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In previous papers the massive spin-one mesons were described by means of an antisymmet-
ric second-rank tensor field. In the present paper their free Lagrangian is modified in such a
way that when the electromagnetic interactions are introduced by the minimal substitution the
mesons get an arbitrary magnetic dipole moment. The addition of other terms in the Lagran-
gian allows the spin-one mesons to also have an arbitrary electric quadrupole moment. The
covariance of the S matrix to order e is achieved by the addition of counterterms.

I. INTRODUCTION

In two previous papers" the massive spin-one
mesons were described by means of an antisym-
metric second-rank tensor field T„v. In Ref. 2 we
considered the Lagrangian

0 2
free 8&Tvy~v Tpy+ 2m T»T»,

and we imposed the antisymmetry condition T»(x)
T»(x) Th-e above. Lagrangian gives the equa-

tion of motion

~p~X, Xv ~v~g kp ~ pv= ~

Differentiating Eq. (1.2) we get

[( —m')6„„—B„B 5„„]V„(x)= 0,
where the field V„(x) is defined by

V„(x)= (1/m)s), T),„(x).

(1.2)

(1.3)

(1.4)

The field V&(x) describes the spin-one component
of a vector or axial-vector field.

In Ref. 1 we described a way of obtaining the in-
teraction Hamiltonian in the interaction represen-
tation Xh„when the field T&„ is involved. The X,
corresponding to a specific interaction Lagrangian
was calculated, and it was shown that the S matrix
coming from this Xm, is covariant to any order in
perturbation theory. In Ref. 2 the quantization was
performed in the free-field case and also in the in--

teracting-f ield case.
The magnetic dipole moment p, and the electric

quadrupole moment Q of the J~c =1 nonet of vec-
tor mesons, except the p', &, and y, are not known.
One wants a theory which allows arbitrary values
of p and Q. The Proca theory in which the electro-
magnetic interactions have been introduced by the
minimal substitution describes particles with the
"normal" magnetic dipole moment, i.e. , with p.

=e/2m. ' An extension was later made by Pauli4
and by Corben and Schwinger' to include particles
with arbitrary p. . Further terms can be added,
which allow the mesons to also have an arbitrary
electric quadrupole moment. " The values of p.

and Q we obtain if we introduce in the Lagrangian
of Eq. (1.1) the electromagnetic interactions by the
minimal substitution are fixed. It is interesting to
see if by proper generalization the tensor formal-
ism can describe particles with arbitrary y, and Q.
This is indeed the case, as shown in Sec. II.

In Sec. III the covariance of the S matrix to order
e' is examined. It is shown that the S matrix can
be made covariant to this order, if we add to our
Lagrangian some additional terms (counterterms).
The same method has been applied in the usual de-
scription of spin-one mesons. Finally in Sec. IV
the Feynman rules are given.

II. EXTENSION TO AN ARBITRARY MAGNETIC
DIPOLE MOMENT AND ELECTRIC

QUADRUPOLE MOMENT

The electromagnetic interactions are usually in-
troduced by the minimal substitution
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Bp V, - (Bp —ieAp)V, D=—
p V, ,

8 p
Vt- (9p +ieA p) Vt= D—pt Vt,

(2 1)

in the Lagrangian density of the free particle,
where e is the charge of the particle, and A.„ is
the electromagnetic field. In our case we shall in-
troduce partially the electromagnetic interactions
by making the substitutions of Eqs. (2.1) in our
free Lagrangian. The Lagrangian Sf„, of Eq. (1.1)
changes as follows:

0 0 0
~free ~free +~y-V ~

where

(2 2)

which gives the same equations of motion. We eas-
ily see that the Lagrangians of Eqs. (1.1) and (2.4)
differ only by four-divergences which do affect the
electromagnetic interactions. ' Making the substi-
tution (2.1) in Eq. (2.4) and dropping unimportant
four -divergences, we get

g BpTv) evTpa+ 2HZ TpvTpv+~y v
I 2 (2.5)

Zy-v &eAp(TpksuTux. svTvxTpk)
0

pv pX vA. +
p v pA. vA.

+ie[B„(A„Tt~T„~)—B„(A„Tt~T„~)]. (2.3)

In the above equation F&,= 8&A, —B„A& . The four-
divergences appearing in Eq. (2.3) do not affect the
variation of the action and may be omitted. We
find that our Lagrangian describes a particle with
zero magnetic moment.

To introduce an arbitrary magnetic moment, we
start from the free Lagrangian

Z~„, =aspT, &B,Tpz+(1 a)epT&&-B„T„~+~nPTp„Tp„,

(2.4)

The magnetic dipole moment p, is the expectation
value of the component p, , of the operator

p, ; = —,'e„"„d'xx,.J„(x), (2.7)

for a positively charged particle with spin eigen-
state S, =1 at rest. The operator J„(x) is the elec-
tromagnetic-current-density operator. The term
-ieaF»T~~~T„&, which contains the arbitrary pa-
rameter a, does contribute to p. . Thus the magnet-
ic moment can get arbitrary values in this model.

General group theoretical arguments allow the
spin-one mesons to have not only a magnetic di-
pole moment but also an electric quadrupole mo-
ment. " The electric quadrupole moment Q is de-
fined as the expectation value of the component Q»
of the operator

Q;, = d'x(3x;x, —x'6;,}p(x) (2 6)

for a positively charged particle with S, = 1 at rest.
The operator p(x) is the charge-density operator.
The Zv v of Eq. (2.6) implies that Q= -e(1+a)/m'.
Since the moments p, and Q depend on a single pa-
rameter a, we cannot assign arbitrary values to
both.

Arbitrary values of p, and Q can be obtained if
we add to Z& v of Eq. (2.6) the term

(2 9)

This term cannot be obtained by the substitution
8&-8&wieA& in a free Lagrangian with no more
than two derivatives. It does not seem to be pos-
sible to introduce arbitrary p, and Q by the princi-
ple of minimal substitution, if our free Lagrangian
has at most two derivatives. The same thing hap-
pens in the usual description of spin-one mesons. '

From our generalized Lagrangian
where

i',
v v =ieA„(Tpt~B„T„~—B„T~~~T»)

—ieaF„,T~~T, ~+ e'A„A„T~~T,~. (2.6)

1Z =8&T„&BvT&z+ &m T&vT»+g& ~+@" ~,

we get the equations of motion"
(2.10)

s„spTpz —8 &8pTp„-m'T, ~ = ie(1 -a)(F„pTpz —FzpTp „)+ieA p(B„Tpz —s &Tp„)

+iesp(A„T» -A~T„)+e'Ap(A„Tp~ A~T „)-
+ (i eb/m2)[8„(F „pDpTp p)

—8 ~(F»DpT») +i e(F»A~ F~pA„)D, T p j . —

In the notation of Ref. 1 we have the currents

J' ~--——ie(A, BpTp& A»8pTp )+iea(F„pT&p F&pT p)
T s(~y v ~v-v)

BTvx

+ e'Ap(A„Tp& A&T»)+(e'b/m')(F —
&pAv -F»A&)D, T „,

J I'-v+ &-v ieA T — F D-TII

( t )
p pv m2 vx. p pk

(2.11)

(2.12)

(2.13)

As A„-0 Eqs. (2.11}reduce to the free-field equations (1.2).
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We may add to the Lagrangian of Eq. (2.10) the free Lagrangian of the electromagnetic field

The equation of motion for this field becomes

9~E~~- —J
where the electromagnetic current J, , which is the source of the electromagnetic field, is

J „=ie(T„~B~T~~—B~T&~T„~)+ieas„(T„„T„q—TJ~T„~)

+ (i eb/m') e„(8&T~t „B,T„—8,T~„B&T&„)+ e'Az(T&t~T„~+ T~~Tz~) + O(e') .

(2.14)

(2.15)

(2.16)

From the variation of the Lagrangian 2+(Zz)q„,
the total energy-momentum tensor can be calcula-
ted and then symmetrized in the same way as be-
fore. The explicit expression of the symmetric
tensor Oz„ is very complicated. We have

(2.17)

where

~~~cJq~=
'— =iea(Tq„T~„T~„Tq—„)

pZ

+ (ieb/m')(DtT&&D, T ~ DT ~D—AT&„),

(3.2)
Let us write

Gxp Oxy+Gxp ~

T (2.18)
and the currents J~r„and J'~r are given by Eqs. (2.12)
and (2.13), respectively. '

(2.19)

From Eqs. (2.15), (2.17), and (2.19), we get

where Oz„comes from the Lagrangian 8 and O~z„

comes from the Lagrangian (Zz)f„, . We have

)p Xp pp & Xp vp vp

Element

Internal
photon line

Graph Factor

8

iq

Bxe'xp = -B~Oyxu = -JPEp p (2.20)

From Eqs. (2.7), (2.8), and the explicit expres-
sion for the electromagnetic current, the magnetic
dipole moment p. and the electric quadrupole mo-
ment Q can be calculated. The fields which appear
in the electromagnetic current are replaced by
their lowest-order approximation, i.e. , by free
fields. We find

Internal
meson- line

Three- ver te x m m mmmm@

P P„
s „(p2 2) iw

K of TableI

p, =(1 —a+b)e/2m,

Q = -(1+a+b)e/m'.

(2.21)

(2.22)

Since a and 5 are arbitrary constants the magnetic
dipole moment and the electric quadrupole moment
of the mesons can get arbitrary values.

Meson
four -vertex A of Table1

III. COVARIANCE OF THE S MATRIX

To proceed in calculations by perturbation theory
we need the interaction Hamiltonian in the interac-
tion representation. Starting from the interaction
Lagrangian Z~, =Z& ~+8& &, where 2& „and g" ~
are given by Eqs. (2.6) and (2.9), respectively, and
applying the method of Ref. 1, we find to ox der e~

the following expression for the interaction Ham-
iltonia ":

+ J&~j&~+J~~Jrn~n +M~&zJ„" n„n, , (3.1)'

Meson Photon
four-vertex

gV

ef

wq

p

R of TableZ

FIG. 1. Feynman rules in the momentum representation
for the (X,„,)off of Eq. (4.1). Only the values of the three-
and four-vertex functions are listed, and in the case of
the meson-photon four-vertex the terms proportional to
a2 have been omitted (see Table I).
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One of the main problems of the electrodynamics
of charged mesons of spin one with arbitrary (anom-
alous) magnetic moment is the covariance of their
S matrix. The usual approach does not give a co-
variant S matrix even to order e'. Several methods
have been proposed to overcome this difficulty.
Lee and Yang" define the S matrix without the nor-
mal ordering of the fields of K~, They add to the
Lagrangian the terms $[(B—&+ieA&) V„][(&,—i eA, )
x V„]and then take the limit $-0 (g -limiting for-
malism). In this theory the free Hamiltonian is
not positive definite unless we introduce a negative
metric. The introduction of a negative metric de-

stroys the unitarity of the S matrix, but in the limit
g-0 the unitarity is restored. The S matrix is co-
variant. The introduction of the g-dependent terms
can be avoided by the addition of certain counter-
terms in the Lagrangian. " In another method" co-
variance is achieved by generalizing the definition
and application of normal products in perturbation
theory.

The noncovariant terms of the S matrix come
from the noncovariant part of the Kh, (x, n) of Eq.
(3.1) and from the noncovariant part of the propa-
gator s. We have'

T T„,(x) T~t, (y) =i [nPG~„(x -y) —n,n, 54(x —y)]
—= Cv (x —y)+N„,(x —y),(

8 8

8x~ 8pp p
(3.3)

(T(T„(x)T (y)))o= — GE. (x —y)+ G „(x—y) —
8 8

G (x —y) — G „(x—y)

—(5 n,n, +5„n„n —5& n, n& —5,&n„n, )5 (x —y)

-=(1/nP)[C„",
p (x —

y) +N„, 2( x—y)], (3.4)

(T(F|,„(x)Fp (y)))o=i D~„(x—y)+ Dp~p(x —y) — D~„2(x —y) — D~~ (x —y)

where

—(5„n„n,+ 5„,n„n —5„,n„nz —5„&n&n,,)54(x —y)

-=C„,p, (x —y)+N„„p,(x —y), (3 5)

1 8 8
G~„p(x —y) = ,'i 5,q

---~ a~(x y, m),—
V P

(3.6)

(3.7)D,„,(x y)= =2'i5„~-,(x —y, m=o).

The covariant parts of the propagators are denoted by C„(x—y), (I/m2)C„", (x —y), and C~, ,(x —y), while
the noncovariant parts are denoted by N~~(x —y), (1/202)N»&~(x —y), and N»&~(x —y). The noncovariant
parts of Eqs. (3.4) and (3.5) are the same apart from the factor I/rrP. T in Eqs. (3.3)-(3.5) is the Dyson
time-ordered-product operator and A~(x —y, m) the usual Feynman propagator. The propagators
(T(A„(x)A,(y))), , (T(A„(x)F&,(y))), , and (T((8/Bx„)T»(x)T& (y))), do not have noncovariant parts.

The S matrix, to order e', is given by

2

S = 1 —i d'x,K,(x„n) + d'x, d'x2T(X~', ~ (x,)X~;~ (x,)),2f . (3 8)

where by $C~, we mean the part of the interaction Hamiltonian which is of order e. We shall not normal
order the fields in the interaction Ha, miltonian of Eq. (3.8) so that equal-time contractions are allowed. We
shall try to find explicitly the noncovariant part of the S-matrix operator of Eq. (3.8) using the X, of

Eq. (3.1) and the propagators of Eqs. (3.3)-(3.5). If such a part does not exist the S matrix is covariant.
The calculations are tedious and will not be reproduced here. Instead we shall indicate how these calcula-
tions were done.

One can easily show that the S operator giving rise to processes with four external lines is covarjant.
This is due to the fact that the noncovariant part of the term —ifd x,K2„(x„n)which gives rise to such pro-
cesses is canceled out by the noncovariant part coming from the term
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—,'(-i)'
~

d'x, d'x, T(R", (x,)30( t)(x, ))

when only two fields are contracted. " Observe that the propagators of Eqs. (3.3)-(3.5) contain noncovari-
ant terms. We easily find also that the terms which are proportional to a or b or ab do not create nonco-
variant parts in the S matrix, because the propagator of at most one of the fields which can be contracted
in such terms has a noncovariant part. Then we can show that noncovariant terms independent of a or g do
not exist. So if noncovariant terms exist they will be proportional to a' or O'. Such terms indeed exist.
We find that the noncovariant and infinite part of the S operator of Eq. (3.8) is given by

—
l~

d'x (ea/m')' [2&„~(x)H~t,(x) + 2C„"~„,(0) +F„p(x)F„(x)+ C„~~,(0)]5»(0)n~n,

+ (eb/m')'(F&z(x)E„, (x) + C~&z„,(0) + 3m' [V~(x) Vt(x) + Ct, (0)]]5»(0)n~n, —3i(e/m')'(2a'+ b')5'(0)5»(0) .

(3 ~ 9)

To obtain an S operator without the terms appearing in the expression (3 ~ 9), we add to the interaction La-
gr angian additional terms of order e'. If we take

2 ",= y(ea)' T„~T~t,T„,T„~+b(ea/m)'T„~T„F„, F~, + e(eb/m')'F ~„F~,D~~ Tt„D,T, ,
(3.10)

the values of the constants y, 5, e, and g for which the terms appearing in the expression (3.9) will be elimi-
nated are"

(3 ~ 11)

For the choice g=» the Lagrangian will have a term of the form ,'E„,E„„-,-where F„,=F„,+(ieb/rrP)
x (&z T~„&,T„—&,T,,S~ T~„). The same term appears in the usual description of spin-one mesons. Indeed,
it is shown in Ref s. 8 and 9 that the electrodynamics of spin-one me sons with an arbitrary magnetic mo-
ment becomes fully covariant if in the Lagrangian we make the replacement

,'E»F„,———iebF»V&~V,—-» [F»+ieb(V~t V„—V„V„)][E»+ieb(V~t V„—V~tV&)]. (3 ' 12)

An S matrix covariant to order e' has been constructed by adding certain counterterms. We have no rea-
son to believe that the S matrix will be covariant to order e'. To achieve covariance we shall add new
counterterms. ' The same procedure will be repeated to the next order and so on. In other words, the co-
variance of the S matrix seems to require an infinite number of counterterm s. Exactly the same thing hap-
pens in the usual description of spin -one me sons with abitrar y magnetic dipole moment and al so arbitrary
electric quadrupole moment. '

TABLK L. The values of the three- and four-vertex functions for the (&jgf )gf f of Kq. (4.1). The a' is defined bya' =a /m (see Fig. 1).

E = -e pO+p'+a'( pq) p' —a'(p'q) p]&B„S+[-p+bq +a'(p'q) p —a'(p' p)q] s6„&

+[-p' bq+a'(p. p')q —a'—(p. q) p']„68&+a'p&p„'q 8 a'pept q„)—
A = (eb)'(6~&6 ~ + 6~~68 - 25n 5@)

--,'(«')'((P. p')(q. q')& /&8 +(P q')(P'q)~ s& $+[(q q')Pgp' —(P q')P'q$ —(P"q)pgq']& 8

+ f(p" v)p8e'y - (p p')vsey —(v e')pgpyJ&~ + l:(p e')p~eg —(p.p')ega'~ —
&e e')pgp'l&g

+[(P P')qsq' —(P"q)P8q' —(P q')P' qeÃ, ~+Psp;q~q' +Pap' qsq'p

R = e (M 85„-6 ~p6g —6 ~„68„)
—e'a' OP q'+P'q)~ „&8.—(P'q+P'q')& .&8„[P.(q+q')8+P'. qs]& „-+[P„(q+q')e+P'„q'8]~a.

+ l e (p+p'), +e' p', l &8„-f e' (p+p') +a p') ~8, + (p -p'). (e-e')&, ~ 8
—

l (e —e') p8 —(e -e')gp~l&„.
—[(P P')~q, —(p P')„q'„N„B—+—q, (ps&a„p„'~e„) q'„(Ps&-, Pa&8, 6 . — —
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IV. FEYNMAN RULES

The effective interaction Hamiltonian to order e', which is obtained from Eq. (3.1) by taking 2, = Zz v

+g& ~+2~, and dropping its noncovariant terms is

(Ãh, ),ff — f'e-A„(H„~V„—V~H„~)+(f'ea/m')F„, H„~H, z+ f'ebF„,V„V„

+ e [A& V, + (a/m')F„zH, z] [A& V~t-A„V&t+ (a /m')( F& HJ, F„-H&~ )] &(ea-/m')'H&&H&t, H„H ~&

—2(ea/m') HqpHt Fp, Fp —~e b (Vq V„V„V—q)(Vq V„V„V—q). (4.1)

The Feynman diagrams are calculated by using the above interaction Hamiltonian and dropping the nonco-
variant terms of the propagators of Eqs. (3.3)-(3.5). The vertex functions coming from the (K~g)~ff of
Eq. (4.1) are listed in Fig. 1 and Table I.
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