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Under the assumption that the time-ordered products are given by Feynman rules with
Bogoliubov’s renormalization scheme, it is shown that the operator forms of Euler-La-
grange equations of motion and Noether’s theorem for a wide class of perturbation Lagran-
gian theories for scalar fields are valid. Ward-Takahashi identities for currents in Noe-
ther’s theorem are also proved without recourse to equal-time commutators, and current-
algebra results follow naturally in a subclass of Lagrangian field theories. Covariant
Schwinger terms are present in these identities and their nature is determined.

I. INTRODUCTION

The usual text-book Lagrangian field theory® is
formulated in terms of products of field operators
at equal space-time points, which, because of the
distribution nature of field operators, are not well
defined. The Euler-Lagrange equations of motion
and Noether’s theorem are not only relations be-
tween ill-defined products, but also their deriva-
tion rests on the use of formal functional deriva-
tives on these products. Therefore, the usual
theory is not much better than a prescription for
the scattering matrix. We say “not much better,”
because this formal theory has proved to be a use-
ful guide® for constructing symmetry currents and
generators of symmetry transformations. A not-
able example is the free-quark model from which
the theory of Gell-Mann’s® SU(3)xSU(3) current
algebra is abstracted. The usual prescription is
that we “quantize” the fields, the Lagrangian den-
sity, the currents, the equations of motion, and
Noether’s theorem of a classical field theory, but
we do not quantize.the classical derivation of the
equation of motion, nor that of Noether’s theorem.
We will call this kind of field theory formal. From
the quantized current occurring in Noether’s
theorem, one then shows formally that the canon-
ical commutators imply that the spatial integral of
the zeroth component of that current is a generator
of the corresponding transformation. Renormali-
zation is then nothing but a further prescription in
the scheme to bring some otherwise infinite
quantities finite. Hence the relationship between
the scattering matrix and the Lagrangian density
is, at best, formal.

Zimmermann® has shown that, if normal products
are defined properly in the A* theory, then the
Euler-Lagrange equation of motion is a conse-
quence of Bogoliubov’s renormalization.>~” The

|o

proof bears no resemblance to that in the classical
theory at all. Lowenstein® further advanced the
power of this renormalization by showing that
quantization of the classical energy-momentum
tensor in the same theory, when properly inter-
preted with regard to the subtraction scheme,
yields operators with appropriate properties. In
this paper, we will show that, in a wide class of
Lagrangian field theories for scalar particles,
Bogoliubov’s renormalization scheme provides a
justification for the prescriptions and consequences
of the formal theory. Not only do the Lagrangian
and current operators exist, but also their rela-
tionship in the classical theories (such as the
Euler-Lagrange equations of motion, Noether’s
theorem, and how the currents are constructed
from the Lagrangian) have their exact counterparts
rigorously valid in operator form.

The “products” of field operators at equal space-
time points will be formulated in terms of objects
called vertices, which can be likened to generali-
zations of Zimmermann’s definition of normal
products.* Vertices will be defined purely algebra-
ically for scalar particles in Sec. II, and their
space-time derivatives and functional derivatives
will also be introduced algebraically. In Sec. III,
Bogoliubov’s renormalization will be sketched for
Feynman amplitudes of vertices, and two funda-
mental identities of Feynman amplitudes will be
stated in Sec. IV. Then on assuming that Feynman
amplitudes are time-ordered products of a quan-
tum field theory in a limited sense (Sec. V), these
identities are transformed into Ward-Takahashi
identities,® which under suitable conditions yield
generators of transformations on the physical
Hilbert space. The energy-momentum tensor
operators and the angular momentum current op-
erators will also be similarly derived in Sec. VI.
Section VII will show that current-algebra Ward-
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Takahashi identities follow naturally under cer-
tain general conditions.

II. VERTEX: DEFINITION AND OPERATIONS

We will begin by introducing the concept of a
basic field. Let there be a finite-dimensional
representation of the Lorentz group decomposable
only into scalar subspaces. Generalization to in-
clude Dirac’s spin-} subspaces will be obvious,
but a slight complication necessitates its defer-
ment to a later communication. Let ®
={¢',..., ¥} be a set of basis vectors of this
representation. A member of ® is called a basic
field. A formal derivative’® 8, -+-8, ¢ of a basic
field ¢ of any order # is called a field, and let the
set of all fields be &.

Next the concept of excess-subtraction function
will be introduced. As its name implies, it will
play an important role in specifying the number of
subtractions in Bogoliubov’s renormalization pro-
gram.’”" Let I denote the set of all non-negative
integers, and define 1,={1,2,...,N} for any posi-
tive integer N. For N=0, define I,=d, the empty
set. Also define Sy={U:UCI,} for each NEI. A
mapping

a: Sy-I

is called an excess-subtraction function of order
N if it satisfies the following two conditions:

(1) RCSCIy= a(R)< a(S),

(ii) «(S)=0 if S is either empty or has only one
element.

A simple vertex is then defined to be the ordered
pair [ f, a], where f is a (possibly empty) sequence
of N fields f;€ &, and where o« is an excess-sub-
traction function of order N. N is also called the
order of the simple vertex. A simple vertex is
said to be trivial if f is empty, and it will be de-
noted by 1. If f has only one element y, we will
* simply denote!

¥=[9,0]. (2.1)

(AFNRNDFTY) it RO =g
YP®) = {p(cPRND) it RNDF =g

(K]

The set of all simple vertices will be called V.
A finite formal linear combination? of simple ver-
tices is called a veriex:

W=aw!+++ +aw",

where the w’s are simple vertices and where the
a’s are called coefficients and are polynomially
bounded infinitely differentiable functions of
%, (1 =0,1,2,3). Note that apart from the pres-
ence of excess-subtraction functions, a vertex
resembles a polynomial in fields. We will intro-
duce operations on vertices which will further
illustrate this analogy.

Letw =[ f, ] and v=[g, 8] be two simple ver-
tices of order N and M, respectively. Let 3 be a
field and define

Uy={j:j€ly,f;=4}.
For each j€ UY, define a sequence (%, ...,n%,,_,
by replacing f, (which is @) in the sequence f with
the entire sequence g:

fos 1<is<j-1
h(if)52 Licjery JSEi<j+M-1 (2.2)
S ieyrry JEM<i<SN+M -1,

Also for je Uy, define an excess-subtraction func-
tion Y of order N+M- 1, which mainly carries
the information of o and 8 but which also has a
“memory” of the ejected f; (=¢), as follows. Let
FY and ¢¥ pe two mappings that map elements of
f and g occurring in ¥ to their original positions.
That is,

F(j)(i)= 7 for 1<sisj-1
“)i-M+1 for j+M<i<N+M-1

and
GW@)=i-j+1 for j<i<j+M-1.

Let ©°” and 2 be their domains. Then for
RCIy.y-1, Y(R) is defined by

(2.3)

AFPRAD*) U LD +8 RN D) otherwise .

The substitution for simple vertices w and » and
field 9 is the vertex

w

oy
For vertices W=y ,a'w? and V=3 ,b'+', the sub-
stitution is

U) = Z) [h(i)’,y(])] . (2.4)

ieU]’;"

T

The functional devivative of W by y is then simply
defined as
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and the space-time devrivative of W is
oW

o, W= —_—

=5 (5

A transformation vertex A is a sequence of M
vertices A® (a=1,...,M), where M is the total
number of basic fields. Given any vertex W, the
variation of W under A is

apz/)> +Z}(aua‘)w‘. (2.7

2 W
GAW=Z_><53 aul---a”sA“>. (2.8)
s=0 My

a
aus¢

An infinitesimal translational vertex t, is a trans-
formation vertex with components

£5=0,9", (2.9)

and an infinitesimal Loventz votational vertex o,
in the ap plane is defined by

088=X050%— X0 ,0%, (2.10)

where X, is the function X (x) =x,. These defini-
tions are consistent with the transformation of
scalar fields under the generators of the Poincaré
group.

III. FEYNMAN AMPLITUDES OF VERTICES

Let £™ be a vertex with constant coefficients and
let £™ transform like a Lorentz scalar:

60a6£int =Xa33£int_XBaa£int . (3.1)
Given 7 nontrivial simple vertices w?,...,w", the
vertex £™ determines a set Dw?,...,w") of

Feynman graphs. Each graph consists of »n ex-
ternal points (in one-to-one correspondence with
the w’s) and a number of internal points (each cor-
responding to a nontrivial simple vertex in ;£™).
Fields of different simple vertices are paired so
that none is left alone. Each pair is joined by a
line. Different pairings give rise to distinct
graphs. Figure 1 is a typical Feynman graph.

Given a connected Feynman graph I", the unre-
normalized integrand I+({f}, €) is obtained as usual,
except for a slight modification of the propagator
(due to Zimmermann!®) which is

i@2m) 12 -m? +ie(T2+m?)] 1. (3.2)

Here [ is the 4-momentum carried by the corre-
sponding line, and m is the mass of the particle
for this line. As usual, a derivative 9 x of a basic
field appearing in a simple vertex introduces a
factor il,, where [ is the 4-momentum carried by
the corresponding line away from the vertex.
Every simple vertex carries a factor (27)%
Bogoliubov’s renormalization program*=7 will
now be sketched. Let y be a subgraph!® of I" and
let v=[f?, a’] be a simple vertex contained in y.
Then there is a unique set S” of integers such that

[f,a] [9,8]

N 9, /

FIG. 1. A typical Feynman graph.

ieS’efi€y. We define the symbol
a’(y)=a’(s"). (3.3)

To this subgraph v we assign a subtraction num-
ber

6(y)=d(y) + 25 &’k , (3.4)

vey

where d(y) is the dimension of y (obtained by a
simple power counting of momenta, including
those of integration). More transparently, one
determines 8(y) by finding all the fields in y and
reading off their contribution to 6(y) from the ex-
cess-subtraction functions. Hence the name ex-
cess-subtraction function. This marks our depar-
ture from Zimmermann’s normal products,* where
a’(y) is only dependent on v.*® A venormalization
part of T' is a one-particle irreducible subgraph
(of T') whose subtraction number is non-negative.
AT forest U is a sequence U,,...,U,, of renor-
malization parts of I" such that i< j implies either
U;CU; or U;NU,; =@. Then the venormalized
Feynman integrand is defined to be

QI £ €)= 3 [—13@m]e e [8@D|
Ued (D)
(3.5)

where & are the n— 1 independent external mo-
menta, £ are the integration momenta, U(T") is
the set of all T forests, and %7 is the sum of the
first 6(y) +1 terms of the Taylor series of I in the
external momenta variables of y.’* This Taylor
series is expanded around the point where the ex-
ternal momenta of v are zero. Then the integra-
tion of the renormalized Feynman integrand over
integration momenta ¢ yields (in the limit €~0) a
well-tempered distribution . over test functions
of momenta &%, ...,%" "

Fr@w?l, ..., w" kY ..., k" ) =lim |dERIL(k, &, €).
r +

e (3.6)
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Multiplying this by 8(2 %) we obtain Fr as a distribution over test functions of momenta %%, ...,k™

F ot BY ... wh k")sa4<:2 k‘)Fr(wl,..., wh kY ..., B, ‘ (3.7
=1

Its Fourier transform is

n 47,1
Fr(wt, x4 ... 0", x")ff[ﬂ éﬂ}; e"‘""i] Fr(w, kY .. u RY). (3.8)
s

If T is disconnected, say I'=U,I', where I', are connected, then & is defined to be the product of the
connected components: )

Fr=I1%r, . 3.9)

Summing over all graphs in D(«w", ..., w"), the Feynman amplitude is

F(wt, x5 ... 0" 2= 2 St ALt Y, (3.10)
TeD(wh, . eny ™
if none of the simple vertices #', ..., #" is nontrivial. Although the summation over I in D(w', ..., w"
may not converge, we will assume that it does. If some of the simple vertices in #', ..., w" are trivial,
¥ is defined as before, but only on the nontrivial simple vertices in «*, ..., " and their corresponding «'s.
For vertices W'=3),d"/w"/, the Feynman amplitude has a straightforward extension: :

F(WL, xl . . W x™=) 00, (Ha”i(x‘)> Feotdr, xt; ... w4, (3.11)
i1 dn \i=1 ’
The Feynman amplitudes are readily seen to be invariant under simultaneous permutation over
(W, ..., W" and (x%, ..., x"). Another simple property is Lemma 1:
i, F(WL, x4 .. W, %)= F(W, &Y. .. 0FWE xh L W ™), (3.12)

Bxu

This is analogous to Lemma 1 of Ref. 8, and will be proved in Appendix A. Because £™ js a Lorentz
scalar, ¥ is Lorentz-invariant:

n
2o FEW x5 6,

i=1

W ES W T =0, (3.13)

if the W’s have constant coefficients.

IV. FUNDAMENTAL IDENTITIES OF FEYNMAN AMPLITUDES

Noether’s theorem in classical field theory is a simple identity that follows directly from the Euler-
Lagrange equation of motion. In our formulation, neither exists as yet, but we will show that our formu-
lation is such that their analogs are valid. For this purpose we will develop two identities on Feynman
amplitudes.

First of all, let us introduce the full Lagrangian vertex £. It is of the form

£ =ghin . gmass, gint (4.1)
where
g =373[(0,9% 2%4°), 0], (4.2)
== (9", ¢9), ame], 4.3)
and the excess-subtraction function of the mass term is defined by the condition
a™s(L)=2. (4.4)

£ has constant coefficients, as described in Sec. III. Apart from the excess-subtraction functions, the
analogy of the Lagrangian vertex to classical Lagrangian density is most obvious. It is also readily seen
that £ is a Lorentz scalar:

RS XN AN S ) (4.5)
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The fivst identity of Feynman amplitudes is

é rZi%(-)'(f,) [ﬁ(a,.l seed, (‘—"""—53”1.5.% T

;338 +0ed, Bi(x y‘)$<v1 § ( L
= _ Y S LA
i By By LI ] ’ Gaul . ..ayszp

T '“3,13141>, %oty v y")

8y, ..-apsw),y‘; cees v",y')]:O,

(4.6)

where w andthe v’s are simple vertices and is abasicfield. The proofofthis identity willbe reserved for the
interested reader in Appendix B. We will convert this to a more useful form. Repeating it M/ times, one
for each A® of a transformation vertex with constant coefficients, we obtain the second identity:

9 Ay opl. . YN on
EE}’(J“,x, Vet VY

= (6L, x; V9. . VYT

—if)[é(x—y‘)ﬁ(V’, Y508V V)
i=1
ol s i ‘ oV?
+§1 ,2(_)1(7’>8“1 . -auré"(x—y')EF(V‘,yl; cels <W oy, " 'aﬂs-Aa> TS y")] ,
(4.7)
where
© s
Jﬁsgg(_)r (i: i) By, * 100y <EEW$":_~W By, " 'ausAa> (4.8)

is called a transformation curvent vertex, and is defined for each transformation vertex A.

V. TIME-ORDERED PRODUCTS AND WARD-TAKAHASHI IDENTITIES

It is usually assumed that the renormalized Feynman amplitudes are the vacuum expectation values of the
time-ordered products of a local quantum field theory. By virtue of their definition, the time-ordered
products are undefined at equal-time points. However, there are two compelling reasons why it is desir-
able for them to be well defined everywhere: (1) The power of the Ward-Takahashi identity® of time-
ordered products in quantum electrodynamics lies on those terms defined at equal space-time points; (2)
Ruelle!” and Steinmann'® have shown that if the time-ordered products are well defined everywhere and are
Lorentz-covariant, and if the analytic continuations of their vacuum expectation values in momentum space
satisfy certain generalized unitarity equations (Steinmann’s relations), then they define a local quantum
field theory of which they are the time-ordered products. Hence we will assume that the time-ordered
products are well defined everywhere and are Lorentz-covariant.

Now the Feynman amplitudes are well defined everywhere and they are Lorentz-invariant. Whether they
satisfy Steinmann’s relations or not is beyond the scope of this communication. So we will assume that
they are the time-ordered products of a field theory, but only in a limited sense. To be precise, letV,,
be the set of all simple vertices containing at most mth derivatives of basic fields, and let §,, be the set
of those vertices which are formal linear combinations of only simple vertices inv,,. Vertices in G, are
said to be nonderivative. Then for any vertex Vin §, we assume that there is a verfex operator Vop (%)
which is a local operator-valued distribution on the Hilbert space C of physical states, and that the vacuum
expectation value of a time-ordered product of vertex operators Vi (x?), ..., V&H(x™ is

O T[ Vip(x) oo VE(xM]|0) = F(VE, x%;...; V™ x™). (5.1)
The more general assumption that this equation is valid for V’s belonging to §,, with s >1 will be shown to

be inconsistent with the previous assumption that the time-ordered products are well defined everywhere.
Letting all vertices but one, say V', in Eq. (5.1) be basic field simple vertices, the usual Lehmann-
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Symanzik-Zimmermann (LSZ) reduction formula’® then determines the matrix elements of Viy(x') between
in- and out-states. And so we find

2 V(1) =(0, V) (1) for VESS, (5.2)
and
(X, V)op(x) =x,Vop(x) for VES,. (5.3)

Let us make the further restriction that the Lagrangian £ belongs to §,. Then every term in the second
identity (4.7) can be translated into the language of time-ordered products:

Ei— O] T[op () V(3 + + + V5 (™]]0)
H

=(0| T[(8,L)op(¥) Vop(¥*) * - - Vo (¥")]]0) =i ‘i}:lﬁ"(x—yi)(o [TV () -+ (87 V)op(¥*) + - - Vep(y™)]]0)

< 4 i 101y, .. oV!
+i 4z=>18”6 (x-v )<0‘T[Vop(y ) (68u¢°

A“)op (y)- - V&'p(y")]' 0> ‘ (5.4)

for a nonderivative transformation vertex A with constant coefficients and for vertices V?,..., V"€g,.
[Note that, under our restrictions, J/}, 6,£, and 6,V belong to §,, so that Jgop, (5y£)op, and (5, V%), are
well-defined operators.] Since £€§,,

a_f 0L
Ju ‘<5au¢a

A“) , (5.5)

in complete analogy with Noether’s current of classical field theory. 6,£ is also analogous to the classical
variation of £ under an “infinitesimal” transformation A. To bring this equation to a more familiar form,
let all V¥ be basic fields and apply the LSZ reduction formula.’® We then find that in (5.4) those terms in-
volving 6 functions do not survive; therefore

9
ox, (U [ fop (%) | @) = (T ] (5,£)0p(x) | &)
for any in-state & and any out-state ¥. Hence we have the operator identity:

M fop (%) = (8 L) (%) - (5.6)

If we recall that J,’}op and (5A£)op are the analogs of the classical Noether’s current and the classical varia-
tion of £ under A, it is evident that this identity is the operator analog of the classical Noether’s theorem.
The analogy to classical field theory does not stop here. If the transformation vertex A has the particular
form #°=1 and =0 for a+s, then (5.6) reduces to the operator analog of the Euler-Lagrange equation of
motion:

i (%—s)opu) -( f(fs)op . (5.7)

Returning to (5.4), let us substitute B“J{,‘op for (6A£)Dp, and obtain a generalization of the Wavrd-Takahashi
identity®:

= (01 T[Ty (D V(6" - V(v 110}
[

- <0

i :‘L:‘,lapﬁ(x—yi)<0 lT [v;,,(yl) . (

0>—z‘ z 8(x =y )OI TIV () « - <67 o))+ - - VI (y™]|0)

0>. , (5.8)

3 n
T3 T (V401 V50"
xu

s5v?
69, ¢°

A7) G- Va0

We will also call this the Ward-Takahashi identity.
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It is well known that the formal theory based on equal-time commutators® also yields (very simply)
similar identities, with the important difference that there the Schwinger terms?®! (terms proportional to
spatial derivatives of 5 functions) are noncovariant. This is to be expected, because the time-ordered
products in the formal theory are defined with the aid of the step function of time, and hence the time-or-
dered products are noncovariant. Although the existence of Schwinger terms can easily be demonstrated?®:
in the formal theory, their nature is very much undetermined.?? So for practical purposes, they are usual-
ly assumed to be absent from covariant time-ordered products (cancellation with seagull terms which are
also noncovariant). However, in the identity (5.8), terms proportional to derivatives of 6 functions are both
covariant and completely specified. We will call them covariant Schwinger terms. In operator form, they
are

5

iauﬁ(x—y) (67—(‘;;
n

and the corresponding vertex
oV
O | a)
(éau o

depends only on V and A.
For £ invariant under A, that is,

A“>op(y) ,

5,£=0, (5.9)
then from (5.6)
8" J 0 (x) =0, (5.10)

and Ref. 23 shows that an operator G(J &) can be rigorously defined on the physical Hilbert space if there
are no massless particles. G(J é‘p) corresponds to a refined definition of the usual integral f dixJd Q(x) in the
formal theory. After Lowenstein,® we can further show that under the condition (5.10) the Ward-Takahashi
identity (5.8) requires G(J,) to be the generator corresponding to the transformation vertex A:

[G(T3p)s Vop(2)] = =i(8, 1), (x) (5.11)

for any vertex Ve §,.

Now, the description of symmetry is clear. Let there be a Lie group of linear transformations on the
set ® of basic fields. This group determines a Lie algebra of linear transformations on ®. For each ele-
ment of this algebra, one constructs a transformation vertex, which in turn determines a transformation
current operator. The Ward-Takahashi identity for this transformation current operator then describes
how vertex operators transform under this element of the algebra. If the Lagrangian vertex is invariant
under this element and if there are no massless particles, then the corresponding current operator deter-
mines a generator. If furthermore the Lagrangian vertex is invariant under the entire Lie algebra, then
these generators generate a representation of the Lie group on the physical Hilbert space.

We will now end this section with a discussion on why (5.1) cannot be assumed to be valid over a wider
class of vertices. Suppose that Feynman amplitudes are time-ordered products of vertices in §,. Then
Lemma 1 and the Ward-Takahashi identity (5.8) say that

(o 0)={0 T[aa—%Jﬁo,<x>vap(yl)-~- 7207] o)

+covariant Schwinger terms.
However, the time-ordered products are assumed to be well defined everywhere; hence a contradiction.

1[5 st (V409 Va )

VI. ENERGY-MOMENTUM AND ANGULAR MOMENTUM TENSOR OPERATORS

To study the energy-momentum tensor, we obviously consider the infinitesimal translational vertices
t, [Eq. (2.9)]. Now t2& §,; hence we cannot make use of the Ward-Takahashi identity of Sec. V. So we
return to the second identity (4.7) and obtain

3 n s
7 TV -8 s VY. V) =i ’Z)lé(x—y‘)ﬁ(V‘,yl; cee30, VE L V).
B =

Note that J,/v and £ belong to §,, and so (J{¥), and £,, are defined. Let V'€ §,; then Vj, and (8, V'), are
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also defined. Hence

K] . i i n n
3. QT Va0 -+ VG M110) = =i 23 0(x =y )OI TV 07+ 2, Vap(y) + - VE6M1I0) (6.1)
i =

where

0,,(0) = () op(¥) = & 4y Lpl) (6.2)
is the energy-momentum tensor operator. Equation (5.11) then shows that the operators

P,=G6,) (6.3)
satisfy

[Py, Vop(¥)] = =8, Vop(x) VVES,.

Hence P, are the energy-momentum operators and generate the group of translations. This implies a
wider range of validity; that is,

[P,, 0(x)] = -ia,0(x) (6.4)

for any local operator O(x).
Let us next study the infinitesimal Lorentz rotational vertices [Eq. (2.10)], and see how they will lead
to the angular momentum operators. Recall that £ is a Lorentz scalar [,Eq. (4.5)] . Hence

Jip=Jt, (6.5)
which also implies that the energy-momentum tensor is symmetric,

O,5(%) =654(x). (6.6)
By definition (4.8) the current vertex for 0,4 is

TpeP=Xod B = Xgd}" 6.7

and so for nonderivative vertices V',..., V", the second identity (4.7) yields

2

axu

FneB, x; Vi, 9Y .. 5 VLY =T ~Jpr + X058 - Xgd o £, 43 V4, 9% 00)

-i {_Z}lé(x—y‘)f}’(vl,y‘;. L T AN PR AN R

Then making use of (6.5),

% O T2 s (D VEHGY - -+ V()] |0) = =i :go(x—y'><01:r[v;,,@l>-~ (Bo 5 Vo) - VI, M1 10),

(6.8)
where
Eu aﬂ(x)zxaeus(x) - xﬂepot(x) (6.9)
is the angular momentum cuvvent opevator. The angular momentum opevators
M p=G(Z 0p) (6.10)

are therefore generators of Lorentz transformations on the Hilbert space, and for any nonderivative ver-
tex operator Vp,

(Mg, Vop(0)] = =i(6 s Vgp() . (6.11)

We wish to stress here that the energy-momentum tensor operators and the angular momentum current
operators are specified by the Lagrangian vertex. Attempts have been made to alter the energy-momen-
tum tensor in the formal theory for the purpose of symmetry,** or to improve® it so that its trace is soft.
To achieve this, terms are added that contain second derivatives of fields. The corresponding procedure
here is therefore to add to the Lagrangian vertex extra vertices that contain second derivatives of basic
fields; but then £ will no longer belong to §,. That also takes the transformation currents J ﬁ out of §,.
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Therefore we can no longer define £,, and Jﬁop, and the nice connection between Lagrangian, currents,
energy-momentum tensor, etc., will be lost. In other words, our Lagrangian vertex cannot simply be
altered. i

VII. CURRENT-ALGEBRA WARD-TAKAHASHI IDENTITIES

The current algebra of Gell-Mann® is usually formulated in terms of equal-time commutators of pairs of
currents which correspond to a basis of the Lie algebra. Since equal-time commutators may not exist, we
have to look for an alternative description of current algebra. It is well known that nearly all results of
current algebra follow from the intermediate step: the current-algebra Ward-Takahashi identities. We
have seen that Ward-Takahashi identities follow naturally from the Lagrangian and the transformation

vertices in our formulation. Therefore we will investigate when our formulation yields those identities
for current algebra.

Let us introduce some notations and a lemma. The sum of those simple vertices in £ that contain de-
rivatives of basic fields is a subvertex, which we shall call £drivatie, T,et A and I be two nonderivative
transformation vertices. We define their commutator?® [II, A] (which is also a transformation vertex) by

5¢°
Lemma 2: If
(1) all basic fields are Bose fields,
(2) the Lagrangian £ has at most first derivatives of basic fields,
(3) gderivative has only zero excess-subtraction functions,
(4) A and T are two nonderivative transformation vertices with constant coefficients and zero excess-
subtraction functions, and

n”). . (7.1)

(5) 6A£deﬁvative =0, (7.2)
then
GAJ}::JEF'A] . (7.3)

This lemma will be proved in Appendix C.

Lemma 2 precisely specifies the condition for current algebra. An algebra @ of transformation vertices
is defined to be a set of nonderivative transformation vertices with constant coefficients and zero excess-
subtraction functions such that it is closed under the commutator (7.1). For each A€ @, there is a cur-
rent operator Jij,. If £%™™ has zero excess-subtraction functions and if it is invariant under the alge-
bra @&, i.e.,

5A£deﬁvaﬁve=0 VAER, (7.4)

then Lemma 2 says that the Ward-Takahashi identities for these currents are

5%: O] T[JTop (T3 o) V(1) + - VI (2™ ] [0)

:<0 IT [-8-% J[ll\cap (x)JIIIIop(V)V:p (zl) °te V(?p (Z"):l 0> —lﬁ(x - y)(O I T[(J,[,n'A])op(v)Vép(Zl) M VZP(Z")] |O>

—i :Zjl 8(x = 2" )OI T[T 0 Vip(2") + - (87 V) (&) - - - Viip(2™] | 0)

0

A7) @ v

+iau§(x— y)<0 'T[<63f¢“ JI Au>op(y-)V§p(zl) cee VI (zn):\

) i
T[J},’op(y)vf,p(zl) cee <68 :ftb" 0> . (7.5)
The only difference between these identities and those of the formal theory is that here the Schwinger
terms are again both present and covariant. In order that current-algebra Ward-Takahashi identities for
a particular Lie algebra, say SU(3)xSU(3), be valid, the basic fields must be a basis of a realization
(linear representation included) of the algebra, for then an algebra of transformation vertices can be
constructed from this realization. The details for SU(3)x SU(3) will be described.in a forthcoming paper.

n
+i 3, 8,0(x— z’)<0
=1
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VII. SUMMARY AND DISCUSSIONS

The vertices introduced in Sec. II are analogous
to products of fields at equal space-time points,
but with information contained in the excess-sub-
traction functions on how subtractions are made in
their Feynman amplitudes in Bogoliubov’s renor-
malization scheme.*”" They are generalizations
of normal products.? Instead of formulating a La-
grangian quantum field theory by starting with an
ill-defined Lagrangian density operator and de-
riving from it the Feynman rules for time-ordered
products (and hence of the scattering matrix), we
have made the following four assumptions:

Assumption (1). Any vertex in §, determines a
local vertex operator.

Assumption (2). Feynman amplitudes converge
as sums over all allowed Feynman graphs, and
£ is used for constructing Feynman graphs.

Assumption (3). A Feynman amplitude for a set
of vertices in §, is related to the time-ordered
product of their respective vertex operators.

Assumption (4). The Lagrangian vertex belongs
to 8, and satisfies the restrictions of Sec. IV.

From the above assumptions, follow these con-
sequences:

(1) The Euler-Lagrange equations of motion are
valid in operator form.

(2) Any nonderivative transformation vertex de-
termines a transformation current operator,
which satisfies Ward-Takahashi identities, but
with covariant Schwinger terms.?” From this
follows the operator form of Noether’s theorem.

(3) The energy-momentum tensor and angular
momentum current operator can be similarly ob-
tained, and they in turn determine the generators
of the Poincaré group.

(4) If £%* hag only zero excess-subtraction

functions, and is invariant under an algebra of

~transformation vertices, then the current-algebra

Ward-Takahashi identities for this algebra are
valid.

Note that nowhere are equal-time commutation
relations required. Yet without them, we have
obtained, by graphical means, interesting con-
sequences that, in the usual formal theory, follow
from equal-time canonical commutation relations.

Another significant deviation from the usual
theory is that we have used here i£™, instead of
-23¢i" | for constructing Feynman graphs, even
though e may contain derivative couplings. Our
use of :£™ has two advantages: (1) Lorentz co-
variance is guaranteed, and (2) we can prove
Ward-Takahashi identities, and the operator form
of Euler-Lagrange equations of motion and
Noether’s theorem. Hence if we require the equa-
tions of motion to be valid in operator form, we
naturally will have to use ;£™, and not -3¢, 2

If modifications on Feynman amplitudes can be
found, which can be analytically continued to some
domain in the space of complex momenta, and
which satisfy Steinmann’s relations,'® then these
modified Feynman amplitudes define a quantum
field theory of which they are the vacuum expecta-
tion values of the generalized retarded products.
Then assumptions (1) and (3) become consequences,
and will be no longer needed as inputs. The Ward-
Takahashi identities then may also be expressed
in terms of these generalized retarded products.
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APPENDIX A

To prove Lemma 1, it is sufficient to show that for w =[(f,,...,fs), al, ©' =[g?, #’], and a connected

graph T in Dw, 2%, ..., "),

N
ik, Frw,v', ..., 0"k q" ..., q"™Y) =lZ)Fr1(w‘, v VSR G g, (A1)
=1

where w' =[(f,...,8,f;,.
we will first state Lemma 3:

Let u=[(g,,-..
Dt, vt . ..

) 71")) where ui :[(gv LR ’augi’ ..

'Et“v‘)z;c({m=('zz;;)t5<v>c<{z}>,
i i=1

=1

,&,), al] be a simple vertex, let ¥ be a connected graph in D(u, v*, ..
>0, and let G{1}) be a function of all the internal momenta {1} of y. For i=1,...

..»fx), @] and ' is obtained from I' by replacing f; by 8,f;. For this purpose

., v") such that 5(y)
,7, define y* in

.»&,),al, by replacing g; in y by 8,g;. Then

where lL is the momentum carried by g; away from u. For the proof, note that 5(y?) =6(y) +1, and that

20111} is an external momentum to y.
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We will now prove Lemma 1.
Let U=(U,,...,U,) be aT forest, and define a set R of integers by the relations

iERES,ET,.
Then for €R and for j=1,...,m, 5(U}) is independent of {. Therefore in the expression
i i ;
iZJR[__ta(Um)]. . [_ta(t/;)] LIy,

we can bring the summation sign };.p across [=£5UR]. .. [-t5UD], and then, applying Lemma 3 to the
resulting expression, we obtain

5 [_ta(u‘;n)]. o[-t LGy =3 [_té(vin)] e [_ts(vé)] l:,[—tawl)]lr . (A2)

ieR icR

Since for i € R, 1}, is not an external momentum to Ui, and since 8(Ut) =5(U,),

t 80P =1 4%@L for i R. (A3)

From this and (A2), we have

N N
Z;l[_t 8. .. [—¢3UD] LIp= S[=50R] - o [—502)] 1L [-t500]r . (A4)

i=1

Since (U,,...,U,) is also a T forest, by repeated application of (A4) we find

N : N
Z}[_ts(vin)] e [_té(Ub] lpifr =<EZL>[_t6(Um)] e [_ta(tm]lr = <Elf1)‘mr (A5)
i=1 i=1 i=1

for a I" forest (U,,...,U,).

Next, .we will enlarge the notion of a forest. Let Z(I') be the set of all one-particle irreducible subgraphs
x of T such that (1) 5(x) =—1 and (2) at least one f,€ . An extended T forest U is a sequence (Uy,...,U,)
satisfying (1) for a=1,...,m, U, either belongs to Z(T') or is a renormalization part, (2) a<b = either
U,CU, or U,NU,=%, and (3) there exists an integer C such that (a) U.€Z(T) and (b) U,€ Z(I)=U,DU,.
Then for any extended T forest U, there is a set R, of integers satisfying i€ R, = f,; € U, (where U is de-
fined as above); therefore for such i€ Ry, (U,...,U}) is a T'* forest.

Consider the expression

i i

Z) [_té(Um)] oo [_t5(U1)] l,{]Ir

feRU
for the above extended I forest. By the same argument leading to (A5), we find that this is equal to

i i

iz; [_tS(U,,,)] e [_té(tfc)] l:l[_ts(vc_l)] e [_té(ul)][r .

eRU
Again we find 5(U%),...,5(U%) are independent of i. Therefore we can bring Z}ieé across the factors

[—£8UR]. .. [-£3UD], and, realizing that EkRUlL is an external momentum to U, and that 8(UL) =0, we find
that the Taylor series t%0%) of one term only is zero; that is,

ieé)v[_té(tl:n)].. -[—tavi)]lf,lr=0 (AB)
for any extended I forest U=(U,,...,U,).
Finally, il}I} is theunrenormalizedintegrand I'ri for @', ',..., "), so that
N N
N®Iri=iy, ¥ [-t%Om]e e [—t30T 1k,
i=1 i=1 vew(rd

Defining U 4(T") to be the set of all extended I" forests U with Ry, =S, then
N

‘Zf)(ﬂlriq'(Z) IR DD Z;)[_thn)]--~[—t5<"§)]z'1r. (A7)

i=1 UeW(I) SeS, UegT) ieS

By (A5) and (A6) we therefore obtain
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N N
z;mr,-=¢(zz;)wr,
i=1 i=1

from which follows (Al).

APPENDIX B
Let

akin=0
and (B1)

amss(L)=2.
For a simple vertex

w=[(fy, ... )], (B2)
define the notation

v =9 (w w)—(é;'c]jn—- 9 w)

#\60,¢ 60,0 |
=[(f1 - f 3 929),11, (B3)

where A satisfies

_Jn(R) if N+1€ R
MR)_{"(R*{NH}) if N+1€R" (B4)
Let I be a graph in D(7, ¢!, ..., ¢"). For general-

ity, we will not distinguish between internal and
external simple vertices. So let the simple ver-
tices in T" be 7, u,y, ...,2z. Without loss of gen-
erality, assume 9%¢ at 7 is joined by a line L to
the simple vertex #. Let % be the external mo-
mentum at 7 and let / be the momentum carried
by L away from u. See Fig. 2. Then the unrenor-
malized integrand of I" has the form

i
Ip=—l2 lT:—;ﬂ-gI, (B5)
where we have omitted the infinitesimal term in

the propagator.
The renormalized integrand is

P ) :
®r= veu(r) yIsIU[ el omtl B9
Let
s= <6°§;'“ w)= -m?[(f, ¢),A'] (B7)

where A’ satisfies

1y J(R) if N+1€R
A (R)_{n(R—{N+1})+2 if N+1€R" (B8)

From I', define®® I''e®(s, 9, ..., 2) by changing
9%¢ to m2¢ in I'. See Fig. 3. For y€T, define
¥’ similarly. So

FIG. 2. A graph I in D (v,u,y,...,2).

IT [-°0] 5 i —1.  (B9)

(RIFI=—WI2 E
UeUT’) yeU

Now (B4) and (B8) imply
o(y)=0(y') Vy€ET.

It can easily be seen that
w(r)={v’: vew(my},

whereas #°® and #29" act on the same momentum
variables. Therefore
RIp =Ry, =~i 2, D [-29]1. (B10)
Ueu(T) yeU
Before proqeeding further, we need two lemmas.
Lemma 4: Let T and LET be defined as before,
and let a renormalization part yu of T be such that
uNr#gand pNu+g, but L. See Fig. 4. Then
if Z,(T') is the set of all I" forests each containing
My
> II[-#9)1=0. (B11)

UeZ”(I") yeU

FIG. 3. Derived graph I'’in D (s,%,y, ..., 2) .



K=2

FIG. 4. Particular renormalization parts u and y of T

Proof. u,=pU{L} is also a renormalization
part. The forests of Z,(I') can be partitioned into
disjoint pairs of the form (U, U;) where i, & Ubut
K, € U; and otherwise U is identical to U,. Then
the proof consists of showing that the contribution
of such a pair to the left-hand side of Eq. (B11)
vanishes. In fact this contribution is

[=280m] o oo [=8034 )] [1 = £80D)] [—£3 )]
X[=230 -] oo o [<£50D] 1, (B12)

where y;=p and (oY, ...,y™)=U, k+lis an exter-
nal momentum to . Let the rest of the external
momenta be p,,...,p;. Then

té(p)[_tﬁ(y,-_l)]. .o [_t‘s(h)]l

is a polynomial in 2+, p,,...,p; of degree &(u),
that is, a polynomial in &, p,,...,p, of degree
5(u). Now the external momenta to p, is &,

D1y ..., and 6(u,)= 6(p) (because of the nature
of excess-subtraction function). Therefore,

[1 = 5] [=£30] [=f303=1] o« o [—£30)] [ =0,

and so (B12) vanishes. Q.E.D.

Lemma 5: Let I" and L €T be defined as before,
but under the restriction that there is another line
L,€T also joining 7 and ». Then

> II[-#9]1=0. (B13)
UcuT) yeU
Proof. Let 0 be the subgraph consisting of L
and L, only. Then its degree 6(c)> 0. a(T) can be
partitioned into disjoint pairs of the form (U, U,)
where 0 €U, but € U and otherwise Uis identical
to U;. Like the proof of the previous lemma, we
will prove this one by showing that the contribution
from any such pair to the left-hand side of (B13)
vanishes. In fact, writing
; :
I= -————llz_mz G, (B14)
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where [, is the momentum carried in L, and G is
a function of momentum variables other than Z,,
this contribution is
[=£30m] oo o [—£502)] G[1 = £5@)] 2 (B15)
12-m
Now #3(9) acts on the external momenta of o; there-
fore

£5() i _ i
112_m2 llz_mZ:
and hence (B15) vanishes. Q.E.D.
Returning to our original objective, we find
that if T satisfies the restriction of Lemma 5,
then (B10) reduces to

MF—(RII"I:O. (B16)

For T not satisfying the restriction of Lemma 5,
then Lemma 4 and (B10) yield
QI -QIp=~i 35 TI[-°0]1, (B17)
UeU () yeU

wheret,(T') is the set of all T forests, each not
containing any renormalization part p as de-
scribed previously and shown in Fig. 4. For each
ycT, define y’’ by removing the line L and com-
bining 7 and # into one simple vertex. See Fig. 5.
Let us consider the following restrictions of £
and ¢}, ..., v" in order of increasing generality.

(1) If there is only one ¢ and no 8,¢ in #, then
for T not satisfying the restriction of Lemma 5,

—f{/bu
12
T esa((w lw),y,...,z),
I=Iru, (B18)
and

o(y)=0(r""). (B19)

FIG. 5. Derived graph I'”.
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o

The last equation is valid because of the excess-
subtraction function of a substitution. Again #5®
and #30'" act on the same momentum variables.
Also, u(I’)={U"": UEN,(I")}. Therefore the
right-hand side of (B17) is simply

-i ) I I[-t39]I= —i ®lp; (B20)
Ueu, (') yeU
that is,
(RIF_(RIFIZ_i(R-IFII- (B21)

If £™ and v, ..., v" do not contain derivatives of
¢ (but each may have more than one ¢), then for y z
each graph T'€D(7, v, ..., v") either (B16) or
(B21) is valid. On summing over all graphs in
D(7, v, ..., 0", we therefore obtain

FIG. 6. Graph I’ for « containing 85¢.

_ _ 6£int
EF(?"—S,k; vl)ql;---;v"’q"):g (_6? w 7k;vlyql;'~-;v"yq"
LI ov’ ; v
i FloY qY . | w), ka0 ). (B22)
i1 6¢

(2) If there is only one derivative 8¢ but no ¢ in %, then the line L connects 8g¢ of the simple vertex
u to 8%¢ of 7 (Fig. 6), and I has the form

i R i LA .
IF:—l2 om? leAB= A TT—m? (‘Z_EZQE-ZkB)AB’ (B23)

where @, ..., @¥ are the momenta carried by f,, ..., f, away from 7. See Fig. 2. Now
i .
L o 1947

is the unrenormalized integrand of a graph A*8 (Fig. 7) in

3_)([(f1;---,aﬂft;---:fmaz(p)’k]’(5;_:4"4))93’1--',2),

(55514) o

y z

FIG. 7. Graph A!8 in

- 5 in 6
:DQf(fi, ey O Sty s Sy 820), A1, (6al;¢‘d>’ ¥, ...,z). FIG. 8. Graph 78 in :D(T’(éz';;¢ ¢
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i

12 = m? A°

-2

is the unrenormalized integrand of a graph I1? (Fig. 8) in

— ou
53(1’, <35—5$ ¢>,y,...,z).

So by applying (B21) to I,:8 and Iyx separately, we obtain

N ,
(RII*'-(RIFJ=—1'E E[(R.IA‘B"—ikB(R.IHB"]. (B24)
t=1 8

If £and v, ..., v" contain at most first-order derivatives of ¢, there will be additional terms in (B22) due
to graphs in which 8%¢ is joined to 84¢ of another simple vertex, and these additional terms are given by
our last equation. Therefore, on summing up all graphs, we have a generalization of (B22):

?(7’—8 kb vt ql. st q")=§ <&l’l—! w>+(6£im (3 - ik )W) k; vt ql‘. ;0" q"
» ’ 9y ’ 5¢ 638¢ B B8 ™ ’ 9 ’
= M 5vt . ;
—lg(vl,ql;...;(-éa w>+(m (as-zke)w>,q'+k;...;v",q">. (B25)‘

(3) In general, where the order of derivatives of ¢ in £™ and v, ..., »" are not restricted, Eq. (B25)
is easily further generalized to

== 5L
M F| —2———
32:2)[ ((68ﬂ1.”alls¢

(8511 _iklil.). °° (aﬂs—ikﬂs)u)): kot gty 500 q")

a ovt , . . \ i can gn) |
—l‘ZleF(vl,ql;.“;(Wl(anl_zkul) (3us-zk"s)w>,k+q,...,v,q =0,
(B26)
whose Fourier transform is the first identity (4.6).
APPENDIX C
We present here the proof of Lemma 2. .
Assumptions (1) to (3) of Sec. VII imply that £ has the form
. s N
gleave = 530, ¢+ e 00, pMFRLEL (), (C1)

n=2

where F’s are polynomials of basic fields ¢. [Because of assumption (3), a vertex can be written as a poly-
nomial of fields without confusion.] For integers i and # satisfying 1 <i<n< N, define

Gh = FU i U5 (9)8,, 0% 0, 9%t - €2
Then for any set of integers I,, ..., Iy such that 1<I,<mn,
N
oo~ 70,¢°Gra" . (c3)
n=2 )
Hence assumption (4) implies
derivative g 5Aa bGI i a
PETT [og w0 2wt 00
Combining this with 6,£%%™" =0 [assumption (5)],
: A .
GAG,J,‘=—GT)¢ Gl for 1sism<N. (c4)

By assumption (2) and the definition of transformation current vertex,
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n
@hHH=2 2 Gitre,

n=2 §i=1
and we find
N n X
A0 = 35 2 [(6AGHT* + GiE6, T
n=2i=1

Using (C4), this becomes

oW Z) Z[ 7 GHfT%+ G;#%—b ”]

YUK-MING P. LAM

- 2 Deu(r, Al =i,

n=2i=

[Ke)

(C5)

(7.3)
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%1n some theories [e.g., 1. S. Gerstein, R. Jackiw,
B. Lee, and S. Weinberg, Phys. Rev. D 3, 2486 (1971)],

(I!Ci"' means the interaction Hamiltonian density.)
2The notation D (s,u, ...z) is the set of all Feynman

it can be shown that the use of :£™ in evaluating Feyn- graphs with simple vertices (internal or external)
man amplitudes is equivalent to the use of —i3c™ to- Sylhy ey Z.
gether with some appropriate noncovariant propagators.
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In a class of Lagrangian field theories for Dirac spin-3 particles, the Bogoliubov-Parasiuk-
Hepp renormalization scheme provides a proof of the operator forms of Euler-Lagrange equa-
tions of motion, Noether’s theorem, and Ward-Takahashi identities. Time-ordered products
for some derivatives of Dirac fields can only be defined with special care in terms of Feynman
graphs. Current-algebra Ward-Takahashi identities are obtained if plervative 5o invariant under
the algebra; however, Schwinger terms are absent from these identities.

I. INTRODUCTION

In the preceding paper,! we described perturba-
tion theory for scalar fields in terms of objects
called vertices and employed the Bogoliubov-
Parasiuk-Hepp? (BPH) renormalization scheme to
prove Ward-Takahashi identites,® which led to
operator forms of Euler-Lagrange equations of
motion and Noether’s theorem. They also enabled
us to construct the energy-momentum tensor, an-
gular momentum current operators, and internal-
symmetry currents and generators. Assuming
that the derivative part, £%™ of a Lagrangian
was invariant under a symmetry algebra, we
could prove current-algebra Ward-Takahashi iden-
tities. This is rather interesting, as the main
bulk of current-algebra® results that agree with
experiment comes from these identities.

The purpose of this paper is to extend these
results to Dirac fields, which call for some mod-
ification. We will assume that the reader is fa-
miliar with Ref. 1, on which we will rely exten-
sively.

The basic fields here are basis vectors of Di-
rac’s representation® of the Lorentz group. They
are §°® (a=1,...,4) and their complex conjugate
$°* for each Dirac spin-3 particle. The generator
of Lorentz rotation in the a-3 plane is the spin
matrix

saBE%['yar'YB]; (11)

satisfying the commutation relation

[saB’ spu]=gausﬂu+gﬁusav —8auSBy —88vSay -
(1.2)

Repeating from Ref. 1, a simple vertex is the
ordered pair [f, ], where f is a (possibly empty)
sequence of fields® and « is an excess-subtraction
Junction (see Ref. 1 for definition). A vertex is
a finite formal linear combination of simple ver-
tices:

W=aw'++++ +a"w", (1.3)

where the coefficients a® are polynomially bounded
infinitely differentiable functions of space-time
coordinates. Because of Fermi statistics, the
notion of substitution needs a little modification
which consists of inserting appropriate Fermi
signature factors to every term in Eq. (2.4) of
Ref. 1. Thus for simple vertices w =[f, a] and
v=|[g, B] and any field ¢, the substitution is

gﬂi{ - g’¢,f1""7fj-1> i) ,,0)
(54) v>_,zw<¢9f1:""fj—l’g [h Y ]

jeUg

(1.4)

Denoting the sequences of Dirac fields in the two
rows above by A and A’, the signature factor” is
defined by

( ;;‘) (), (1.5)

where 7 is the number of transpbsitions of Dirac
fields required to permute the sequence A to A’.



