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ever, Roy and Pestieau' have pointed out that the
behavior of the structure functions may be quite
different for positive and negative t.

At a formal level, the structure functions have
to scale trivially if the theory is to be acceptable.
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The spin-one mesons were described previously by means of an antisymmetric second-
rank tensor field. In the present paper the quantization is performed in the free-field case,
and also in the interacting-field case.

I. INTRODUCTION where

The massive spin-one mesons are usually de-
scribed by a vector or axial-vector field. In a
previous paper' we described them starting from
an antisymmetric second-rank tensor field T„,.
The antisymmetry was imposed as a separate con-
dition and it was preserved in the presence of in-
teractions.

Another tensor approach to a massive spin-one
field has been proposed by Takahashi and Palmer. '
The antisymmetry condition is not imposed sepa-
rately but it is derived from the Lagrangian, which
of course is more complicated than our Lagran-
gian.

We shall generalize slightly the formalism of
Ref. I to charged fields. We consider the free
Lagrangian,

(1.1)

where T,(x) = -T„„(x). The above Lagrangian
gives the equation of motion

s„s,T„-s, a, T,„-m'T„„=A„„.(&)T,.(x) =0,

(1.2)

+ a, a.5„,-m'(5„, 5,.- 5„.5„)].

Differentiating Eq. (1.2), we get

[( -m')5, „-a, a, 5„,] V,(x) -=A,„(a)V„(x)=0,

(1.4)

where U(x) is defined by'

(1.5)V„(x)=(1/m)B, T,„(x) .
Equation (1.4) is the equation of motion of a spin-
one field.

As we see from Eq. (1.5) the spin-one field is
proportional to the divergence of the antisymme-
tric tensor. In Ref. 1 it was assumed that the
fields V„(x) obey the usual commutation relations
of the spin-one fields, and the interaction Hamil-
tonian in the interaction representation K;„,(x, n)
was calculated. It was found that in S-matrix cal-
culations the (K,),ff does not reduce to -Z;I
(Matthews's rule). ~ '

The present paper deals with the quantization of
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the fields V~(x) = (I/m)B~T~„(x). In Sec. II the quan-
tization of free fields is considered. It is shown
that these fields are quantized as the usual spin-
one fields. More specifically, we find that the ex-
pressions for the energy-momentum four-vector,
the angular momentum tensor, and the charge are
the same in both descriptions of spin-one mesons.
In Sec. III the quantization of interacting fields is
discussed. Also the commutation relations and
the energy-momentum four-vector are given for
a specific interaction Lagrangian.

II. QUANTIZATION OF FREE FIELDS

The free fields are usually quantized by the
method of canonical quantization. According to
this method, to each field which appears in the
Lagrangian a canonical conjugate variable is de-
fined, and certain commutation relations of the
field variables and the independent canonical con-
jugate variables are postulated. We shall not ap-
ply the method of canonical quantization and we
shall not quantize the field T„, directly.

Let 8„, be the symmetric energy-momentum
tensor calculated from the Lagrangian under the
assumption that all fields are classical fields. The
energy-momentum four-vector P and the angular
momentum tensor M~ are given by

Pu=-i Ou4 x d x, (2.1)

Mhu=-i Mgu 4xd x

—-g xh0 4x —x Oh4x d x,

A, p, = 1, 2, . . . , 4 . (2.2)

In the quantum-field case we shall assume that
P„and ~~„are again expressed by Eqs. (2.1) and

(2.2), where all fields appearing in e~„are re
placed by operator field functions, and these opera-
tors have been arranged in an appropriate order.
This assumption, which is an application of the cor-
respondence principle, and from which the com-
mutation relations of the field operators can be
derived, is sometimes taken as the fundamental
postulate for the quantization of the wave fields. '

From the Lagrangian of Eq. (1.1) we obtain the
following expression for the ener gy-momentum
tensor R~„:

8 Ph Bug BuT 8

(2.3)

The above expression is not symmetric in A. and
The symmetric energy-momentum tensor e~„

is given by' "

where

,'[(B-,T.', —B„T'„+2B,T'„)T„,
+ (ByT + B Ty )TpK

—(B„Tt„+B„T~,)T~,) +H. c. (2.5)

P 1
ehu =HZ.pHup+ Hup Hx p

—25 huH poH pa

+m'(V', V, + V„'V, —5,„VtV, ). (2.7)

The quantity H~p of the previous equation is de-
fined by

Hh —=BhVp —BpVh .

The tensor d» is given by

(2.S)

d, , „=,'B, [5,„(T.,-T„+T„T„)

+ 2[BE(Tq,Tp, + T„,Tq, ) —B~(Tp, T„,+ T„,Tp, )],

(2.9)

while the tensors g~ and Ah are given by

g „=-V~B 8 V —8 8 V V„

(2.1O)

z„„=vt( -m')v„+[( -m')v'„]v„
——,'5 „fV~( —m')V, + [( —m')V, ] V,] .

(2.11)

Since B,V, =0, the expression gh„vanishes identi-
cally. Also the expression h~„vanishes in view of
the field equations (1.4) and their Hermitian conju-
gates. The tensor dh „ is antisymmetric in A. and

p. So 8 d4p u
8 d4 u

i =1, 2, 3 and this term does
not contribute to the integral of Eq. (2.1). We get

Pu =-i Ou4 x d x, (2.12)

i.e., the P„can be calculated from the usual ex-
pression of the energy-momentum tensor of a
spin- one particle.

The angular momentum tensor density M~„, is
given by

'k
pK p XK+ p( X p~p p pKX) &

Using Eqs. (1.2) and (1.5) we can write the expres-
sj.on e~„as follows:

0hu ehu + 8 pdh p t
+g &u+@hu

where eP~ is the usual symmetric form of the en-
h. u

ergy-momentum tensor of the spin-one field, given
for instance by Pauli, "

ehu +hu B~G»u (2.4) (2.13)
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where the quantity G „„is given by Eq. (2.5). Drop
ping the vanishing terms g~ and h~& of Eq. (2.6)
and substituting the resulting expression in Eq.
(2.13), we get

P P
Mx„,, =xqOp, —x~Oq,

+B,[x,(t."„„+d„„)—x„(C„,+d„,)]

+ de, x dKx, p
' (2.14)

Since G,„=-G,„and d„„=-d~„„,the four-di-
vergence of the above equation does not contribute
to the angular momentum M~„of Eq. (2.2), while
the contribution of the last two terms of Eq. (2.14)
becomes for A. =i t4, y. =jw4 (i ej)

(2.is)

The three-divergence term of the above equation does not contribute to the integral. Also since by assump-
tion the fields vanish at x,. = +~ and x,. = +~, the last two terms give a vanishing contribution to the integral.
If A, =4 and g =j the contribution of the last two terms of Eq. (2.14) to the angular momentum iaaf„. of Eq.
(2.2) is

d4, 4d'x=-i —,'~, T„T~,+T,, T» —8, T,4T„+T„T,, +~, T4,T4, d'x, (2.16)

which vanishes. So we get Therefore, we make the identification

Mg —-s xgOp4 —x 0~4 d x, (2.17)

q=-ie J4 x d x

as in the usual case of a spin-one particle.
The current J is given by

j„=i(H„~V~—VgH„~)+iB~(TgoT~~ —T„~Tg~) .

(2.18)

The secbnd term of the above expression is of the
form B~f~„, f~„=-f„~, which means that it does
not contribute to the charge q of the field. We get

T„„=(i/m)(B. V„—B„V.)

=(i/m)(B„V„- B,V„), (2.21)

where V„ is the spin-one part of the field V„'.
From Eq. (2.21) we get

V„=(1/m) B„T,„, (2.22)

which is the same with Eq. (1.5). The field equa-
tion is consistent with Eqs. (2.21) and (2.22).

The field (1/m)B„T„„can be decomposed into
positive- and negative-frequency parts,

=e) (H~, v, —V, H4~)d x. (2.19)
(~)—B„&„'„() =(2,)„,

The first term of Eq. (2.18) is the usual current
vector of a spin-one particle. " Therefore, we
have proven that the linear-momentum four-vector
P„, the angular momentum tensor Mz„, and the
charge q are given in terms of the fields V„by
the same expressions as in the well-known theory
of a spin-one particle. This means that the funda-
mental postulate of quantization' will quantize the
field V„as in the usual case. Details can be found
in Ref. 8. If the field T„, is real, in which case
J„=q=0, the quantization is done in an analogous
fashion.

Let V„'(x) be a vector or axial-vector field which
satisfies the Klein-Gordon equation ( —m')V„'=0.
Then its spin- one part is given by

V~ —(1/m )Bps, vp=(1/m )B,(B„Vq —Bpv„') .
(2.20)

V k + P V
P m2

Imposing the subsidiary condition

n.v„"'(k}=0,

Eq. (2.23) becomes

(2.23)

(2.24)

—B T"(x)= d'ae"'"V "'(k).
m ~ "~ (2.)'~ (2.26)

The field (I/m)B„T„„ is decomposed in a similar
fashion. The relations (2.24) and (2.25) are identi-
cal with Eqs. (4.20} and (4.14) of Ref. 8, and so
one may proceed in introducing creation and an-
nihilation operators, etc. , as in the well-known
description of a spin-one particle.
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III. QUANTIZATION OF INTERACTING FIELDS

( -m')B„T„„(x)=0

and the Heisenberg equation

(3.1)

In Sec. II we demanded that the field operator
F (x) = (1/m )B„T»(x}satisfy the free-field equation
of motion

same. We express each Heisenberg field in terms
of the auxiliary fields. Therefore, from the knowl-
edge of the commutation relations of the auxiliary
fields the commutation relations of the Heisenberg
fields can be calculated.

The energy-momentum four-vector P„ in the
Heisenberg representation is given by' ""

-iB B„T„(x)=[B„T„(x),P„]. (3.2) p„=S '(e)(p„+(5„,fd'xR;„, )S(v), (3.8)

The energy-momentum four-vector P was ob-
tained by Eq. (2.1), and then Eq. (3.2) was used
to derive the commutation relations of the free-
field operators. It was found that the fields (1/
m)B„T„„satisfy the usual commutation relations
of the spin-one fields. The vector P„satisfies
the conservation equation

5(r(x)
(3.3)

where o(x} is a spacelike surface in space-time. ' "
In the interacting-field case instead of Eq. (3.1)

we have"

where P„ is the energy-momentum four-vector of
the free fields, X,.„, is the interaction Hamiltonian
in the interaction representation, and for simplici-
ty we have chosen a flat surface o'(x) = o(t) at a
specific time t The. P„of Eq. (3.8) is conserved,
and satisfies the Heisenberg equation.

We have mentioned above a method of quantizing
the interacting fields without details, which can
be found particularly in Ref. 5. We shall apply
this method in the case in which, besides an iso-
triplet of spin-one fields, we have an isodoublet
of baryon fields g, with an interaction Lagrangian

( —m')B „T„'q = B„J,'q + B„(BqJ „' —B,J q ), (3.4) I;„,=(ig/m)B, T,'„I)y&7'g, i =1, 2, 3. (3.9)

q.[x, o] = S '(o)Q.(x)S((r) . (3 7)

The above equation implies that the commutation
relations of the fields Q,(x) and Q,[x, (r] are the

I Ilt
Bg.

(3.5)
VP

—VP

~i int (3.6}
~p~pv

and also we have the equations of motion of the
other fields which appear in our Lagrangian.
Again we want to construct a conserved energy-
momentum four-vector P„such that the Heisen-
berg equation is satisfied for all fields. We shall
follow the method of Takahashi and Umezawa. ' "
For each field Q, (x) we introduce an auxiliary
field Q, [x, (r] which is related to Q, (x) by the trans-
formation

From Eqs. (3.5), (3.6), and (3.9), we get

4„' = (ig/m)gy„7'P,

J j 0

(3.10)

(3.11)

J' = ——',"' =-(ig/m)(B„T,',&y& 7'[I))» I = 1, 2 .

(3.12}

q'(x) = q'(x i(r), (3.14)

where to simplify the notation we write (Q,[x,cr]}„l,
—= Q, (x~a). The fields (I/m)B„T„'„(x~(r) and ('(x~(r)
satisfy the usual commutation or anticommutation
relations of free fields. At equal times we get' "

Therefore, Eqs. (26) and (35) of Ref. 1 give

B T,', (x) = B,T',(x ~o) -J.'(x) - J,'(x)n, n, , (3.13)

[apr](xle) s(r'i (x'Iv)] s(x. —x') = s,, (s„',n„, + a,'„n„, n'(x-x'),

Q '(xylo), y (x'io))5(x, —x, ) = 5,„y,5'(x- x'),
where 5'„4=1—5„4, 5„',=1 —5„4 and we have no summation with respect to p, and v. From Eqs. (3.10),
(3.13)-(3.16), we get

(3.15)

(3.16)

[epTpq(x), 8'2"„(x')]II(x —x')=ai;(5] a„, +5„' 5„, )II (x —x')

+ (2ig'/m')yt(x)(e, ,„~'5„.+ B,,(r„.)y(x)B'(x- x')5„',5„', ,

{y'(x), y"(x')]5(x,—x') =5, y, 5 (x- x').
(3.17)

(3.18)
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The energy-momentum four-vector is given by Eq. (3.8). We have

P„=(P, ), +(P„), , (3.19)

(3.20)

where the free energy-momentum four-vector of the vector field (P„)„,which is obtained from Eqs. (2.1)
and (2.7) if we add the contribution of the neutral vector-meson field, is given by

(Pa) = —()/Sm )fd x[2T»»T'» — 2» T'»T'» +m*(2B„T„» B»T[—i!a B„T'„lB»T»l )]

(P„),= .'iJtd'x(q'B„y).

To express S '(o}P„S(o)in terms of Heisenberg
fields, we use Eqs. (3.10), (3.13), (3.14), and the
relations'7

(3.21)

S '(o)a, T',,(x)S(o) = S,T',',(x ~o)

= a, T',„(x)+J.'(x)+ J','n, n. ,

(3.24)

S '(v) Tt,(x)S(o) = T'„,(x i v) = T'„„(x),

S '(o)g'(x)S(v) = y'(x ~(r) =(I)'(x),

s '(o)s„y'(x)s(u) = s„y'(x~o)

=S„y'(x) —n~niyi J'2(x), (3.27)

(3.25)

(3.26)

from which we get

2 '(a)P, S(a) (P„) +(P„),+2ill=„fd"S

T„',(x}=T„'.(x~~), (3.22)

&„y'(x) = & „y'(x [(o)+n„n, y) Z'(x), (3.23)

where the current J' is given by Eq. (3.12). We
find

d X 8$TQ J 2~ 4J' J'
j= 1, 2, 3 . (3.28)

In the above equation we denote by (P„)» and (P„)&
the expressions (3.20) and (3.21) in which all fields
have been replaced by Heisenberg fields. 'Zhe cur-
rent J „' is given by Eq. (3.10).

The interaction Hamiltonian in the interaction
representation X,. „, is calculated in the way in-
dicated in Ref. 1. We find for a flat surface for
which n =(0, 0, 0, j)

(3.29)

since in our case J „', =0. Using Eqs. (3.10),
(3.24), (3.26), and (3.29), we get

illa 2 (a)f d'x'BC,.„,S(a), = ia» fd —x(Z,.„—'','.» '2). d

(3.30)

From Eqs. (3.8), (3.28), and (3.30) we get

P„=(P„)„+(P„),+ iaa, fd'x Z;„,—» fd'xi»T», 'd',

(3.31)

which is the expression for the energy-momentum
four- vector in the Heisenberg representation.
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In previous papers the massive spin-one mesons were described by means of an antisymmet-
ric second-rank tensor field. In the present paper their free Lagrangian is modified in such a
way that when the electromagnetic interactions are introduced by the minimal substitution the
mesons get an arbitrary magnetic dipole moment. The addition of other terms in the Lagran-
gian allows the spin-one mesons to also have an arbitrary electric quadrupole moment. The
covariance of the S matrix to order e is achieved by the addition of counterterms.

I. INTRODUCTION

In two previous papers" the massive spin-one
mesons were described by means of an antisym-
metric second-rank tensor field T„v. In Ref. 2 we
considered the Lagrangian

0 2
free 8&Tvy~v Tpy+ 2m T»T»,

and we imposed the antisymmetry condition T»(x)
T»(x) Th-e above. Lagrangian gives the equa-

tion of motion

~p~X, Xv ~v~g kp ~ pv= ~

Differentiating Eq. (1.2) we get

[( —m')6„„—B„B 5„„]V„(x)= 0,
where the field V„(x) is defined by

V„(x)= (1/m)s), T),„(x).

(1.2)

(1.3)

(1.4)

The field V&(x) describes the spin-one component
of a vector or axial-vector field.

In Ref. 1 we described a way of obtaining the in-
teraction Hamiltonian in the interaction represen-
tation Xh„when the field T&„ is involved. The X,
corresponding to a specific interaction Lagrangian
was calculated, and it was shown that the S matrix
coming from this Xm, is covariant to any order in
perturbation theory. In Ref. 2 the quantization was
performed in the free-field case and also in the in--

teracting-f ield case.
The magnetic dipole moment p, and the electric

quadrupole moment Q of the J~c =1 nonet of vec-
tor mesons, except the p', &, and y, are not known.
One wants a theory which allows arbitrary values
of p and Q. The Proca theory in which the electro-
magnetic interactions have been introduced by the
minimal substitution describes particles with the
"normal" magnetic dipole moment, i.e. , with p.

=e/2m. ' An extension was later made by Pauli4
and by Corben and Schwinger' to include particles
with arbitrary p. . Further terms can be added,
which allow the mesons to also have an arbitrary
electric quadrupole moment. " The values of p.

and Q we obtain if we introduce in the Lagrangian
of Eq. (1.1) the electromagnetic interactions by the
minimal substitution are fixed. It is interesting to
see if by proper generalization the tensor formal-
ism can describe particles with arbitrary y, and Q.
This is indeed the case, as shown in Sec. II.

In Sec. III the covariance of the S matrix to order
e' is examined. It is shown that the S matrix can
be made covariant to this order, if we add to our
Lagrangian some additional terms (counterterms).
The same method has been applied in the usual de-
scription of spin-one mesons. Finally in Sec. IV
the Feynman rules are given.

II. EXTENSION TO AN ARBITRARY MAGNETIC
DIPOLE MOMENT AND ELECTRIC

QUADRUPOLE MOMENT

The electromagnetic interactions are usually in-
troduced by the minimal substitution


