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2 In some theories [e.g. , I. S. Gerstein, R. Jackiw,
B. Lee, and S. Weinberg, Phys. Rev. D ~3 2486 (1971)],
it can be shown that the use of i 8 in evaluating Feyn-int

man amplitudes is equivalent to the use of -iX~t to-
gether with some appropriate noncovariant propagator s.

PC
' means the interaction Hamiltonian density. )

2~The notation Q {s,u, ...z) is the set of all Feynman
graphs with simple vertices (internal or external)
s~u) 0 ~ ~ jzt
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In a class of Lagrangian field theories for Dirac spin-2 particles, the Bogoliubov-Parasiuk-
Hepp renormalization scheme provides a proof of the operator forms of Euler-Lagrange equa-
tions of motion, Noether's theorem, and Ward- Takahashi identities. Time-ordered products
for some derivatives of Dirac fields can only be defined with special care in terms of Feynman
graphs. Current-algebra Ward-Takahashi identities are obtained if 2 '" '"' is invariant under
the algebra; however, Schwinger terms are absent from these identities.

I. INTRODUCTION

In the preceding paper, ' we described perturba-
tion theory for scalar fields in terms of objects
called vertices and employed the Bogoliubov-
Parasiuk-Hepp' (BPH) renormalization scheme to
prove Ward- Takahashi identites, ' which led to
operator forms of Euler-Lagrange equations of
motion and Noether's theorem. They also enabled
us to construct the energy-momentum tensor, an-
gular momentum current operators, and internal-
symmetry currents and generators. Assuming
that the derivative part, 2 '""' "', of a Lagrangian
was invariant under a symmetry algebra, we
could prove current-algebra Ward- Takahashi iden-
tities. This is rather interesting, as the main
bulk of current-algebra' results that agree with
experiment comes from these identities.

The purpose of this paper is to extend these
results to Dirac fields, which call for some mod-
ification. We will assume that the reader is fa-
miliar with Ref. 1, on which we will rely exten-
sively.

The basic fields here are basis vectors of Di-
rac's representation' of the Lorentz group. They
are g' (a =1, . . . , 4) and their complex conjugate
g'* for each Dirac spin- —,

' particle. The generator
of Lorentz rotation in the u-P plane is the spin
matrix

sas=-, [ya t Xs]t

satisfying the commutation relation

8'= a'm'+ ~ ~ ~ + a"zo", (1.3}

where the coefficients a' are polynomially bounded
infinitely differentiable functions of space-time
coordinates. Because of Fermi statistics, the
notion of substitution needs a little modification
which consists of inserting appropriate Fermi
signature factors to every term in Eg. (2.4) of
Ref. 1. Thus for simple vertices ut—:[f, n] and
v=—[g, P] and any field Q, the substitution is

(1.4)

Denoting the sequences of Dirac fields in the two

rows above by A. and A. ', the signature factor' is
defined by

(1.5)

where r is the number of transpositions of Dirac
fields required to permute the sequence & to A.'.

[saet slav]=g'avsap+&Spsav &ass av -g'Svsap .

(1.2)

Repeating from Ref. 1, a simPle vertex is the
ordered pair [f, o.], where f is a (possibly empty}
sequence of fields' and n is an excess-subtraction
function (see Ref. 1 for definition). A vertex is
a finite formal linear combination of simple ver-
tices:
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See Ref. 1 for definitions of U&, h'~', and y ~'.
For vertices W=g, a'ur' and V=gjb'v, the sub-
stitution remains

FIG. 1. Dirac propagator.

The functional derivative and sPace time -deriva
tives are also unchanged from Ref. 1:

5W (BW
5$ ~BP

B&W—= P 8„()+g(a„a'(w'. (1.8)

The transformation vertex in Ref. 1 can be
viewed as a mapping taking every basic field to a
vertex. Thus the infinitesimal translational ver-
tex is the mapping

Q~Bp Q,

for any basic field P, and the infinitesimal Lo-
rentz rotational vertex in the n Pplan-e is the
mapping

where s~ is given by Eg. (1.1).
Feynman amplitudes are defined and renormal-

ized by the BPH' scheme as in Ref. 1. Of course,
the usual Fermi statistics is assumed. The Di-
rac propagator (Fig. 1) is chosen, after Zimmer-
mann, to be

i -g+m
(2n)' t2 —m'+ ie(9+m') ' (1.11)

so that his convergence proof applies here. The
Fey.nman amplitude for vertices W', . . . , p is
denoted by

F(w", x', .. .; W", x") .

An immediate. consequence is I.emma 1:

, 6:(W', x'; ...;W", x")
ex„'

=V(W' x'. .. B&W* «'. . .;W", x"),
=X B&g XBB„$-+s~g,

&n8
= X~B8g —XBB~)*+s ~g*,

(1.10)

which is proved in Appendix A of Ref. 1.

(1.12)

II. FUNDAMENTAL IDENTITIES AND PROPERTIES OF TIME-ORDERED PRODUCTS

Let the Lagrangian be a Lorentz-invariant vertex of the form

z=z'"+z ',
where'o

Ze- =-,'i[gPy, 0] m[@), n~—,],
and the excess-subtraction function n~„of the mass term is defined by the condition"'"

~ ";.(f,) =1.
In complete analogy to Appendix B of Ref. 1, we obtain, for simple vertices so, v', . . . , and v", the
first identity,

(2.1)

(2.2)

(2 2)

l8 ~&qv )P '. . ~ ~V
~ss=O r=0

~ ~ ~ B 5'(x —y')1 i-x p IfV
p

V
p

~ ~ ~ p V 1
i =1

xFi
QB ~ e B

'

r+1 8
Pg Pg

which differs from that of Ref. 1 by the presence of Fermi signature factor

(2.4)

(
1 i -j.

V
p

~ ~ ~
p

V
y

V

V V Vi -1
~ ~ ~
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which, similarly to (1.5), is the Fermi sign involved in rearranging the se(luence of fields as they appear
in v', . . . , vj to the sequence in v', v', . . . , v' '.

If A = (A', . . . , A") is a transformation vertex, we can as before transform (2.4) into the second identity:
8 f(J~, x'; v', y'; ~ ~ ~; v", y") = 8'(6AZ, x; v', y'; ~ ~ ~; v", y")

IJ

x 6(x —y')$(6~v', y'; v', y' ' v"' y")

+Q g (-)'( )8„&„&'(*-(")
s=l r=l

6v*
x 6:I

66
s

where the transformation current vertex is

s+1 5ZJ'A ( )r Q ~ ~ ~ 8 ~ ~ ~ 8
(( . r+ 1 ((( ((p 6s((s ~ ~ ~ s p(( ((„+ (

~ss=O r=O

and the variation SAW is defined by

5W
~ ~ ~

h ~ 6s . . . s ya ((y ((s
jfs

l
e ~ ~ g Aa yj, vl yi-l, vj+l y&

(2.5)

(2.6)

(2.7)

&0 I
T[V', (x') ~ V", (x")]

I 0) = 5'( V', x'; ~ ~ ~; V", x") .

Thus if A is a nonderivative transformation vertex such that J „and 5AZ are also nonderivative, then the
second identity (2.5) is transformed into

(2.8}

s 0

As with Ref. 1, vacuum expectation values of time-ordered products cannot be the Feynman amplitudes,
for otherwise Lemma 1 [E(I. (1.12)] and the first identity (2.4) will be in contradiction with the assumption
of the uniqueness of time-ordered products. However, if we limit ourselves to nonderivative vertices,
then there is no contradiction. Therefore, let us assume that, for any nonderivative vertex V, there ex-
ists a local operator V, (x) such that

6„ &o I T[J„'.,(x)v!,(y') " v".,(y" )] I o& = &o I T[(6,&).,(x)v!,(y') v".,(y")] I o&

n
V V— g( .", "",,)~(.-~'(

j =1

x &0 I T[(6,v').,(y )v'.,(y') v.,-'(y*'-') v.',"(y"') v"„b")]I 0&,

(2.10)Z'„.,(x) = (6,S).,(x) .
X

p

Substjtutjng this back into (2.9), we obtain the Ward TakaAashi ident-ity:

&OI T[J~, (x)v'„(y') ~ v~(y")] I0& = 0 T J„.,(x)v'„(y') ' ' ' v"„(y")
P p

2l

j =1
x&0I T[(6Av'), p(y') v,'p(y') ~ ~ ~ v,'p'(y' ')v,'g"(y"') ~ ~ ~ v.",(y")] I 0) .

(2.9)

for nonderivative simple vertices v', . . . , v". Applying the Lehmann-Symanzik-Zimmermann" (LSZ) re-
duction formula to this equation for the case where the v's are basic. fields, we obtain cether's
theorem for this A:
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We will now seek a limited extension of the previous assumption about time-ordered products. Let us
assume that the Lagrangian is separable into the form

Z = i ~ (1+b) [ [t) Pg, 0]+ 2, , (2.12)

where b represents a counterterm for satisfying the condition of renormalization, and where 2, does not
contain derivatives of Dirac fields. Consider a simple vertex with only a single derivative of Dirac field
and of the form'~

(2.13)

where w is some nonderivative simple vertex T.hen the first identity (2.4) implies

(y„) 'P(ai2(1+b)[(s" p, A), o«], x; v', y'; . . .; v", y")

( 5Z
««) )x)v)y' ~ )~ ~ )v)y

5 '

;p(, "'," "',
,)o(.—,)~((,'":

i =1

for nonderivative v's. Separating 2 as in (2.12), we find

F
~

a i(1+ f«) [(s"p, A, ), «). ](y„) '—,' w, x; v', y'; . . . ; v", y"
~

i =1
(2.14)

This obviously illustrates how the assumption that Feynman amplitudes are vacuum expectation values of
time-ordered products leads to contradiction. We may bypass this contradiction by assuming that, for
the vertex [(B„T()',A), c«] of Eq. (2.13), a local operator [(B„[t',A), o«],~ exists and its time-ordered products
are given by

(OI Q(s„[t)' A) «)']„(x)v' (y') ' ' vo" (y")] I O)

=- F([(S„iI)',A), a], x; v', y'; .. .; v", y")

n 1 i

q (~.)'Zl «« ' «-«5(x y)~l 5-' y*'"' y" " y' """'
~ ~ ~

'"" y"
I

~

i=1
(2.15)

Then (2.14) simply becomes the operator e«luation

+(((+b)(y„)"[(a"«)'A),a].,=( ', 'u,
OP

Similarly for a simple vertex of the form

[(A, 8„('),a]=+2. ( ~
(y„)~ e„q w — s„w)

5Z 6g
~ V V

we define the local operator [(A, B„g'), «).], by

(Ol Tj[(A., B„iP'), u], (x)v,' (y') ~ ~ ' vo (y )] I O)

= F([(A, s „p'), «). ], x; v', y'; .. .; v", y")

j) (Y])) g v«v«v«-1 ( y ) I 5'p
i =j.

(2.16)

(2.17)

i. i -1, i+1

)
K ~p)V). . .~$ ~V



PERTURBATION LAGRANGIAN THEORY FOR DIRAC FIELDS. . .

for nonderivative v's, and obtain the operator equation,

+/(1+/)(//) [(A, /////'), //]„=( .' //)
i /)p

(2.19).

As a simple illustration, take u) = 1; then (2.16) and (2.19) reduce to the Euler Lag-range equations of
motion:

, t5@ tbsp
'Ebspk p &~4

"(()/ ()]/w (~p) /

(2.20)

(2.21)

III. ENERGY-MOMENTUM TENSOR AND ANGULAR MOMENTUM CURRENT OPERATOR

The current vertex corresponding to the infinitesimal translational vertex t„[Eq. (1.9)] is defined by
(2.6) and (2.12) to be

(3 1)

Its second identity (2.5) can be stated as
n

F(J'„"-g„,Z, x; v', y'; ~ ~ ~; v", y") = -i Q 5(x —y') 5'(v', y'; ~ ~ ~; s „v', y'; ~ ~ ~; v", y") . (3.2)

To transform this into an operator identity, note that all simple vertices in J„p and 2, except those of the
form [T()y„s,(, 0] or [B„gy„g,0], are nonderivative. Now

and

5Z ), 5Z[5p 1/4/ ] 2 '(1 b) // 5s A

p
Fy py

baked
//Vypy (3.3)

5S g 5g
2i(1+b) " bs g

"~ 59 g
" '~)

Hence applying the definitions (2.15) and (2.18),

&0l T[(J&", (x) —g„,k,p(x)jv', p(y') ~ ~ v",p(y")] l 0) = 5'( J'„' —g„„g,x; v', y', ~ ~

+ 5x —g $ 'Uyg
8

~ .v", y")

5v'

~&
()(4/,*„.-/„/. ))

(3 4)

Defining the energy-momentum tensor

e„„-=(Jg~),p-g„,Z.p,

t
' 5v i i+l . n n+

I
(4gvp yvyp)4 / y; v, . . . ; v, y

~ 5$

(3.5)

(3.6)

and differentiating (3.5) by x„, we transform (3.2) into the Ward-Takahashi identity for 8„„:
„&oIT[e„,(x)v.'„-(y') "v".,(y")] I »

~ n

0 y ~1 y1 ~ ~ ~ ~ -1 yi-1 4g y y y

gt
+ 4a, -~~ y'

op

-i g 5(x-y'), ', , &ol r[v!p(y'). "v".p(y")] lo&,
Bp

(3.'7)
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where the v's are nonderivative. This shows" that the spatial integrals of 9„yield" the momentum op-
erators P, which generate the group of translations. Of course,

[p„,v, (x)]= -is, v,~(x)

for any nonderivative v. It also follows from (3.V) that

(3.8)

&[8„„(x)g(y)]= —' is 5(x —y)(-,'g„, + s„„)p(y)—i&(x —y)s, g(y) ~ (3.8')

Similarly, the angular momentum current operator is

(3.9)Z „„~(x)= x„e„s(x)—xse„(x)+ (J'„~&),~(x),

where s„z is the transformation vertex given by (1.1). Z„8 define angular momentum generators M„8,
which have the following commutation relations with any nonderivative vertex v:

[M„~,v,p(x)] = -i[x„sav~(x) —x 8s „v,p(x) + (5, Bu),p(x)].

Finally, we note that the operator corresponding to the Lagrangian vertex is"
(3.10)

pp Q
g

+
g

+ cCJ pp (3.11)

so that

Z, =O,

if 2, is linear in both g and $.

(3.12)

IV. INTERNAL SYMMETRY AND CURRENT ALGEBRA

Internal-symmetry transformation vertices are known to be linear in Dirac fields. Therefore, looking
at (2..12), we find that, for such a transformation vertex A, the current vertex. JA does. not have derivatives
of Dirac fields. Their Ward-Takahashi identities can easily be constructed from the second identity (2.5),
and, from these identities, again we find"'" that the spatial integral of J, ,~ is the corresponding generator
of the symmetry.

To discuss current-algebra' results, we easily obtain Lemma 2 (similar to Lemma 2 of Ref. 1):
If A and I are two nonderivative transformation vertices with zero excess-subtraction functions and

linear in Dirac fields, and if

then

+derivative
A (4.1)

(4.2)

Thus for a symmetry algebra of transformation vertices, with zero excess-subtraction functions, sat-
isfying (4.1) for each A in the algebra, we obtain the current-algebra Ward-Takahashi identities:

(0~ T[J„,(x)gr, (y)v', (z') ~ v," (z")]
~ 0)

=(Oi T[s"JA. (x)Z„.p(y)v', p(z') ~ ~ ~ v",p(z")] i 0) —i5(x-y)(0i T[(Z r Al) (y)v', (z') ~ ~ ~ v"„(z")]i 0)
I

—i g 5(x —z') (0~ 7[Jr„,~(y)v", (z') ~ (5~v'), (z') ~ ~ ~ v",~(z")
~ 0),

i =1
(4.3)

where the v's are nonderivative simple vertices. Because the currents do not contain derivative of Dirac
fields, there are no Schzvinger teems. '

V. CONCLUSION

We have extended the formulation of perturba-
tion theory of Ref. i for scalar fields to cover Di-
rac fields, and have, as before, derived Ward-

Takahashi identities, Euler-Lagrange equations of
motion, and Noether's theorem in operator form
without recourse to equal-time canonical commu-
tation relations. The currents under discussion
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include those of Poincare invariance and internal
symmetry. The content of current algebra is
obtained from Ward- Takahashi identities if Z

'"""'"'

is invariant under the algebra in question.
Contrary to the case of scalar fields, we are

able to define local operators not for al/ vertices
involving derivatives of Dirac fields, but only for
those with a single derivative of a Dirac field and
of the particular form given by (2.13) or (2.17).
Furthermore this is possible only if Z has the

form (2.12). Thus in order that operators may be
definable for vertices (2.13) and (2.17), 2 ' (apart
from counterterms) does not have derivatives of
Dirac fields. As it turns out, this suffices for
constructing the energy-momentum tensor oper-
ators and the angular momentum current oper-
ators. Another consequence of this restriction on
2'"' is that Schwinger terms are absent from cur-
rent-algebra Ward- Takahashi identities, if the
theory has only spin- —,

' particles.
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