentum conservation 6 function. We factor this 5 function out of the problem, and then introduce the re-
duced operator

n n

Z„(Y,B)=2 —, II dq &.(Y B q y;):II[a(q y)+a (-q y)]: (18)

Operators Z(Y, B) and S(Y, B) can be obtained from Z„(Y,8) in direct analogy with Eqs. (5), (I), and (8). It
is also useful to introduce a scattering amplitude operator defined by

M(r, e) fd'c=e ' '"M();B)=2(e J( dec'' '"[)—d();2)]. (19)

Clearly these operators aet in the Hilbert space spanned by the pion states. The only reference to the
nucleon states that remains is in the diagonal variables P and B. This reduction of the Hilbert space can
only take place exactly in eikonal models. It should be emphasized that although the restrictions of Eq. (12)
provide a simplification, they are by no means necessary for the construction of unitary models.

III. A SOLVABLE MODEL

In order to illustrate our ideas we now construct a solvable model. Although this model is highly simpli-
fied, its solution contains most of the qualitative features of the more sophisticated model discussed in
Sec. Dt.

In defining W„we follow the spirit of the multiperipheral model to the extent that we order the rapidities
along the chain. We take the exchange mechanism between adjacent particles on the chain to be that of a
fixed pole. Working in the center-of-mass system we write

n n

&.(Y, B;q;, y;)= "f(B)II '*' '*' )()(y;-y;, )II g(q, ) (20)
28 i=0 j=1

where pp p y zF The crucial simplification which allows us to solve the model in closed form is the
neglect of all correlations involving the transverse momenta of the pions. Of course this cannot be justi-
fied experimentally. However, we shall be primarily interested in the energy dependence of this model.
Since the transverse momenta are limited, a fact which we build into the function g(q), it is hoped that
their correlations do not play too strong a role in determining the dependence of the amplitudes on the total
energy.

From rotational invariance g(q) must be a function of q'. Then making use of the symmetry of W„asa
function of the pion momenta, we find

r d~ . (~-~)~/2 d
Z„(Y,B)= f(B) e( ') —, : g I, ,', 4

' g(q;)[a(q;, y;)+a~(q;, y;)]:.
g =y & 42&l (j. g) y'/2

(21)

It is convenient to introduce the annihilation operator

d2q (1 d) F/2 dyc=[)).Y] '/
Jl

— —g(q)a(q, y),
-(&-c)Y/2

with

d'q „X,=4 (2 ). ( )'=-1

Clearly c and c~ satisfy the usual harmonic-oscillator commutation relations

[c,ct] =1.
The operator Z(l; B) is given by

(22)

(23)

(24)

Z(Y, B)= QZ„(Y,B)
n=Q

f(B)e(a-l)F . (x Y) (c+ct) .

f(B) (n -1- k/2) F (2k Y) x (25)

In the last step we have introduced the Hermitian "coordinate" operator 2: =(c+cF)//v2 . The S-matrix op-
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erator S(Y, B) =e r'B] is obviously diagonal in the coordinate representation.
Let us start by considering elastic scattering of the two nucleons where the matrix element of S(Y, 8) be-

tween states with no pions must be evaluated. In the coordinate representation this is just the familiar
ground-state wave function of the harmonic oscillator:

(0 IS(Y, 8) I 0) =S, (Y, 8)

I dxe ' exp[if(B)e"! ' ~~'}e['~ ] ']
vw

= (2XY) "'exp[- Y'(1 —n + 2A)2/2X] —exp [-lnr(1 —n + 2X)/A. —(lnr)'/2X1'+ if (8)r] .
o

(26)

We can study the l-plane structure of the elastic scattering amplitude by making use of Eq (19.) and taking
the Laplace transform with respect to Y (Ref. 9):

M»(/, 8) = d Y' e ' M»( Y, 8)
0

=2(m [2x()—a }] '~ f dr r&'~~~ ~~' '~' ' ~' '~ '(( —e'~~ ')
0

gz ztwk) ~ I-{ —,) -( —,)' 1 — i(( z'fl&l'})
1

where
(1 - n —2A.)'

n =1 —(1 —n+ —,X)'/2A. =n
C

2A,

For the case g & 1+ &A,, we have

M»(/, 8) =2/m {1/(/-1) —[2X(/- n )] [-if(B)]&""
x 1 ((2/X)"'[(/ —n,)'" —(1 —n,)'"])] +C(l, 8),

(2'/)

(26)

(29)

where C(/, 8) is an entire function of / for all val-
ues of B. M»(/, 8) clearly has poles in the l plane
at

n(N) =1+N(n -1)+&AN(N —1), N=1, 2, . . .

(30)

with residues

P(N) = -2irn2[if(B)j"/N! . (31)

Notice that each power of f(8) corresponds to the
exchange of one chain. The N = 1 pole arises from
the exchange of a single fixed input pole. The N =2
pole arises from the ladder graphs and the poles
with N~ 3 from the checkerboard graphs with X
vertical bnes (see Fig. 3).

In addition to the poles there is a fixed square-
root branch point at l = a, The associated cut
runs along the negative real axis from -~ to u, .
/t is clear from Eq. (29) that the only poles on the
physical sheet are those for which [n(N) —n,]'" is
positive. These are the poles for which

c ~ (33)

After colliding with the branch point the pole moves
off onto the unphysical sheets as A, is increased
further. At ][.= 2(1 —n), the branch point circles

K; K;+5

Let us imagine increasing X from zero to infinity
for a fixed value of o. & 1. The general analytic
structure in the l plane is illustrated in Fig. 4.
For small values of A. the branch point is far to the
left in the l plane. As A. is increased all of the dy-
namical poles move to the right, but the branch
point moves to the right even faster. The left-
most pole on the physical sheet collides with the
branch point whenever A. is such that N is an inte-
ger since

n(N) =1 -(1 -n+ oX)2/2X

¹N=(1 —n+ zA)/![ ) (32)

where N is the value of N which produces a mini-
mum of n(N) as a function of N. FIG. 3. Elastic ladder (a) and checkerboard (b) graphs.
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around the pole at (2(1) = e8 and then starts to re-
treat down the negative real axis. For )I. & 2(1 —o,),
the branch point is the only singularity of M» on
the physical. sheet. Notice that for large values of
A. all of the dynamical poles are to the right of l =1;
however, any pole that reaches l =1 is on the un-
physical sheet.

v (s) ~ (s/m ) (" +~Jr de][f(B)]
g-+ OO

(34).

However, for (2, &/2(2), or )I. & -', (1 —o,), one has

For (2(2) & o.
„

that is, )I. & —', (1 —a), the pole from
the ladder graphs controls the high-energy behav-
ior of the total cross section and

I de]r R 1[(1-ag)2/X]
[in(s/m2)]'/2 sin( —'lI [(1 —(2 )2/)I]'/2) I'(1+[(1—a )2/X]'/2) J (35)

Note that if the fixed input pole has spin ~ ( 1+ 2A.,
the total cross section goes to zero asymptotically.
In particular, for +=1, we have for all values of
the coupling constant

m2 -X./8
gr(s) ~

[ ( / 2)],/2 2X '/ d'B[f(B)]'/

(36)

Now let us consider what happens if ~ is in-
creased for a fixed value of A, . As mentioned
above, for z &1 —2A., the branch point at n, is the
only singularity on the physical sheet. z, reaches
unity when z =1+ 2A, . At this point the total cross
section falls like [ln(s/m')] '" at large energies.
As z circles the point 1+ &A. we move from the pos-
itive to the negative branch of (1 —o,,)' '. The func-
tion C(l, B) defined in Eq. (29) then develops a
singularity. Returning to Eq. (27), we see that the
only singularities on the physical sheet of the l
plane are the branch point at z, and a singularity
at l = 1 of the form

M22(I, B) = 2im2(l —1)-'
l~1+

x[ if (B)](2/x) [(I-ng) 1+/(21-ag)1/2],

(37)

The complex-conjugate branch points of Eq. (38)
enter the physical sheet through the square-root
cut when +,=1, i.e., when +=1+ 2K. As o. is in-
creased further the radius of the black disk in-
creases according to Eq. (39) and a, decreases. It
is amusing that the Froissart bound can only be
saturated for a rather limited range of the param-
eters. If ~ is now held fixed, and A. is increased,
R, shrinks to zero at )I. = 2(n —1). For )I. & 2((2 -1)
the branch point at z, is again the only singularity
of I». So, for X large enough the total cross sec-
tion always vanishes at infinite energy.

In preparation for the more sophisticated model
to be discussed in Sec. IV, it is instructive to con-
sider the series expansion of S(Y, B) in powers of
Z(Y, B). Since

(PiZ(Y B)&iP) = f(B)& r[//(~-1)+»(II'-1)/21
Nl

(41)

the series expansion for S(Y, B) given in Eq. (6) di-
verges. In fact, if we write f(B)=G f(B), the S
matrix has a branch point as a function of G at
Q =0. Qn the other hand, it is possible to choose
the parameter, d so that the series for 8» is well
defined:

It is instructive at this point to consider a partic-
ular choice for f(B). Choosing f(B)=e /" and

taking the Fourier transform with respect to B
gives

M2, (l, Z)=2im2R8 [(l—1)'+R,2Z2] ' '
(38)

where

(P ~S(Z) ~P) = g ' ( " &[II/«-1)+»(N-1)/»
Nf

& PLANE

(42)

R8 =R((2 —1 —zA.) . (39) a(N I I)
%/C

The expression in Eq. (38) is just the l-plane sin-
gularity corresponding to the scattering from a
black disk of radius &,F. It gives rise to a total
cross section of the form'

~(3-+—W ————8-+ -8I
a(N j a(2) a

o (s) ~ 2', '[in(s/m2)]2, (40) FIG. 4. l-plane singularities of the elastic amplitude in

the model of Sec
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( 0 l s(z) l 0) = exp [if (B)e Y( ' ~")],
and Eq. (26) follows immediately from Eq. (6).

(43)

The most convenient choice is d = (-2'A. Y)'{2. Then We conclude this section by briefly considering
production processes. The inclusive cross sec-
tion for the production of a single pion by two inci-
dent nucleons is

=22 " ' "'BIZ ?Id~* —,l«, ~, q. x . , q. , y. lS(r, fl)l )l'

, )' d'B ( 0 l [St(Y, B), at(q, y)] [S(Y, B), a(q, y)] l 0)

d'B(ol[z(r, B),a~(q, y)]sts[a(q, y), z(r, B)]lo)

, g(q)' d'a(0lz(r, B)'l o) . (44)

Thus the single-particle inclusive distribution is
determined by the ladder graphs independent of
whether the pole arising from these graphs is on
the physical sheet or not. All contributions to the
inclusive cross section arising from the checker-
board graphs have canceled.

If A, ~ —', (1 —{).) the situation is more complicated.
First consider the case ~ & 1. The total cross sec-
tion is now dominated at high energies by the
branch point at I = {Y,. From Eqs. (35) and (41) we
see that the average multiplicity is now given by

n =C(s/m')('(~ ')'"+(' "~))[In(s/m2)]'{2 (45)

where C is a constant. In Sec. II we mentioned that
the type of model presently being considered is in-
ternally consistent only if n grows less rapidly
than g'". Since e must lie between zero and unity,
A. is restricted to

)). & 2[(4 - 3{Y)+ (7 —6{))'"], {).~ 1 . (46)

The equality holds for c =1, at which point A., is in-
finite. Thus, although the effective coupling con-
stant, A., is limited in range, the "real" coupling
constant A., can take on any value between zero and
infinity.

For n&1 and ){.&2({2—1) the total cross section
is given by Eq. (40), and the multiplicity by

n=C'(s/ m)
"2'+" [In(s/m2)] ' (47)

& q„y„.. . , q„,y„ls I o) = g g(q,.)g„(r,B), (49)

with

Clearly we must require that n &
4 and X & —, —2z.

Finally, for {)l&and )). & 2({Y—1), n is again given
by Eq. (45). The restriction of Eq. (46) still holds
with the further requirement that a ~ —,'.

The restrictions on X and n are rather artificial.
They arise only because we have insisted on sim-
plifying the model by dropping the pion variables
from the energy- and longitudinal-momentum con-
servation 6 functions, as discussed in Sec. II.

The exclusive cross section for the production of
n pions is given by

n.(Y)= —, d'fl II dal&q y, . . q., x.lslo) I'.
n 0 4=&

(46)
The production amplitude can be written in the
form

a„(r,B) = (2) Y)-"{'
Jl dx e-"H„(x)s(x)

(2)( Y)-(&-&)/2 I d~ e-* ff (~)S(g) if (B)e[{ -1-xl2) Y+(2x Y)~{2x)
g QQ

ff„(x)is the Hermite polynomial of order n and

S(x) =exp[if(B)e '~ ' """+ '"""""] (51)

Clearly the pions are produced-independently.
Furthermore, the production amplitude is inde-
pendent of the rapidities of the pions, so that

For X ~ -', (1 —{){), the only important contributions
to the high-energy production amplitudes come
from diagrams in which all pions are produced
from a single chain. In this case one sees from
Eq. (50) that

o„(r)=—, l d2ala„(Y,B)l'(~r)".nt g
(52)

and

A.„(Y,B)= if(B)e"(~ ') (53)
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a„(s)~ (s/m')'& ')[A. ln(s/m')]" — d'B[f(B)]'.(
S~ oo 8 o

(54)

Since these are the same graphs that are consid-
ered in the multiperipheral model, the Poisson dis-
tribution is hardly surprising.

For those values of n and A. for which the square-
root branch point dominates the total cross section
the situation is more complicated. For )(. ~ 2(1 —o.)
and n «Y, Eqs. (53) and (54) still hold. On the
other hand, for )).)2(1 —()() we see from Eq. (50)
that

We again impose the restriction on the pion
rapidities given in Eq. (12). This has the effect of
guaranteeing that the first and last subenergies
along each chain are large. It is convenient to in-
troduce the variables (see Fig. 2)

k;= —g q;
j=0

n+1

(57)

where
a (r B)=-e"-' (2~Y)-"'a ((1 n-)'"r''}

x[ zf(P)](1+)(/2-a)/xl (&g 1)

(55)
and

~Ia. =pa pa& q.n+l pb pb&

$0 = Xn+ j.

(58)

for n«Y and ~&1+ 2A. . For na F the explicit ex-
pression for 0„is rather involved and we shall not
write it down. It is clear, however, that the pion
distribution is not Poisson. Similarly, the pion
distribution deviates markedly from a Poisson dis-
tribution for the case of black-disk scattering. It
is left as an exercise for the reader to show that
for all values of )(. and o, the identity

On S =0'g S (56)
n=0

follows directly from Eq. (50).

IV. A MULTIPERIPHERAL MODEL

In this section we shall discuss a form for 8"„
which is based on the multiperipheral model.
Ideally one would like to take W„to be the ordinary
multiperipheral amplitude and define the S matrix
via Eqs. (4), (7), and (8). This program is tech-
nically difficult, but not impossible. We hope to
return to it at a later time. For the present we
shall consider a slightly simplified form for W„
which correctly reproduces the multiperipheral
amplitude for large values of the subenergies.
This is an interesting region since it is the large
subenergy tails that lead to difficulty with the
Froissart bound in the ordinary multiperipheral
model and saturate that bound in improved treat-
ments. ' Our main aim here is to show how these
terms can add up to give a small, energy de-
creasing contribution to the total cross section in
the present model. We shall see that the cut mech-
anism discussed in Sec. III operates here also.

We then write the amplitude W„' as
n+ j.

&.(Y, ~;q, y.. . q., y.)= II P(k;) """"'8( )

x Q g(k, , k, ,). (59)
j=1

o.(k) and P(k) are the trajectory and residue func-
tions of the Regge pole exchanged between adjacent
particles along the chain. " One factor of the ver-
tex function g is to be associated with the creation
or destruction of each pion. As was mentioned
above, the amplitude for 8'„coincides with the mul-
tiperipheral amplitude only when all the subener-
gies are large. Only then are all the momentum
transfers transverse and all the rapidities strong-
ly ordered.

Expressions for the operators Z(Y, B) and M(r, /))
can now be read off from Eqs. (17)-(19). We start
by considering the elastic scattering amplitude.
The first step is to calculate the matrix elements
of g" between states with no pions. - Let us define

z„(z,o)= f zoo-"'(olz(z, o)"lo). (60)

Then the contribution from the exchange of a single
chain is just the familiar Regge-pole amplitude,

Z (Y g) (2m2)-x)3()o))e&Lo((Z)-|) (61)

The terms of second order in Z(r, B) give rise to
the ladder graphs of Fig. 3(a). We have

z,(r, Z) = g z,"(r, Z)
n=0

oo

= g(2s) d~B e '
! g dq; W(Y, 8;q„y„.. . , q y )g/(Y, B;q„y,. . .„-q„,y„)

n=0
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n=p

+x dk; dx n+& l n+~

(2s) ' Q ', 4w6 g x; —Y
~ g p(k, )p(Z+k,-)e"'"&"&'"& '" &&

(2v)2 4m, , ' )
n

x g g(k;, k;„)g(Z+k,, Z+k;, ) .
1

(62)

Equation (62) is simplified by taking the Laplace transform with respect to Y:

Z,"(f,~}=- d1'e '"Z2(1; &)

n+1 n

=(2 ') ' Q 2
', p(k, )p(Z k,)[l- (k,.)- (Z k,.) 2]-' p (4 )-'g(k, , k, „)g(Z k, , Z k, )

F J' =1

(63)

The sum in Eq. (62) is the solution to an integral equation which is completely analogous to the Lippmann-
Schwinger equation in two dimensions. " To see this in detail, and for later use, the free Green's function
for the propagation of two Reggeons is defined by

(k,'k,'IG, (l) Ik, k, ) =(2w)'6'(k, -k,')6'(k, -k,') [o(k,) +o(k,) —1 —2] ', (64)

and the potential between two Reggeons by

(k,'k2I V2Ik, k, ) =-(2m)~62(k~+k2-k, ' -ka) [ (k, )p(k2)p(k,') (k,')]' (4w) 'g(k„k~)g(k,', k2).

The full Green's function, g, (l}, satisfies the operator equation

g.(&) =G.(&).~.(&) ~,.g.(&) .
Now Z, (l, Z) is obtained from g, (l) via the equation

(»)'6'(Z- Z')z. (&, Z) = -(2~')-'& ~.(Z') I g, (~) I ~.(Z) &,

where

(kgk2I E(&)) = (2m)262(kg+k, —Z) [p(k, ) (k,)]'".

(67)

(68)

The analogy with the Lippmann-Schwinger equations becomes exact if we take the input trajectories to be
linear:

o.(k =n —n'k'.
The "free Hamiltonian" is then

(69)

H =~'k +(y'k (70)

and the quantity 8, =—-/+2(a —1) plays the role of energy. Notice that as long as the functions P(k) and

g(k, k ) have no zeros, the potential is purely attractive. As a result, for strong enough coupling there will

always be bound states, i.e., Regge poles.
As is well known, the integral equation for the ladder graphs simplifies considerably if the vertex func-

tion, g, is taken to be a constant. In this case the potential is separable and we have

(71)

where
2

&(&, Z) =
2 p(k+ 2&)p(k —2Z)[l-2(Q -1)+2o,'k'+ 2o. 'Z']-'.

(2m)'
(72)

As l increases from 2(o, —1) —2o. 'Z', Z(l, Z) decreases monotonically. There is obviously a single Regge
pole to the right of the branch point at l=2(o. -1)—2n'Z'. Since the separable approximation does not ap-.
preciably simplify the general checkerboard diagrams, we shall retain the dependence of the vertex func-
tions on the transverse momenta.

Integral equations for the checkerboard graphs with N vertical lines can be written down in analogy with
the one for the ladder graphs. There is one new complication here. For N ~ 3 the fact that the rapidities
are ordered along each chain implies that the rapidities of all particles in the intermediate states are or-
dered. This is not true for¹4 as can be seen by considering the simple example shown in Fig. 5. Any



2226 AUERBACH, AVIV, SUGAR, AND BLANKENBECLER

diagram for which the rapidity order is not completely determined can be written as a sum of terms, each
of which does have a definite rapidity ordering. If we consider each of these terms to be a distinct dia-
gram, then there is a one-to-one correspondence between our-diagrams and those of nonrelativistic poten-
tial scattering. The rapidity variables play a role analogous to that of the time variable in ordinary quan-
tum mechanics.

Proceeding as in the case of the ladder graphs, we introduce a free Green's function for the propagation
of N Reggeons,

N N 1

(k,', . . . , k„'IG„(l)lk„.. . , k„)= P (2 )'6'(k, , k,'. ) Q (k,.) —l-N
4=1 i=1

The N-Reggeon potential is written as
N

V~=Z V(,

(78)

(74)

where

(k,', . . . , k'
I V;, Ik„.. . , k„)= — g (2 ) '(k„-k')(2 )'6 (k; k, -k,'-k,')[P(k;)P(k, ) (k,')P(k,')]'

m4$, j
x(4w) 'g(k, , k,.)g(kf, k!).

The full Green's function g„(l)is determined from the integral equation

g)))(l) = G~(l) + G)))(l) V„g„(l),
and Z„(l,Z) is given by

(2 )'5'(& - &')~ (I, &) = -(2 ') "(F (~')
I g (I) I F (&)&,

where

N N(k„.. . , k„IF„(Z))=(2 ) O' Q k;+Z P IP(k;)]'
i=1

-=(2v) II' r Ic;+Z) (k;, . . . , k„lf(a)).
&=1

(75)

(76)

(77)

(78)

N

Ho„—Qa k; (79)

The Green's function g~(l) will have poles for
those values of l for which there are solutions to
the eigenvalue equation

If I~ (&)&=(N..+V)l~ (&)&

=E.l~ (~)&, (8o)

with

Clearly, obtaining g„(l)is equivalent to solving the
N-body Schrodinger equation in two dimensions.
We are most interested in the leading behavior of
Z„(Y,Z) for large Y, or, in other words, in the
rightmost singularity of g„(l)in the l plane. If
there were no bound states, this singularity would
be the N-Reggeon Mandelstam cut. However, in
general we expect discrete bound-state poles since
the potential is attractive.

Using the linear trajectory defined in Eq. (69),
we introduce the N-Reggeon free Hamiltonian

n„(0)=a(N) -Nb+N'c—=a„. (82)

The results of the Appendix show that c is a posi-

The two-Reggeon potentials V;j are well behaved
at the origin and at infinity. We therefore expect
that in the ground state of the N-Reggeon system,
the kinetic energy will increase like N and the po-
tential energy will decrease like -~N(N —1), the
number of pairwise Reggeon potentials. In the Ap-
pendix we obtain upper and lower bounds on the
ground-state energy E„'.For a wide class of in-
put functions P(k) and g(k, k'), F„'does indeed de-
crease like ,'N(N —1) for —la—rge N. Denoting the
leading trajectory function arising from the check-
erboard graphs with N vertical lines by o,„(Z),we
write'2

E„—= -l +N(o. —1) . (81) FIG. 5. Rapidity orderings.
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tive number and that [a(N) N-b] /N' goes to zero
for large N. If z„hasneither a branch point nor
an essential singularity at N =~, then b can be
chosen so that a(N) goes to a constant for large N.

Denoting the contribution to Z„(Y,Z) arising
from the leading Regge pole by ZP(1', Z), we write

Z (Y &)=t] (~)e '"'"". (83)

In the Appendix it is shown that for a wide range of
inputs pN(Z) is bounded by p, N/N, where p, is a
constant. It is further argued that o.N'(0) —= (YN' goes
to a constant at large N." Our final results do not
depend strongly on the precise form of ]3N(&).

The crucial result is Eq. (82). Since Z„(l,Z) has
poles arbitrarily far to the right in the E plane, it
is clear that the series expansion for S(Y, B) given
in Eq. (6) cannot converge. However, since S(Y, B)
is unitary, S»(Y, B) is bounded by unity for all 1'
and B. As a result, all of the poles in Z„(l,Z) to
the right of i=0 must be on an unphysical sheet of
the l plane. " To see how the branch cut arises in
the present model, let us perform the sometimes

risky operation of summing the contributions of
the leading poles in Z„(Y,Z). First, Eq. (83) will
be rewritten in the form

Z (Y, &) =(N+1) 'C„(&)l]"e"I'( ) ' +'"

(84)

where we have made a linear expansion in 4' for
the trajectory function. The results of the Appen-
dix imply that a(N), c(N', and CN(Z) are all bounded

by constants for large N. '
Z„(1',Z} has contributions only from diagrams in

which all N Reggeons interact, in other words only
from connected graphs. Now the elastic S-matrix
element, or rather its phase, is given by

i)l(Y, B)—= ln[S»(Y, p)] =[S2,(Y, B) —1], (85)

where the superscript c means that S» is com-
puted by including only connected diagrams. From
Eqs. (7) and (8) we see that the contribution of the
pole terms to )l, using Eqs. (8) and (84), is

~ Oo oo ~ N oo

P(Y g)
"'

([ dX e-x2 Q C (g) Y [a(N) 1 c)N'-(), -]
(P

-bY 2(cY) x)N -x2 ~ P( )

(88)

On the other hand, for x&x, we cannot integrate the series term by term. If CN(4), a(N), and c(N' are
analytic functions of N in the right-half N plane and do not have a branch point or essential singularity at
infinity, we have" "

2
I2 1g2

'' dxe 1)( (x)
m

In writing Eq. (86) we have taken d = (cY)'".
The asymptotic behavior of )(P(Y, Z) can be read off directly from Eq. (86)." The integrand has quite dif-

ferent behavior depending on whether x is larger or smaller than x, =bY'~'/2c'". For x~ x, we can inte-
grate the series term by term. Writing

e "'i)l (x) = -g I,(N), (87)
X=1

we see that for large Y

2

. (2c ) 2 (cY)"c(/2 ')N)c

(A) Y[a( )-1-c( 11 ] t dX e-x e~(iP e-bY+b(c Y) x)(iP e-bY+2(c Y) x)-1
Xp

-C,(&)e '~" ' "o' ] „,dxe "'
0

ckp( )ezg-l/2 —Y~ /4c p rw ggq Y [a(oo)-1-a 'h, ] ~ gg) Y [a(p)-1-ap' 6 2]q (89}

Ia the present approximation, the elastic scatter-
ing amplitude is given by

M2 (Y Z) =2is J" d'Be ' '
(1 —e'+] ' )) (90}

From Eq. (88) we see that as in the case of the
solvable model there are only a finite number of
Regge poles on the physical sheet of the l plane.
One new feature is that there are an infinite num-
ber of square-root branch points with 4' =0 inter-
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cepts at

o.,(N) = a(N) —b'/4c . (91)

In order to study the movement of the poles and
branch points in the l plane, it is convenient to in-
troduce an effective pion coupling constant by
writing g(k, k') =X~~2g'(k, k'). Applying Feynman's
theorem to the eigenvalues of Eq. (80) for large
values of N, we see that c is a monotonically in-
creasing function of A, . Let us concentrate on the
case of forward scattering. From the results of
the Appendix we know that there exists an integer
N, (A.) such that Z„(l,0) has a pole on the physical
sheet for all ¹N, (X). As A. is increased from
zero this pole can enter the physical sheet through
the normal threshold branch point associated with
the scattering of N free Reggeons. This branch
point is located at l =N(a —1). Alternatively the
pole could enter the physical sheet through a
branch point associated with the scattering of com-
pound systems made up of a total of N Reggeons,
or through an anomalous threshold. However, for
small values of A., these branch points are arbi-
trarily close to the point l =N(a —1). As a result,

c- = 0,
X~o

b ---=
i~0

(92)

Let us start by considering values of the input
parameters for which b &0. For small values of
A. we see from Eqs. (88) and (89) that the branch
points of M»(l, Z) are arbitrarily far to the left.
Those Regge poles for which N» b/2c are on the
physical sheet. As A. is increased we know from
Feynman's theorem on derivatives of eigenvalues
that the poles move to the right in the l plane. We
also expect the branch points to move to the right.
Whenever a pole collides with its corresponding
cut, the pole moves on to an unphysical sheet. For
large values of A. we expect from our counting ar-
gument that the potential energy decreases like
-cN(N -1). We therefore write b = b'+ c. Although
we ean really say nothing about the behavior of b',
it would appear to be an accident if it approached
the value -c for large A, . We therefore expect the
branch points to turn around and retreat towards
minus infinity if X is made large enough. If b does
not grow as rapidly as c with increasing A., then
there will be no poles on the'physical sheet for suf-
ficiently large values of X and the total cross sec-
tion will go to zero at high energies.

In the solvable model discussed earlier, a(N) —= 1.
In the present case we can say nothing about the
function a(N) without further calculation. In partic-
ular, we cannot rule out the possibility of a(N) be-
coming large enough so that y~(l, Z) has poles or

which holds if g(k, b') is a constant, it is a
straightforward matter to write down these cross
sections. The rapidity distribution is particularly
simple in the inclusive ease.

2—„=~ Z, (-.Y-y, ~=0)Z, (-.'Y+y, a=0), (94)

which shows that the ladder graphs determine the
inclusive distribution just as in the previous mod-
el, Eq. (44)." The exclusive cross section is more
complicated because the precise form of the eigen-
value spectrum o.„(Z)must be used. The final re-
sult does not seem to be particularly illuminating.

V. SUMMARY

The point we wish to emphasize is that the mech-
anism for avoiding violation and saturation of the
Froissart bound discussed in these solvable mod-
els is available in more geperal theories. In any

cuts to the right of l=0. If this oeeurs then
S»(Y, B) will vanish for B inside a disk whose ra-
dius grows like ln(s/nP). As is well known this be-
havior for S»(1', B) leads to a saturation of the
Froissart bound. The l-plane structure of the
elastic amplitude is as given in Eq. (38).

Finally let us imagine varying the input param-
eters so that b decreases through zero. For nega-
tive values of b the elastic scattering amplitude
has no poles on the physical sheet. If a(N) & 1 for
any value of N, we again have saturation of the
Froissart bound when b =0. However, if the mag-
nitude of b becomes sufficiently large, the com-
plex-conjugate branch points of Eq. (38) will leave
the physical sheet through a square-root branch
point as in the solvable model. The total cross
section will then go to zero once again. If a(N)» 1

for all N then the square-root branch points are
the only singularities on the physical sheet of the
l plane for negative values of b.

Consider the problem of including nonleading
contributions to Z„(Y,Z). The series for S» will
certainly converge with d = (cY)"'. Furthermore,
in the integral over x from minus infinity to x„
one can again interchange the order of integration
and summation. The only change is to include
lower-order poles and branch points in the l plane.
The real problem is to study the integral from +0
to infinity; this is difficult to do explicitly, but it
is hard to see how the basic structure of the ampli-
tude could be altered.

The exclusive and inclusive single-particle pro-
duction cross sections can be treated as in the
solvable model. Using the relation

[a(b, y), Z(Y', B)]=gZ(2Y-y, zB+b)Z(2Y+y, &=0),
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unitary relativistic theory which does not exhibit
saturation of forces, that is, in which the binding
in the exchange channel grows faster than N lnN,
where N is the number of exchanged quanta, the
unitarity cut must develop. Since the amplitudes
Z»(I, 4) then have poles arbitrarily far to the right
in the l plane, this cut must arise to preserve uni-
tarity. In the models discussed here, the binding
energy of the ground state grows as N', which fol-
lows from the fact that the number of pairwise in-
teractions grows as ,N(N -—1). It is difficult tq
see how a similar result could fail to hold in more
sophisticated models where low subenergy effects
are taken into account. Since the $ matrix is uni-
tary, the elastic scattering amplitude is forbidden
to have any L-plane poles to the right of one on the

physical sheet. As a result it must have branch
cuts in the l plane which have been exhibited in our
models and which are of a different type than those
discussed by Mandelstam. ' For the solvable mod-
el we find that if the input trajectory is unity or be-
low, the multi-Regge region provides a contribu-
tion to the total cross section which decreases as
a power of the energy. Hence the experimentally
observed constant total cross sections must arise
from other sources, such as the fragmentation re-
gion or the low-subenergy pionization region.
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APPENDIX

In this appendix we obtain the bounds on the trajectory and residue functions that were employed in the
text. We start by obtaining upper and lower bounds on the ground-state energy, E„',for the Hamiltonian
of Eq. (80). An upper bound is obtained from the Rayleigh-Ritz variational principle. We use a separable
trial function

N(k„.. . , k„i'(„)= Q f(k;), (A1)

where

(A2)

Then

E» & NI —2N(N —1)J'

with

(A3)

r fm, if(k(I'=%' (A4)

(A5)

2 (2»)'6'(k, +ka-k,'-k,')[p(k, ) (km) (k,')p(k2)]' ~(4rr) ' (k„k~)g(k2,k,')

f(ki)f(k2)f *(ki)f*(k2) ~

We require that P(k) and g(k, k') have no zeros and that g(k, k') be a symmetric function of its arguments.
As a result, I and J are positive definite quantities.

In order to obtain a lower bound on E„,it is convenient to write the exact wave function in the form

(k„.. . , k„iver„(A))=(2 ) 6 (Qk,. +Z) (/)„(k„.. . , k„), (A6)

with (j(» normalized to

(A7)

Then

» = ( '4 ~ &0»+ &» ~ (j» ) - ( (C(» I &» I (j(») = 2 N(N —1)( g» [ V„)g» ) .

in the last step we have used the fact that (jr»(k„.. . , K») is a symmetric function of its arguments.
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Introducing the variables

K=k, +k„k=-.(k, -k,),
we have

dkg dE, dk dk
~, (2m)' (2w)' (2w)' (2m)'

N

x(2r) il (K+Pk, +Z) i (K, i, k„.. . , k„)i„"(K,k, k„.. . , k~)
f' =3

X[p(2K+k)p(2K -k)p(2K+k')p(2K -k')](4w) ig(2K+k, ~2K+k')g( —,'K-k, —,'K -k') .

(Alo)

Making use of the Schwarz inequality we see that

where

2 N

kN(& —-&iiI II 2
', (& i'&' Zi;+I) l4(i„,k )i*i(K),

i=i v i=1
(A11)

2 2 I

L(K) =
)2 )~

p(pK+k)p(pK-k)p(2K+k')p(2K-k')(4w) g (2K+k, 2K+k')g'(2K-k, 2K-k').

(A12)

d'k
L(K)(,p(2 K+k)p(-, K - k& . (A13)

The right-hand side of Eq. (A13) can be bounded by
a, constant for a wide range of P's. From Eqs.
(A7) and (A11) we now have

,'N(N —1)Z+NI)—Eo„)-,N(N —1)L. (A14)

Equation (82) now follows directly from Eqs. (A14)
and (81).

The slope of the leading trajectory is more dif-
ficult to estimate. If the potential, V„,were
Galilean-invariant, then the only dependence of
g„(l)on the total transverse momentum would be
through the free Green's functions. In that case
we would have the exact result

~„(Z)=A„-n'Z'/N. (A15)

However, VN can be Galilean-invariant only if we
choose P to be a constant a,nd take g(k, k')
= g(k -k'), a rather unlHcely parametrization. In
the general case the slope of the trajectory func-

The only requirements that we have made on P and

g so far are that they have no zeros and that they
are well enough behaved so that all the integrals
converge. We now impose the further requirement
that there exists a finite I. such that I.) L(K) for
all K. This is a very mild restriction. For ex-
ample, we certainly expect that g is bounded for
all values of its argument. Denoting its upper
bound by g, we have

tion u„(Z)will be effected by the Z dependence of
the potentials. Writing the momenta k; in terms
of & and momenta relative to the center of mass,
we see that 4 always enters the V;,- in the form
Z/N. From our simple counting argument we ex
pect n„'(0)to go like a constant at large N. This
is the assumption made in the text. It is by no
means crucial to our argument.

Finally we obtain a bound on the residue function,
P„(A),where

p.(~) =i&&.If.(~)&(', (A16)

and I fN(A) & is defined in Eq. (78). Using the
Schwarz inequality we see that

p.(&)- &f.(&) I f.(&)&

=
~l II 2

'. (2 )'6' Pk;+~ g P(k;)
i =1 5=1 i =1

d% b "e-"b,

where P(b) is the two-dimensional Fourier trans-
form of P(k). One easily verifies that for most
simple parametrizations of P(k), P~(Z) can be
bounded by a function of the form Po/N, where P,
is a constant. For example, if we write P(k)
=p, e ' +, then

&f (&)If (&)& =(4/Nu')(p, W. ')" e
(A18)
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A model for hadron-hadron scattering proceeding via the exchange of mesonic systems
with isospin is constructed. The result can be cast in eikonal form with an effective Regge-
pole potential. Extensions of the model are discussed and comparisons with other models
are made.

I. INTRODUCTION

In the quest for an understanding of the phenom-
enon of high-energy hadron-hadron scattering,
many different approaches have been used. One
of the oldest, the so-called eikonal approximation', '
has recently received a great deal of attention in
the literature because of major theoretical ad-
vances in its employment. A gigantic program has
been carried out by Cheng and Wu' using Feynman
diagrams to calculate various combinations of elec-
tron, positron, and photon scattering and produc-
tion; and other authors, ' using a variety of differ-
ent field-theoretic techniques, have studied large
classes of diagrams using a variety of models.

The hope of course is that these studies will pro-
vide important clues for a realistic description of
the physical hadron scattering amplitudes.

All of these eikonal-model calculations are
based, however, on very simple field theories,
which neglect both isospin and the possibility of
exchanges of particles with spin greater than one;
though following the work of Chang and Weinberg,
Eichten has considered the possibility of an ei-
konal approximation for a particle acting in an ex-
ternal field with arbitrary spin.

What we have done is to calculate the scattering
amplitude a+b-a'+b', where a, a', b, b' are
arbitrary one-particle hadron states (either stable
hadrons or hadron resonances in the narrow-


