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We construct classes of Lagrangians which describe families of fermions containing an in-
finite number of particles. The Lagrangians depend on Rarita-Schwinger fields with k Lorentz
indices, k =1, 2, ... , which have bilinear interactions among themselves. These Lagrangians
are invariant under gauge transformations of the second kind. The physical states appear as
the normal modes of these field theories, and by suitable choices of the masses of the under-
lying gauge fields, the physical fermions can be made to lie on linearly rising Regge trajecto-
ries. The currents have nontrivial diagonal matrix elements, and also have matrix elements
between states of different spin. By considering time-ordered products of currents between
single-particle states, we are able to construct on- and off-mass-shell N-point functions in
the narrow-resonance approximation. Specifically, we give rules for calculating ~N scatter-
ing and inelastic electron scattering in that approximation.

I. INIODUCTION

In our previous paper on bosons' (hereafter de-
noted by I), we suggested that the physical prop-
erties of the bosons (masses and form factors)
could be described by considering the particles to
be normal modes of an underlying field theory
possessing gauge invarianee of the second kind.
We showed that the prinicple of gauge invariance
of the second kind generated Lagrangians contain-
ing an infinite number of fields with bilinear in-
teractions between nearest neighbors in the
Lorentz index space k. We then showed how to
choose the parameters of the underlying field the-
ory so that the physical particles lay on linearly
rising Regge trajectories, and constructed vector
and axial-vector currents made up of particles on
the m and p trajectories which obeyed the SU(2)
8 SU(2) algebra. We also gave a set of rules to ob-
tain scattering amplitudes in the narrow-reso-
nance approximation. Explicitly we pictured scat-
tering to take place as follows: A particle starts
out as a given normal mode of the underlying field
theory, and absorbs and emits external quanta
with corresponding excitation and deexcitation of
the underlying fields. We obtained the vertices by
postulating that the external quanta coupled to the
appropriate currents inherent in the Lagrangian-
the p to the vector current, the n to the divergence
of the axial-vector current.

In this paper we extend these ideas to the case
of fermions. In Sec. II we show how gauge invari-

ance of the second kind leads naturally to the study
of a particular class of first-order Lagrangians,
which are the analogs of the second-order boson
Lagrangians previously considered. These La-
grangians have the nice property that although the
field equations depend linearly on the masses of
the underlying field, the Regge trajectories for
the physical fermions (the normal modes) are a
function only of the mass squared of the physical
fermions. Thus gauge invariance seems to pro-
vide us with a special subset of possible infinite-
component wave equations - those whose spectrum
depends on nz' and not on m.

The eigenvalue problem for the masses of the
physical particles, which we discuss in Sec. III,
is similar to the boson case, and we show how to
select the masses and couplings of the underlying
field theory so that the fermions lie on linearly
rising Regge trajectories. We then introduce iso-
spin and construct the vector and axial-vector cur-
rents for the nucleons. In Sec. IV we show how the
matrix elements of these currents between parti-
cles on the trajectory lead to a power series for
the form factors in terms of Chebychev polynomi-
als of the second kind in (p p')/nP, and their de-
rivatives. One hopes that there exists a particular
choice of the underlying parameters which wi11 re-
produce dipole form factors. By assuming the
photon couples minimally to the underlying fields,
we are led to the narrow-resonance approximation
for on- and off-mass-shell proton Compton scat-
tering.
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Our treatment of m-N scattering is similar to
that of m-p scattering in our previous work; the
new feature here is that in addition to the couplings
for external m's and p's described above, we also
postulate that the nucleon couples to the baryonic
current generated by the free Lagrangian. The
procedure for constructing the scattering ampli-
tudes is based on the general idea of using exter-
nal quanta to excite and de-excite the normal
modes, and is described in detail in Sec. V. Z(x) = P q„gy&(i58„q,+ Xy,„)+H.c. (2.7)

5(ky p 5p pl k k qvl ~ ~ vkyvk+ 1 (2.6)
Vl Vk+ 1

is automatically invariant under (2.5b), since for
any tensor A, 5yyA =0 (or, in other words, yt'y'
has no symmetric traceless part). Therefore, we
can construct a first-order gauge-invariant La-
grangian essentially by contracting (2.6) with (2.4)
and summing over k:

H. GAUGE INVARIANCE OF THE SECOND KIND

AND CONSTRUCTION OF THE FERMION

LAGRANGIAN

This Lagrangian leads to the field equations

k ~ 4+1+ k-1 +4k
4

(2.8)
In I we considered the symmetric, traceless bo-

son fields y„...„(x),and constructed the quantity

(or Gk =58yk, + ekcpk in shorthand), where 5t„'~:::~k
Vj ' ' ' Vk

is the projection operator onto the space of trace-
less symmetric tensors. We showed that Gk was
invariant under the gauge transformation of the
second kind:

(2.2)%Pl'' 'pk ~ I4'' 'pk & k Pl 9k v~ . vk

provided y, , + nk yk =0. This leads to the invari-
ance of the boson Lagrangian

+ &k&k) —'G.G"1-
k

(2 3)

Gkpo: ~58 yak ++kv'4p~ (2 4)

(where G,„„-=G„.. .„„),which is the fermion ana-
log of Eq. (2.1).

Since for fermions y~ as well as» is a vector,
Gk„ is invariant not only under the transformation

gk„+Ak58„8~u„(x),
where u„(x)is an arbitrary anticommuting c-num-
ber spinor, but also under

(2.5a)

(2.5b)gk„-gk„+A.k5y„,B„B„u„(x)
if k ~ 1. In choosing which of (2.5a) or (2.5b) to
use, we are guided by the fact that

under the transformation (2.2).
From the Lagrangian (2.3) we obtain a second-

order wave equation for y„.For fermions we
would like a first-order wave equation. To con-
sider half-integral spin we let our fields take on a
spinor index e, i.e.,

9 k 4kn kg~. Pkm

which is a Rarita-Schwinger field transforming
under the (-,'k, —,'k) 3[(—,', 0)e(0, —,')] representation
of the homogeneous Lorentz group.

We then consider the quantity'

We notice that the Lagrangian (2.7) is invariant
under the translation g'- (t'+ u (x)y~ if u (x) is re-
placed by a constant [this follows since there is
no term o.,g„in (2.7)]. This leads to the con-
served current

j."(x)= -,, — =
2

'[24"-='-~ "(~ ()1
5g -Si'g

(2.9)

qk+1k5y kBuk(x)

as long as

(2.10)

(iy ~ 8 -m)u(x) =0.
This allows us to consider the following class of
Lagrangians:

g = —,'Q qkp y "(i58&/k+ eke»+spkB /k'„)+H.c., (2. 1)

We notice that j~ obeys y„jl'= ~„jI"=0.
In order to quantize this gauge-invariant theory,

we must choose a particular gauge. For example,
the Lorentz gauge is given by y„(~=0.We then
see from the conserved current B„j~=0 that 8 (~
=0. Thus in the Lorentz gauge, (" is a pure spin-
—,
' field and obeys the equation of motion

i y 8(v+ 5k & "g» ——0.

It follows that 8'(y~(„„)=0 as well. Thus, gauge
invariance tells us that there are no spin--,' parti-
cles in the theory; ("obeys the usual equal-time
commutation relations of the spin- —,

' Rarita-
Schwinger field. To quantize P, etc , it is .prob-
ably best to go to the radiation gauge and follow
the paper of Chang. ' We shall not, however, pur-
sue the question of quantization further here.

We remark that these gauge transformations of
the second kind cannot be implemented by means
of a unitary transformation. Each choice of gauge
leads to a different quantization procedure in a
different Hilbert space. As in the boson case, we

can study more general Lagrangians by'requiring
only that the field equations are invariant under
the restricted set of gauge transformations
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from which we derive the field equations

ly ~ 68(k+is. 5ygk+ sky gk+

+i&ka'y 4„+
IA,'.

+ ' 'P*,5&y(I), =0.
4

(2.12)

The Lagrangian (2.11) and Eqs. (2.12) are invari-
ant under the set of transformations

kk-Pk' k y ' ' ' l(» (2.13)

where u&(x) is an anticommuting Rarita-Schwinger
spinor with j Lorentz indices satisfying

fields

y
(N) (~) —y(N) (~)

of mass m» and spin j+—,'. Being free fields, they
satisfy

(i .S-m )p '=0, S p"'=y pN'=0. (3.1)

g Q [a(NJ) 58k J~&N) + i-l&NJ )5yak ) lq&N) ]-

Since the underlying theory has only bilinear in-
teractions, each field gk can be written as an infi-
nite sum over those normal modes which do not
exceed its maximum spin, i.e., &l)k can be expanded
in terms of the PN) for which j ~ k:

(iy ~ 9 -mq)u, . =0,
(2.13a) (3.2)

A.~~ =0, k &j. (2.13c)

To close this section, we remark that, in the
usual way, the Lagrangian (2.11) leads to the anti-
commutation relations:

((&21' ' '
V k (X ) g ( y)] — i Q))l ' ' ')1 k 5 (X y)

(2.i4)
where

)()11' ' )1 k (~)=' 5g
QB ~ho~Pl. ' 'Vy

=i)i Q)11 ')lk ((.1'''''. kyVk+1)

+ iP q 5l )'''
() ~k1'' '~k-2y~k-lg+ko

(2.14a)

For k =0 and k =1, Eq. (2.14) becomes

)i.(Pt (x), &)) (y)i = -~'(x - y)

and (2.15)

= -5),'52(x —y).

III. MASS SPECTRUM

In order to determine the mass spectrum we as-
sume the existence of a set of normal-mode free

y u,. =8 u =0.

The connection between the X~k in (2.13) and the pa-
rameters in (2.11) which is imposed by invariance
is (see Appendix A)

2(4+2)(iz„k+()k Ak'„)

(k+1-j)(k+3)(k+ j+3)
k k+2 (k+2)'

(2.13b}

Note that, by definition in (2.13), the )&', are re-
quired to satisfy the boundary condition

&&jplgl&jp') =e~'(P-p'), (3.3)

where Q is the electromagnetic charge (or the
third component of isospin for the neutron trajec-
tory). This boundary condition leads to an eigen-
value condition because it limits the allowed be-
havior of the a' "and b' "for large Q.

Using Eqs. (3.1) and (3.2) and various simple
identities which we have recorded in Appendix A,
we find the following difference equations for the
ak and bk (note that we are now abbreviating a„'N"

By demanding that the wave equation (2.8) or
(2.12) be satisfied for each component PN) sep-
arately, we find that in general the coefficients
b~"" obey an inhomogeneous difference equation
in the index k (with N and j fixed), where the in-
homogeneous term is a linear combination of the

a,'~". The a'»' themselves must satisfy a homo-
geneous difference equation in the index k. In the
case of the fully gauge-invariant theory [Eqs.
(2.8)] these difference equations are first order,
while for the partially gauge-invariant case [Eqs.
(2.12)] they are second order.

We assume that the physical states, repre-
sented by the gl&N) in (3.2), are invariant under the
gauge transformations. Thus the decomposition
(3.2) is not invariant under the transformation
(2.5b). This means that for the gauge-invariant
theory, we have implicitly chosen the Hilbert
space of the Lorentz gauge, and have removed all
the spin- —,

' modes.
The coefficients a,'"" and b~"" are related to

the wave function of the particle jiVj), and the mN, .

are determined as the allowed eigenvalues of the
difference equation that these coefficients satisfy.
The input parameters ().k and Pk are in some sense
the "potential" which governs the physical prop-
erties of the system. The boundary condition is
that the physical particle wave function be nor-
malizable, or equivalently, that
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by a~, b~"~) by b~ and m„,. bym):

m'(k -j)(k+ j+2)(k+2) . , q, ,
2(k+1)'

and

(3 4)

m„'=—(d+ j,+2).
y

(3.9)

This solution corresponds to the lowest eigenvalue.
By imposing the boundary condition that ak shall be
well behaved as 0 -~, and by using the same tech-
niques that were employed in Appendix B of I, we
can show that the excited state eigenvalues are
given by

-iP, m'(k j-+1)(k+j+3)(k+3)
2 (k+ 2)' k+2 k k+1 k k

m„,. ' = [d +j, +—2 + N], N = 1, 2, . . .Nj p
(3.10)

where

m'(k -j+2)(k -j+1)(k+j+3)
k 4(k+2)3 ! )) ))+2

im(k —j+1)n,
2) ))+1

m[k(k+2 -j)+2]
2(k+1)(k+2)

(3 5)

(3.5a)

and that the corresponding eigenvectors ak are
Nth-degree polynomials in k times the ground-
state solution (3.8). Although we cannot solve
exactly for ak"' when j cj„weknow from the work
of Ref. 4 that all trajectories in this system will
be asymptotically linear.

By using (3.6) we immediately obtain a solution
to the homogeneous form of (3.5):

(-2r)'[(k+1)!]' I
(k —j,)!(k + j,+ 2) !(k + 2 ) ! r (k + d + 2)

Equations (3.4) and (3.5) pertain to the partially
gauge-invariant theory; we get the equations for
the fully gauge-invariant case simply by setting
P, =O in (3.4) and (3.5).

Equations (3.4) and (3.5) with c~ =0 are in fact
the same equation, as can be seen by setting

(3.11)

We can now solve the inhomogeneous equation by
setting

bk =bkdk

k-&

(-1)'4a)) = gP, b„,
l=0

(3 6)
and

ek =d
(3.12)

where y and d are arbitrary parameters. Putting
j =jo in (3.4), we find the solution

(o~, ) (-»)'[(k+1) ']'
(k —j,)!(k+j,+2)!(k+2)!r (k+ d+2)

k-I
x Q (io',*)~(j,), (3.8)

E=p

Here b, denotes a solution to (3.5) with c~ =0.
Furthermore, this homogeneous equation is the
same as the one we found earlier, (2.13b), from
gauge invariance.

We note that Eqs. (3.4) and (3.5) are the analogs
of Eqs. (5.3) and (5.4) of Ref. 1 for the boson case.
The form of (3.4) is very similar to (5.3) of I, and
we follow basically the same procedure here as we
did there. In order to be able to solve explicitly
for the a~ for some particular value of j (say,
j=j,), we make the choice

&a-a 2yk

(n~, K, ,)* (k + 1)(k +j,+ 1)(k + d ) (k + d + 1) '

(3.7)
k-1

ek= +k C+
g=jp+ 1

(3.15)

where

-ic, -ic,2(l+2)'
$,E, P,m'(l-j, +1)(l+j,+3)(1+3)E„,b„,'

(3.16)
From (3.13) with k =j, we obtain the boundary con-
dition

We then find that ek satisfies the first-order dif-
ference equation:

iP, m'(k —j,+1)(k+j,+3)(k+3)-
2(k+2)' k+2 k+Z k k k'

(3.13)

The homogeneous solution to this equation is

b, 2 (l+ 2)'
, , „5„,P, m'(1 -j,+1)(l+j,+3)(l+3)

—= E~„eq„.(3.14)

The inhomogeneous solution is then

where A.(j,) is an arbitrary normalization factor.
The corresponding mass is

Cyp
+l.C =

O Q 0
Jp Jp+ j

(3.17)
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i.e., c = f, So the solution b~"0' is given by the
2p

following sequence:

»ZA
& =io

(3.18a)

d, =d,,„+Q e, ,
g= jp+1

k k '

(3.18b)

(3.18c)

There is one constant (which we have chosen to be

d, ,„)that is not determined by the boundary con-
ditions we have so far imposed.

For the fully gauge-invariant case, we set P» =0
in (3.4) and (3.5). These now become first-order
difference equations, which are easily solved;
however, the eigenvalue condition for the masses
is no longer given by boundary conditions on one
of the equations alone. Rather, we must impose
a normalization condition such as (3.3) in order to
fix the spectrum.

We have the difference equations

m( k-j)( k+ j+2)( k+)2 . ~ 'Q» y 02(k+1)'

1=qVjsp =O~jo(0)~iVqsp =0)
» i-p

= Q q»(-1)' — ', (k+ j+2)!(k-j)!
2 (k+1 '

&& (k —j+ 1)~a»~'~'+ lma»"'*b»"'k+2

(3.24)

After extracting the normalization factor ~y(j)~',
we can write this in the form

(3.25)1= l~(j)l'Z f."'(~)
k=j

Here f»e' depends on m' both through the explicit
factor (-,'m')' ' in (3.24), and also in a more com-
plicated way through the ak"' and the 50'.
case of bosons, discussed in I, we found that for
appropriate choices of the ek the limit function

f"'(m') —= llm f„"'(m')
k-+ oo

(3.26)

f"'(m') =0, (3.27)

was a simple function of m'. Then the necessary
condition for the series (3.25) to converge, namely

and

with

k+ ™kk+1 k

i(k -j+1) [k(k+2 -j)+2]
2(k+2) ' "' 2(k+1)(k+2)

(3.19)

(3.20)

could be solved to determine the allowed masses.
Here the situation is more complicated; the condi-
tion (3.2V) still in principle determines the mass
spectrum for the gauge-invariant theory, although
it is not easily solved.

IV. FORM FACTORS AND ELECTROMAGNETIC
INTERACTIONS

k g kb„„=(-i)'-'Q' = mg c» .
n,

(3.23)

The solutions are

2(k+1)' ' ' A. (j)
m'(k+2) (k -j) t(k+ j+2) t,

(3.22)
and

We treat electromagnetic interactions by consid-
ering the photon as an external field which causes
transitions from one state (normal mode) of the
underlying field to another. We assume that the
photon couples locally to the underlying fields, and
for the case of charged fields, we obtain this cou-
pling by the minimal prescription. For the La-
grangian (2.11) describing the proton trajectory,
we let

From the discussion of electromagnetism in Sec.
1V [see especially Eq. (4.9)] we see that Eq. (3.3)
implies the condition

&„g-(9„-ieA„)g
to obtain

(4.1)

)
bg

be B„a(x)

=-.' gn, [(t!,r)"'5'". g, + 0,5',"„(~0 )"'+P,(4 ~),.A"""+P.*0"' "(X4 ) ~ ] (4.2)

where the notation (4)»B»„is shorthand for
A"~"'"ka ...v~ ~ ~ vk

We notice that the interaction with the electromagnetic field breaks the underlying gauge invariance of
the Lagrangian equation (2.V), since j A is not invariant under the field translation (2.5b). The original
gauge transformations ensured the absence of spin=,' particles. However, once we introduce photons, there
will be excited nucleon states of spin=,' coming from the spin- —,

' hadron and the spin-1 photon.
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To find the matrix elements of this current between physical states, we decompose the fields g, into
their normal modes as in (3.2). The normal-mode fields have the following nonvanishing matrix elements
between the vacuum and the proton trajectory:

e iP'x (~ I/2

qvpj~g, '. ", '(x)l 0) =, ,„,"' 6„„,6,u/(p, !&),

(4 3)
&jP x m I/2

&o14'"'( )l&pj!)= 2,). . ~"' 6 6// '(p, !&).

Here u'(p, A. ) is a spinor for spin j+—, with momentum p and helicity A., as given for example by gcadron. '
[Note that in (4.3) the state leap jA& is taken to have spin j+-„jan integer, so that!& ranges fxom -j ——, to
2+2 ]

The most general matrix element of the current (4.2) is then

&&'~'A'p'I ~'(~)l»AP&

,z„, (2)T)'

The form factor is given by

&»A'p'l !"(x)l»AP&

pai "ok
lk g )&.2 ~ ~ ' Xk+ i

k

xi(a*'a (i) /'(-i)k-/p' /'+1 ~ ~ p' ku 1" /'y)k+lu
k k QI' Qj&a- I Pa

+gW &)) (i)k-/ ( i)k / 1*'-~/-'+1 . .*l.)ku&) ~ ~ ~ )/
k k P P j+I I '' jp j 2

!k-l[ k-luk+Xp 2 Pakua) ~ ~ a ya u /P P (i) ( i)al ~ ~ ojk o l+I

(i)k / -1
( ')k-/pt, pl

x u .. y y)&/+)u~1' '&/pk/+2 ''p)&k+'&]+H. c. (4.4)

8 c(p-p'). x

7T

. . .Pl u~ y
& 2+ 1 Xl ~ ~ ~ X/p)&/+ l. . .p Xk]

Q j+I

+ ig+g p' j+I ~ p' ku I'" jy k+Iy g p ~ ~ PQj+I ~ GI~ ' ~ Qj aj+2 Gk

-ib*g p' ~ ~ p' u ... .y . y k+'u '" jp j+' p koj+2 ok ol ''aj aj+I

+ 9 I g+ g * ~ ~ ~ * — wr u I ' ' j* j+ I ~ ~ kA ~k+ 1~k-le k-I k+IPG j+2 e Qkual oi i oj+ I

+ gk): g * ~ ~ ~ * u I' ' j„uQI' ' '
Ggp j+I, , Pl )&.k+Ik+ I k-IP oj+2 P ok i oj+ I

-gg* g p' ~ ~ p' u y y j+Iu I" jp j+2 ~ .p k+Ik-I k+I oj+2 ok ol ~ ~ aj oj+ I

Q'& &) P ' P u 1'''
/y /+ly u Pl /+2 pl k+1]] (4 5)oj+2 Qj+I Ql"'aj

Using Appendix C, and introducing the four-vector operators L&„' as in previous work, ' we can write this as

(j!)'(-1)'"(2j+1)'(k+1) '(j+-,', A'l j, —,'; A.', o'& (j, —,'; A., &&l j+—,'A)
Z (2v)'

x (uyt u[l((kl'(k -g)!(k+j +1) )[Dk" '"(L '(p'))(L"' L' ')'+ L'+')'L' '~)Dk/2 k/'(L(p))]-

-2P, ,((k -j -1)!(k -j+1)!(k+ j)!(k+ j+2)!)'"
x [ g g /ll (k-1&/2I ( l)/2kL(+&&L(+))D( +&1)/2kI (k+1&/2)

k-I k+1~
yg2l( g .(7j(k / l (k I)/ I (-)Pl (-) L)(k-1)/22 (k-I)/2'&!,

k+I k-I ~ ij)&.i, jAll

+ iuu (2/m)(k+ 2)'(k+j -1)!(k+ j)!(k+j +1)'/'(k —j )'/'

&( [ (u2 k f)s &( P )(Dk/2, k/2L(- &&&D(k-) )/2, (k ))/24 / )g]-k k k+ I k-I k-I /jX', jX+ 'i

+ uo~, u(4/m)(k -j -1)!(k+j )!(k -j)' '("+j+1)
r gk kg a )(Dk/2 k/2L&+&lL&-&kL&-&)&D(k-'&/ +-'

) + ( )*]]X Pgk k
— k+,gk, Pk-I (4.6)
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To apply the normalization condition (3.3) we need the matrix element (Npj j iQQP jj) =2P,5 (p -p'). Using

and

(keg I &"I,,' ' —-I,&"1.2&-'ikjj) =q(k+2)

(I&;&+I& )„..„„... =--,'[(k+1-j)(k+j+2)]'"~,, ,~..„

(L,&0')+ L&0 ')„„,„',. =R[(k+ I -j)(k+ j+2)]5~, 5„,

(4 7)

(4.8)

we obtain

nz» & jtI=go, —,(-1)'(k j 2)&(k-j)&(k+1)'

2

x ((k j—+ 1)(i a~")i'+ Rep, ,a~")&*a~",', ) + [(k+ 2)jm] Im (a,"'*5'„"+p,a"),*f)",' )J. (4.9)

For discussing the inelastic electroproduction structure functions one requires the matrix element of pro-
ton - anything:

mme X/2 ef(p'-p) x

(Nj''O'A'ij )'(x)iN =0, j =0, pA) =, 2, Q&I~5~q'kq "'$

Xj'a2, a (i)-2'(p )(2 . . .P )2, —)(2 ~ ~ ~ )(2'

kg. . .+P. . . P~k&g, " Or &P P

+P, , (&) "(a,*',a,.&P"' 'P"'O', „''P'otua, " a, ya,'„u
+a*' a p"2"' ~ p' '+'p u '" " u)] (410)

We can write the proton form factors in terms of a power series in the Chebychev polynomials of the sec-
ond kind P, (y), by using the techniques of Appendix B. As an illustration of this, we shall compute that
piece of the proton form factor [N'=0, j'=0 (i.e., spin —, in Eq. (4.10)] which depends only on the a~&0), and
which we shall call A ""'(p,p', X, A.'). In addition, there is another piece depending on the b,&R) which is
similar to A""' but slightly more complicated in that it involves higher derivatives of the P, (y). We have

e t(p'-p) ~ x
g (I/2) /

&P) P 1 2 i NE( )&/2 (2 )R

xZ~.~" "" ((p"'" "p'"p "p +p' " p' p"" p")Ia.
l

u(p' ~')y"""(p ~)

+ Rep, a,*„a,,u(p'2 A.')y, u(p) &)

x(p' '''O' "'p '''p +p '''p "'p' '''p' )).
Using Appendix B, we obtain for the sum

u(p')y "u (p)P, (0') + (p + p')'u (p') u (p)&, (&I'),

where

(4.11)

2

&, (&I') =g &i, m'k[2'(k + 1)] '
i a, i' + —Rep, a„*„a,P„,' (y),

k
&+1 2 J

P.«') =p &.m" 't2"'(k+ I)] ' la&l' —
1 Pa+2" (k+1)P), + (y —2)Pg,

"
k J

—Rel3 a"„a—&(2+1)P,"+(k+2)P „"—2(k+2)P, ,
" )I.

Realizing that ak depends on the 6k in the combination

(4.12)

g=O
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we see that we have the freedom to choose the form factor independently of the choice of mass spectrum as
determined by the combination of parameters (3.7). Hopefully, we will be able to find simple choices for
5k so that the sum over the I'k yields a simple function, such as a ale or a dipole.

While the use of minimal coupling for the proton trajectory seems reasonable, we run into difficulty as
soon as we extend this principle to the neutron trajectory. It is well known that the neutron has no charge
form factor but does have a magnetic form factor. Since in our model the neutron is made up of neutral
gauge fields, we automatically get a zero charge form factor, but minimal coupling would lead to zero
magnetic form factor also. Thus to produce a semiphenomenological neutron magnetic form factor, we
have to assume that the neutral gauge fields have magnetic moment p. and postulate a magnetic dipole in-
teraction':

Z~ ~~-Z~ ~~--'I V ~Vs'"'&.
PV

Thus we will obtain an effective electromagnetic current:

(4.14)

j"(~)= ~Ra '.(Po ""0«) (4.15)

This form of the current leads to the following transition matrix:

qv'p'q'v
l qv(x)leppy) =,p" ","' e'&'-" "

x Y'n Qvj. ' "&«(Ia'+i«-~ uv&" 'v~'*'v~'+i ~ ~ ~ *'"«+b'+i«-~ -'u»'"'~ yv~'+&p "J'+2 ~ p v«]ik VZ'''Vk tL k P P k
k

The form factor is therefore
(4.16)

(xqx'p'lq~(x)lxq~p) =, —e'&'-«"

x&&7 5&z" v«(la l2p "+'' 'p '«p ~ ~ p u &"v' ov&'u
k Vg''' Vk k

+lb
l p . . .p p v&+2. . .p v«uv& viyvJ+1p. &&vu

~j+2 &k &I' 'Pj

+ gg+g P . j+2 ~ P Vkp P g i. Vjyvj+10' pVg
k k Pj+2

+ ia*b p'vi+& .p'"«p, p u &"v' ~ vo' vy. uk k Pj+2 Vj+1 Pl' (4.17)

For inelastic electron scattering the appropriate transition matrix is j = 0 toj = j, [i.e., spin —, to spin
(j,+2)]:

i (p'- p)„mmj ~ lju(x)l&0 p j =0 ~&= 3
" "I e'~

(2«)' EE„j
x

gpss«bt'&:::&,

'«[a«'*a«(-i)~ u 'v&i'(p') vvuo(p) pi'+ ~& .p "«p„,~ p„
k

+ ( i)'"'b'Pa-u» '~'y'i'+&a v"u(p)p"&+2 ~ p"«p ~ ~ p ].k' k

For the neutron form factor we obtain
(4.18)

(p'x'lj "(x)l pA) = p2, "u(p')ov'u(p)e'"' «' gg&l, la, l'5—v&:::v«p'» p"«p„,~ ~ p„
k

Pl Pk
(4.19)

Thus the neutron magnetic form factor is

F, (q') = qZq«la«l'~'((a+1)/2«) I'«(y) (4.20)
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However, the fact that we need nonminimal coupling to obtain a neutron magnetic form factor seems a se-
rious drawback to this approach.

We close this section with a brief discussion of nucleon Compton scattering and inelastic electron scat-
tering. Assuming that the s- and u-channel poles are a good approximation to the Compton scattering am-
plitude to order e', we write the effective Hamiltonian

j 'm (x)»'""d'x.I (4.21)

We then have, to order e',

(y(k', X')N', p', j', s' out~ y(k, A)N, p,j., s in)

=&&;+—,i'e'e "(k, &)e"*(k', A.') J~d xd ye " " " "(N'p''j 's'~T(j „(x)j,(y))~Npj s) (4.22)

where for j„(x)we use either (4.2) for the proton trajectory or (4.15) for the neutron trajectory. Equation
(4.22) together with the decomposition (4.3), tells us that there are an infinite number of "narrow reso-
nances" exchanged in the s and u channels, as depicted in Fig. 1.

In our formalism, we ostensibly know j~(x) not only at q'=0 but for all q'. Since the Chebychev polyno-
mials of the second kind are complete in a limited domain, we hope that we can invert the form factor
equation [Eq. (4.12)] and find what a',"~' (and therefore 5~, P~) lead to a dipole form factor. If we can do
this, we can reproduce the success of Domokos et al. ' in fitting TV, and vW, .

Explicitly,
II'„„=-,Q g(Npjs~j (0)~N'pj''s') (N'pj''s'~j, (0)~Npj s) (2w)'6'(p q+-p').

s

The matrix elements needed for this sum are given by Eq. (4.10) or (4.1Q).

V. STRONG-INTERACTION DYNAMICS
AND m-N SCATTERING

The electromagnetic current [Eqs. (4.2) and

(4.4)] leads to transitions between all the normal
modes (particles on the fermion trajectory), and

thus amplitudes given by the time-ordered prod-
uct of two currents between physical-particle
states will contain an infinite number of interme-
diate states. Thus, if external particles couple
to these "free-field" currents, we will obtain the
narrow-resonance approximation to the four-
point function. We feel that choosing the infinite
number of parameters in the underlying field the-
ory to yield the correct mass spectrum and elec-
tromagnetic form factors is equivalent to putting
a lot of strong-interaction information into the the-
ory. Thus, we suggest that these free-field the-
ory two-current (and n-current) correlation func-
tions, sandwiched between physical single-parti-
cle normal-mode states, provide a description of
strong-interaction dynamics similar to the Vene-
ziano scheme in that it leads to the nonunitary
narrow-resonance approximation.

In our scheme, however, we are able to use the
currents to go off the mass shell. Thus in what
follows we shall add an isospin degree of freedom
to the fermions and also to the bosons discussed
in I, and construct the vector, axial-vector, and
baryonic currents. We can then deal with external
p mesons, pions, and nucleons by having them
couple to these currents. For example, we expect

(k) (k)

WXXXXXX

Xe

FIG. 1. Compton scattering with the exchange of a
Regge trajectory.

that the s- and u-channel poles in m-N scattering
will be given by an expression similar to Eq.
(4.22), with the vector current replaced by the
axial-vector current, and the pion, coupled to
B„A~, replacing the photon. In general, to com-
pute a given N-point function we treat any one of
the N particles as a normal mode of the underlying
fieM and let it absorb and emit external quanta
(which couple to the approximate currents) consis-
tent with the scattering process. The underlying
field is correspondingly excited and deexcited,
finally returning to a normal-mode state. To en-
sure crossing symmetry, we sum over the various
ways of choosing each external particle as the un-
derlyipg field in a normal mode.

To get an idea of the structure of the currents
to which the external quanta couple, we look at the
trilinear interactions of ordinary field theory,
treat each of the three factors as' an external field,
and write the interaction in the form gm, = gnxo J~.

e (k) c (k)
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Here Q&„'"'& is a four-vector created from the exter-
nal field by the appropriate use of derivatives, and
J~ is then a bilinear current which we try to gener-
alize to the infinite component case. In particular
examples, such as the vector and axial-vector
currents, there may be algebraic constraints [e.g.,
chiral SU(2) 8 SU(2)] which tell us what transforma-
tions to make on the Lagrangian to obtain the in-

finite-component generalizations of these bilinear
currents.

Before discussing n-N scattering, let us first
generalize the fermion Lagrangian to the SU(2)
case, i.e., both protons and neutrons. We do this
by simply attaching an isospin index i = I, 2 to the
field P». The new Lagrangian is then

g = —,
' p p 0~5((,.y )(is„(t+5~(~„+ipse (I'z„)+H.c.

k=o 4=1
(5.1)

(5.2a)

and

The parameters K, and p, are taken to be isospin-independent, thus ensuring the isospin invariance of &.
We obtain the vector and axial-vector currents in the usual way by considering the transformations

rl2( y ~ y cia'rl2

e i~sn tl2y
y q e&y n5r/2~

Using the usual Gell-Mann-Levy equations we obtain

(5.2b)

&."=2Zn, (&(0'y")2r'(, +0„k~'&(y'q')+&, ,[t, ,y&2~. q" ' "~+@ ""2r-'»t. ,]) (5.3a)

and

&!=l Z~.&&@'y")2&'y.&.+0~ l~'5(y "y'&')+P.- [&2.— »2y' &'2&' ""+&' ""-T'2»y'4- ]]2.
k

(5.3b)

The vector current is conserved. The matrix elements of V„andA„between physical states can be ob-
tained using the techniques of Appendix B.

Equation (5.3) and its boson counterpart (5.9) are not covariant under the gauge transformations of the
second kind. Thus, for the gauge-invariant theory the algebra of observables does not commute with these
gauge transformations. We therefore must verify that the S-matrix elements are gauge-invariant. This
will be so because the gauge transformations change at most the spin=,' components of the underlying fer-
mion fields, and the spin-0 components of the underlying boson fields. However, there are no physical
states of spin —, or spin 0 in the gauge-invariant theory. Matrix elements of the current between single-
particle states are therefore unaffected by these gauge transformations.

For the time components of the currents we get

k
(5.4a)

k
(5.4b)

where m' is the canonical momentum [Eq. (2.14a)] and m'=y'm't. Using the anticommutation relations
[Eq. (2.14)] one can easily verify that V,'and A,' obey the chiral SU(2) 8 SU(2) algebra.

We want to describe n p scattering in the narrow-resonance approximation. For simplicity, we con-
sider only the contributions from the m, p, and nucleon trajectories. The Lagrangian is

(5.5)& =2& G.„[5sP»"+ &"P~"+ ~P 'P~." --G'"1+p[r4p y( »i„p,' &+, g,'„+iP, s p,'~„)+H.c].
k k

Here the first sum represents the boson Lagran-
gian discussed brieQy in Sec. II, and treated
more fully in our earlier paper. The label a is an
isospin index, while q is a normality index in-
serted to distinguish the n from the p.

The ordinary field-theory poles in m p elastic

scattering are the p pole in the t-channel and the
neutron pole in the s channel. The t-channel pole
contains the vertices

(5.6a)
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(,»('~ P„gr"r7'g (5.6b)
~ a l~J „=r&g P, (5.10)

Setting g~„=gppf'Q g, this can be written, for ex-
ternal p,

+~(ext) .~jji

with

Similarly, the s-channel pole has the vertex

g~~,gr„r 2&(~"P -=I', (5.11)

which again we interpret ln two ways depending
on which of the two particles we choose as exter-
nal:

j& = pX 9"(p+ (y "2T(, (5.&) =Atl Q y(ext)
S p, 7

i.e., the external p couples universally to the iso-
spin current.

The vertex (5.6a) can also be considered (as is
relevant to n p scattering) as an external w cou-
pling to the divergence of the axial current, or
equivalently

g (8 P(ext)) ~ AP

A"=gy"y'pT(

or

I', = ((C r„)j"",
with

= ('Y5 2 7( )n
' s 0

(5.12)

(5.13)

with

A(' = —(p ~ x P). (5.8)

The natural generalization of these vector and
axial-vector currents is given by Eq. (5.3) above,
and for the bosons by Eqs. (6.6) and (6.10) of Ref.

&»-i+~» G»

(5.9)

A = ~ '4(G e &»-i+i »G»egqix9'g").

Here e, = 5 +, + 5 +, , is a matrix that inter-
0 j l s 1 1» I

changes the m and p trajectories.
We also want to interpret the vertex (5.6b) as an

external nucleon coupling to the baryonic current.
That is, in addition to interpreting (5.6b) as
p„'"' V~ with V the isospin current, we also write
lt as

Pr "z~g' p~= (4(,„or)~i"„

with

The appropriate generalization of the axial-vector
current is given by Eq. (5.3). It remains to find
the generalization of the baryonic current as given
by (5.10) and (5.13):

i"=r (y -'7p) 8"(Ti+ g (2~(C) (5.14)

to the infinite-component case.
We consider the following set of transformations

on the fields in the Lagrangian [Eq. (5.5)] of the
mpN system:

p„'(x)-p„'(x)+ f (x)X+-,'T'g(x) + q(x)A „g'f(x), —

(5.15a)

(5.15c)
'

g0I lf 'g =0

ig1r5 d'a=1.

These transformations generate the following ex-
pression for the baryonic current:

g(x)- g( ) xi'+„',7'f (x. )p,„(x),— . (5.15b)

4(x)- y(x) if (x)&*„-.'T-*q,.„(x).
Here f (x) is a spinor in both isospin space and
space-time, and A.

„

is a Dirac matrix defined to be

p=- = gq, g '~ (-'F~*y, ,)„+p„c& (-,'~~+q"&).+P, .[.'~&*„&(yg')].+P„*q'"" I-'~~*„5(rA,)12.
Jct —

5s f (
I» q & q»-1&»» 2 71

(5.16)

This is the natural generalization of (5.14).
p we assume that only the m, p, and nucleon trajectories contribute, we are now in position to calculate

z-p scattering by coupling the external m and p to the axial-vector current and baryonic current, respec-
tively. The diagrams are shown in Fig. 2. For example, Figs. 2(a) and 2(b) are given by the expression

y(' ' d'xd'ye '(»&'" »2'" (z (k, )N=0 j =0, q=l~T(B&A (x)j „(y))ip(p, )N=O j =0, s).
10 20

(5.1V)
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To evaluate (5.1V), we must use Eqs. (5.3) and
(5.9) for A", and Eq. (5.16) for j„„;we further
need the decomposition (3.2) for the nucleon fields,
and the corresponding decompositions (3.'I) and
(3.8) of I for the n and p fields. When we use the
piece of the axial-vector current given by (5.3),
we obtain the neutron trajectory in the s channel
[Fig. 2(a)]; when we use (5.9), we obtain the p tra-
jectory in the i channel [Fig. 2(b)].

Thus we see that in principle we can handle bo-
sons and fermions together and calculate the tree
graphs. We see that nN-mN*, etc., are known if
mN- ~N is. The major question is whether there
is a simple choice of the B„andP, leading to rising
trajectories, where the matrix elements of the
currents [exemplified by the power series in (4.12)]
sums to some simple function (say, a dipole). If
so, then it will be practical to carry out some
simple calculations. As the theory stands now,

going beyond the 3-point function looks like an

k,

(b)

kp

WEYPYP2

(c)

(e)

ki

exorbitant (and not very enlightening) amount of
algebra.

VI. CONCLUSIONS

We have shown that there exists a free Lagran-
gian field theory which describes the spectrum
and structure of the particles on the boson and
fermion Regge trajectories. The picture we ob-
tain is that the physical particles are the normal
modes of an infinite number of gauge fields having
bilinear interactions between nearest neighbors in
Lorentz index space. At the free-field level the
particles have nontI'ivial form factors.

From these free Lagrangians, we have con-
structed bilinear currents, such as the vector and
axial-vector currents obeying the chiral SU(2)
g SU(2) algebra. Since these currents have rea-
sonable properties, such as causing transitions
between all the physical states with the correct
quantum numbers, we then assumed that these
matrix elements were a close approximation to
the real world, and contained strong-interaction
information. We postulated that the tree-diagram
N-point functions could be obtained by having the
external particles couple directly to the underly-
ing currents given by the free-field theory.

Unfortunately, the matrix elements are too com-
plicated to allow us to sum them to see what a
typical 4-point function would be. It is also not
clear what role unitarity will play (in the guise of
factorization). The prescription we have given for
calculating scattering amplitudes does not seem a
priori to guarantee factorization (say, of the 6-
point function into two 4-point functions), and this
requirement will probably limit (i.e., fix or make
impossible) the choice of the infinite number of
parameters of the underlying field theory. One
might hope that a "group-theoretical" choice of
parameters would yield simple expressions for
the current matrix elements, and would allow
these problems to be further explored.

Aside from this unitarity problem, there is the
difficulty that the neutral particles are composites
of neutral gauge fields and thus are transparent to
photons unless the underlying gauge fields have
intrinsic magnetic moments. We get a zero charge
form factor for the neutron (which is good), but
have to put the magnetic form factor in by hand
(which is bad).

These problems await further investigation in
the future.

FIG. 2. Diagrams contributing to 7t' p elastic scattering.
Dashed line is external m coupling to B&A; solid line is
external proton coupling to the baryonic current j"". The
shaded line denotes a propagating sum of normal modes.

ACKNOWLEDGMENTS

One of us (F. C.) would like to thank A. O. Barut
for the hospitality of the Boulder Summer Institute



F. CQQPER AND A. CHQDQS

and Geoffrey Chem for the hospitality of the
Lawrence Radiation Laboratory during the summer
of 1971 when some of this work was done. We also

give thanks to Sidney Coleman for clarifying some
points about gauge transformations of the second
kind.

We record some useful identities relating various tensors that appear when me expand the equations of
motion. Here, as in the text, g~ is a spin-( j+-, ) free field with j symmetric, traceless Lorentz indices
p, p, &, and a spinor index n. It satisfies

(is y~-m) g~ =0

PV

The identities are

-m (k -j + 1 ) (k + j + 2 )
2(k+1)'

, (j+1), ,- m'(k -j)(k+ j+3)

(Al)

(A2)

(-im)(k —j + 1)

(
. )(k-j+1) „~ m-'(k-j)(k-j+1)

The symbol 5~ denotes the projection operator 5",~:::~&onto tensors with k symmetric and traceless vector
indices.

APPENDIX 8

From 1, Eq. (3.24), we have

G, (p p') =
2~ I pl'I p'I'&~(»

p~V y ~ p~Vyggf j.'''Ppp ~ pVy ~ ~ Vp Py Py&

where

sinh(k+1)8
h& P 'P

(Bl)

We mant to free the eovariant labels p, in 5Iv', :::~&from contractions. To do this, we letV1"~ V~

Pp-P p+ gpss

P -P +2pn&

lel'-

I&I�'(~+

~"),kp

I pl'

I pll p'I
I pll p'I p'

The following tmo expressions are crucial. Given

I pl" I p'I "F(~)=-F.(p, p'),

(B2)

where E(y) is an arbitrary differentiable function, we have, under the infinitesimal translation P -P„+~
& (p, p')-F„(p,p')+~A

l pl 'I p'I 'F'(r)p' + p "Ipl 'l p'I [m&(r) -rF'(r)]},

and similarly, under pe ps+&8,
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&„(p,p')-F. (p, p')+&'(I pl 'I p'I™1F'(~)p8+ p'81 p'I 'I
pl "[~&(r)-»'(r)]]

Repeated use of (82) and (83) and of the identity

(83b)

», (r) —r&, '(r) = -&,', (~)

leads to the following formulas:

(84)

Q +=P~I'g. ~ P~I'kQ +P2'"PkP . .p p
k-I pr k-1~ r

+ pwca (85)

and

g EX8 PtP~. ..PtIjkg CQP3 ~ ~
Pkpk V3

I /ag . I8 af
Ipl" 'Ip'I'& '

( )- 'Ipl' 'Ip'I' '& "
( )

+q q 13 Ipl Ip I & (&)p p +q3klpl Ip I &k- (A' p (86)

APPENDIX C

We want to write the matrix elements of the currents in terms of a sum over two neighboring represen-
tations of the Lorentz group. We recognize that '

u, ..., (pA)=g(j2A(/l j+2A)e ..., (Ap)u(pv),

u I" j(p'. A') = g e* I"'
j(A.

' p')u( p' I'/)(j +,'A'lj ,'/I'o').—-
+1 gt

From Eq. (A6) of I we have

2&

X ~ ~ ~ X ~

~s'il

~ ~ ~ Xj(ptgs) D(j/2j/21(L 1,(p/))[L-I I. . . Lkj]jf & '2&2~2 gj202, 0 &

3k+ I ( 1)k+1
gP &".Pk+ ~ r L, L, ] f'L,V X. ~ ~ L,ok+~1vl ~ ~ ~ vk+I [(I +1) t]2 [ vl ~" vk+lja, k+I jol. ]2+I ja, o '

Therefore
k+& fjt5"I'. .".»" e* ... (p's')e" I"'"j(p s) = ( 1)k+ /+m+1 ' ' D(m/2, m/2)sL I/vl vk+I ill'''2m s 3(m+ jI/2 [(12+1) i]2 ms', /2a2 ( (p )

&&[@,u +~. ~ ~ L,ukL, V) &L, ~ ~ ~ L, l D~ .& (J (*
lmjka2, k+I jsa2'[ vj+ I vk+llk+I jsa2, jj4o4 j4a4, js (

(C3)

(C4)

k+ 1 t 't
5vI ilkiI gs'vI"'"'vm(p's')f' (p s) — ( 1)k+ I+m+1. ' ~ ' D&m/2 m/2&(L-I(p'))

I/ y
' ' Ij k+ y P~4 ''P~ & 2 (IIt+J)/2 [ (y + 1) i]2 ms', j2 a2

We a1so have from (A13)-(A15) of I

pv L"D(L(p)) =D(L(p))m Lo

(G5)
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D(L '(p'))p„'L"= m'L D(L '(p')),

(L')kjs, k Xj-"=a'k~jj ~ss,

)k-1 js,kj's' ak jj' ss' &

(C6)

with

akj =-,'[(k -j)(k+ j+1)]'".
This leads to the following identities: Using

A =—A(kj j'AA'ao') = (m')" ' m' '(j'+ 2'A'i j' —2'A. 'o') (j 2'Ao
i
j+2'Av) [(2j+1)'"(2j+1)'/'2!&j"'/2&2k ' "(k+1)'] ',

(cv)

5

A[(k -j )!(k+j +1)!(k -j ')!(k+j '+1)!]'/' uy"k+1 2'ra u
A'a'Ao Y5

)( [Dk/2, k/2(L-1(p t))L&&+) L ( )2Dk-/2, k/2(L(p ))] (C8)

P
P — Q Xk+ 1 PLz ~ ~ XjpaZ ~ ~ ~ a r

XZX ' ~ ~ Xk+1 o ~/+Z ok oZa' ' oj 2
2

&I 5

2A[(k -j)!(k —j')!(k+ j+1)!(k+ j'+1)!]'"
A' a'Aa

)( u ray~k+1 u k/2, k/2L&+)2 L&-) Dk/2, k/2)
—1

k+1 j'A'jA ~
15

(C9)

o ~ ~ ~ o z I
P Xj+1.. .p Xk+ 1PI . . .Pr — 1 g Ak+z ) 1 ~ ~ A. ~

~z ~2' ' ~k+1 oj+1 ak 1 oz. . Oji
f5

-2(m/m')A[(k -j' —1)!(k -j —1)!(k+j ')!(k+ j +2)!]'/2uy) 2'r' u
A'O'Ao Y5

)& (D(k 1)/2, (k 1)/2 T (+) XL(+)2D(k+1)/2, (k+1)/2)ij'A', jA ~ (c1o)

p' j+' p' k+zp P u 1"' &'y —7' uXIX2 "Xk+I aj+ 1 ak 1 ok» oz ~ ~ ajI'5

= Q-2(m'/m)A[(k+1 -j')!(k+ 2+ j')!(k -j -1)!(k+ j)!]'/2uyqkv' u
Y5

&& (D(k+1)/2, (k+ 8/2L (-)2 L(+) ))D(k-1)/2)(k-1)/2) (C11)

~paZ ok pyj+Z P p~p( P u y y k+1 —Tau~Z ~ ~ ~

Z ~2s ~ ~ aj'+2 ak OZ"'aj' oj'+Z 2

= P (—4/m') A[(k -j' —1) f (k +j ')!(k -j )!(k +j + 1)!]'"

X
1

u+a u (D(k-1)/2, (k —I)/2I (+)2Dk/2, k/2)
2 "'y"

5

—z u —7'0 I ( -ol .( — )I I ( )I g(*))s(-) () (, (
)

}j'A' jA
Y5

(C12)
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g e ~ ~

P . . .P P ~
.+1. . .Pr P

—
1

~ ~ ~ Ay
)&1/2o e o /~+1 ~y+2 '+1y J I

(4/m)AI(k -j')!(k+j '+1)!(k j 1) &(k+ j)!j&/2
A'a', Aa

x ' ' —' & M(D&/2. &/21 (-&»~(&&-»/2 ~ &a-»/2)
5

j'A', j 1&&.

(C13)
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