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Eikonal techniques are used to present an alternative treatment of the electron's Green's
function in the presence of a plane-wave field. After studying the propagation of an electron in
a prescribed electromagnetic field we eikonalize the corresponding Green's function. If the
external field is chosen to be a laser field, the approximate eikonal propagator is turned into
an exact one: Additional assumptions characterizing the eikonal approximation are automati-
cally satisfied. The methods employed are Schwinger's pre-source-theory functional tech-
niques.

I. INTRODUCTION

This paper demonstrates the close resemblance
of Schwinger's original proper-time calculations'
and eikonal techniques. ' We discuss the specific
case where the electron is traveling in a plane-
wave field. This particular example allows a
closed-form representation of the corresponding
electron's Green's function and was solved by
Schwinger some time ago. Nevertheless, we re-
gard it as meaningful and useful that the proper-
time method can be directly related to eikonal
techniques. The connection between the two ap-
proaches is exhibited by comparing Schwinger's
transformation function with our eikonalized elec-
tron's Green's function. Eikonalization is thereby
termed the process by which quadratic terms in
propagators, which carry low momenta, are ne-
glected. We will demonstrate that this additional
assumption is trivially satisfied if the electron is
traveling in a laser field. It is in this sense that
the eikonalized propagator is turned into an exact
one. We present our approach as follows: In Sec.
II we give a brief review of Schwinger's functional
formalism of quantum electrodynamics (QED).'
Then we discuss in some detail the electron's
Green's function with external field A „(x) in Sec.

III. In Sec. IV we perform a chain of variable
transformations to produce our final expression
for the eikonalized electron's propagation function.

II. FUNCTIONAL FORMULATION OF @ED

The Lagrangian that describes electrons in the
presence of an arbitrary external electromagnetic
field reads, in standard notation,

(1
yu

(
—. 8 - eA. q —mph'.P P

The field equations and commutation relations are
given by

1y" —. 8 -eA ~+m $(x)=0,
z

t

g(x) y" ——. & -ueAu+m =0,

Pr(x, x,), T)'(x', x,))= y'5(x -x'), g = )() y, .
Here g is a second-quantized field operator and

Au(x) is an external c-number unquantized field.
Defining
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where q, q represent anticommuting c-number
sources, we then get a set of coupled functional
differential equations:

I' 1 1 n 1
~m+y —. 8 —,, s=q(x) s+eyA(x)—

z z 6qgx)

1 1 ~
m —y —. 8 s =q(x} s7 6q(x)

eel(x) (
——.

~

e,i 6q(x) &

which can be solved by

G, (x, y lA) satisfies an inhomogeneous differential
equation, namely,

1
m+y —.s-eAl G, (x, ylA)=6(x-y).

j
Introducing the symbolic operator

1
IIu = —. Bu - eAu

z

(2.4)

the Green's function equation (2.4) can be cast into
an algebraic operator equation

f
S = exp i I

——(-i eyA) = exp(inc, q)N„g 5q 5g

1
exp[inc, (1-eyAG, ) 'q]

V

xexp[-Tr ln(1 —eyAG, ) '].
This solution can also be written in the form

or

.,n =™yn -(,n)

(m+ yn)C, [A] =1.
Inverting Eq. (2.5}yields

(2.5)

1
S = exp( inc, [A]q}expI. [A],

V

(2 1)
C,[A]=(m —yn)i ( dse ™Ne"'~"'.

0
(2.6)

where

G,[A] =G, (1 —eyA. G, ) ' (2 2)

Schwinger has calculated the coordinate repre-
sentation of the exponential operator in Eq. (2.6},

I [A] =-Trln(1 —eyA, G, ) '. &x(s) lx(0)"& =&x lU(. ) lx-&, (2 'I)

Tr indicates the complete diagonal summation in
coordinate and spinor space. N„ is a normaliza-
tion constant denoting the vacuum persistence
amplitude; Q, is the free electron propagator. In

short,

where the operator

p( )
- lme8

describes the development of the system governed

by the "Hamiltonian" K,

(o, lo )", -„,=x„, &l.=-, =0 =1' ~ =-(yn)',

therefore

Thus, our generating functional reduces to

S = exp(inc, [A]q],
which can be used to derive all electron's Green's
functions in presence of A„(x). The lowest one is
the propagator

1
G, (x, ylA) .

in the "time" s. The solution of the corresponding
equations of motion is obtained in some special
cases by merely using the known algebraic proper-
ties, i.e., commutation relations of x„, II„, etc.
Schwinger gives an explicit expression for the
transition amplitude in the case of a plane-wave
field:

Eq„=f„,F(E), $=n x, n'=0,

with F($) an arbitrary function. His result is
stated in Ref. 1, Eq. (4.26):

2

dg eA(~)

with

x'
C(x', x")= -i(4w) 'exp ie " dx"A„(x)

g &n

gt

(x(s)'lx(0)") =C(x', x")—,exp —(x' —x")' exp -is, „dg[e'A'($) —~eF($)crf]
gee

1x exp is )e tee (2.8)

(2 9)
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III. EIKONALIZATION OF THE ELECTRON'S GREEN'S FUNCTION

In this section we want to demonstrate that the expressions (2.8) and (2.9) are a direct consequence of an
eikonalized propagator 4 [A]. For this reason we take the Green's function equation (2.4) which can be
solved with the ansatz

G, (x, y I A) = (m - yll) &(x, y I A),

where &(x, y( A) satisfies

(m'+ll' —~erF)h(x, y) A) =5(x —y).
Under gauge transformation, i.e.,

A„(x) -A„(x) + S„~(x),

the Green's function 6[A] responds according to

&(x, y(A+ex) =exp(ie[x(x) —x(y)]] &(x, y[ A) .
The same behavior holds true for the function C(x, y) as defined in Eq. (2.9):

C(x, y)-C(x, y) exp(ie[X(x) —X(y)]] .

If we therefore introduce another expression 6'[A'] by the transformation

A(x, y(A)=exp )ef iAd(x) A'(x, yld')=d(x, y)A'(x, ylA'),

(3.1)

(3.2)

in which the integral is to be performed on a straight line, as parametrized by

X)' = xx)'+(I - x)y)',

the function 6'[A'] is gauge-invariant, i.e., depends only on the field strength E„,. This can most easily
be seen by looking at the phase transformation (3.2), which induces a gauge transformation on A „, re-
placing it with

A„'(x) =A„(x) -S„jl dx'A„(x)

1

=A„(x) —S„dh (x —y) "A„(x)
0

t 1
=A„(x) — dxde(x)e I dxx(x —y)"[x ( ) ed x(e))}eex

40 ~o

=A„(x) —
( dx(xx—y)"5'e„(x)e dx Ae(x)el —A„(x)

d

0 0

f 1

dXX(x -y)'S'„.(X) .
0

The new Green's function equation is given by

m'+ y —. & —eA' &'(x, y~A')=5(x-y).
2

Obviously we have chosen a, gauge in which the vector potential depends only on the field strength. This is
precisely the type of gauge one has in mind when studying the propagation of an electron in a plane-wave
field.

In order to solve Eq. (3.1) it is convenient to transcribe it into functiona, l form. This can be done by
realizing the translational invariance of 6 [A], i.e.,

(~+f~)[A-~A]=~[A].
With the various arguments in evidence this reads

&(x, y iA(g)) = &(x+ 8, y+ h iA(f —h)).
Expansion of the right-hand side yields
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&(x, y iA(&))=h(x+h, y+hiA(& —h))

=&(x+h, y+h )A(C)) —h" du, [A(u)] &(x+ h, y+h ~A(f))+
8 5

=~(x, y ~A(g))+h', +,
~

~(x, y ~A(g))+ ~ ~ ~
8 8'I

8~v 8 yv)

-1'J" Ax 1 „(A(x)]
kA

A(x, y IA(1))+1 "(1 „+ „)A(x, el A(1'))+ +

=A(x y(A(())ek"( .+ .—J~gxe .(A(x)(
kA )A(x yiA(())e

Therefore we obtain

—+ —— I du —[A(u)] &(x, ylBx By g Bu 6A(u)

This relation allows us to rewrite Eq. (3.1) in the form

~ ~

1 1m'+ ——. B„+—. du —[A(u)]i " i, Bu 5A(u)
—eA(x) —2e(TE(x) b (x, y ~ A) = 6(x —y) .

Introducing a Fourier transformation on the initial variable,

&(x, p ( A) = Jt dy e'" &(x, y ) A) = e' "g(x, p ( A.),

we can convert (3.4) into

(3.3)

(3.4)

2
m'+ p+ J

dkk'A(k) „k —e Jl & ~ A(k)e' '

where use has been made of

k~A"(k) =0

and the Fourier-transformed quantities

A(x) =JI 3,A.(k)e"',dk

—ie y "y" ik„A„(k)e' 'Ig(x, k I A) =1,
4 TF

(3.5)

du —Au &A = dkikAk &A

So far everything is exact. However, Eq. (3.5) can only be solved if certain approximations are per-
formed upon the correct Green's function equation for g(x, p ) A). The ones we want to introduce are of the
Bloch-Nordsieck type. That means, first of all, we omit 8 compared to 2P8. In addition it is necessary to
assume eA"(x)B„=O. Then we obtain the following functional differential equation:

dk
P +m+ dk2PtkuA k

k
2

2 ~~A k +
2

4Ake'"3v' 3w'

+ e Jl yey" keA„(k)e' *Ig""(x k I A) =1 .dk

(3.6)

The appearance of the spin-dependent part forces us to make a particular choice of the vector potential in

order that Eq. (3.5) may l)ecome solvable. Our original intention was to investigate the structure of the
electron's Green's function in the presence of a plane-wave field. So let us introduce

A„=a [e„"A,(() + e„'A,(()]-=ac"„A„((), ( =nx (3.7)

and
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&„„=a [f„',z, (() + f„'„s;(()]=- af '„„s„'(g),

where

f~~„=(n„e~ n-, e~~), E~(t) =

n~f'„„=0, n~y„„=o=n"Z„„, f„",f",„= n-„n, 8„,
With this choice of potential, however, our eikonal approximation, characterized by the above-mentioned
condition,

2
—. 8 =O=eA (x)8&

P

is turned into an exact propagator theory. This can be seen most easily by looking at our basic equation
before any functional derivatives have been introduced:

1I'+ P+ —.8 —eA. ——,'eel g(x, P)A) =1,

{x) eleikx + e2e-ikx
.p

k =0=elk".
P

The consequences of translational invariance can be seen from

g(x, P I A) = e '~" &(x, P ) A) = e ""J" dy e""&(x,y ) A),

where

&(x, y I e„', e„') =- &(x+ k, y+ k ) e„"e "",e„'e'"").
If we choose h =-y, we obtain on the right-hand side

g(x y 0
~

Reify 2 -iky)

The corresponding Fourier representation reads

&(, yl A) =
J~

"'" "'&(Pl A)6'
(2w)4 V.~ 2 ~~ 2 ~-.i'

Now we can perform the derivative (8/8x)g(x, p ) A), which can be converted into

8 -$Px iPy—g(x, Pi A) =e '~' dye'~" —+ —&(x, yi A)

= e-""
i dy e " —+ —t, e"&* "'&(q( A)dq

sx 8 y (2v)' e~~e~e~~" e ~e eIee

=e "*
t dye'~" t, e"'""—+ —&(q)A. )

dq
(2v)' 8x 8y

The remaining differentiation acts upon the functional argument of b [A.], whose dependence on x and y
appears in the form kx and ky. Therefore we can replace

and conseiluentiy [(i/i)8„]'g=0, since k'=0; furthermore

8 8

8(kx) 8(ky) g

since e~&k" =0. Hence, without any approximations
P

p'+ m'+2p —.8„—eA(x) +e'A'(x) —~2eoE(x) g(x, P [ A) =&.
g
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This type of equation holds true for any kind of vector potential which can be represented by a 'transverse
field,

ds(x)=es(k, i —e'*+sr k, i —e '*, k =0=seek".

For instance,

(e) e'(k, i —
)

=-,e (k) 1+exp ikki —), e'=D
ek&

' ~ ek&

yields

Aq(x) = eq(k) coskx,

or
pe

(k) es'(k, i —)
= s„'(k) 1+exp ikki—

1, t . . s&e' k, i —
~

= —.e'(k) 1 —exp i2ki —
~ek) 2i & ek)

produces

A„(x) = e„'(k) coskx —e'„(k) sinkx.

These are examples of linearly and circularly polarized plane waves.
The introduction of two helicity possibilities for X leaves open the choice between linearly and circularly

polarized light. Apart from the A term, the relevant structure of Eq. (3.6) is exhibited in

d 2'-
2exp e ~ "A„(q)e"* p +m2+ dk2pkA(k)(2v)~ 2pq 5A(k)

2pv P, v

xexp -e " "A„(q)e"*g=1.(2v)' 2pq

(3.8)

Equation (3.8) can be rearranged with the result
00 f tX

gpss(x', p[A) =i dnexp[-in(P +m2- ie)]'exp I& dn' 2p" +iy"y",
& A, (x'-2n'p)

0 ~0
(3.9)

where use has been made of the formula

exp k A. k exp g k A k =exp y k e~~"~A. k

and the particular choice of A„(x) as given by (3.7). In terms of the outgoing variable we also can write
OI oo

g'i" (q, x")A) =i dnexp[-in(q'+m' —ic)]exp i d[ne 2Aq( x+2n'q) —e~A'(x" +2n'q)+2eaF(x" +2n'q)].
0 0

(3.10)

Here we picked up the A.2 term again. Finally the eikonalized propagator reads

ge]]e
(

i xii
) A) q iq( '- z) ~

z~) d -k(r)2+m )s
(2w)4

] S
/I I 2 2 II / 1

xrezp i ds'[keqd(x" +ks'q) —eri'(x" +Zs'q) ——,errp(x" +ks'q)])
J0

S

, e"'*'-* ii I[ dsezp -i ds'[re*el)'(s') —.'ere(x" sks'q)]), —
0

11'(s') =[q- eA(x" +2s'q)]'

=i dse™sxs ' xo"
0

(3.11)



2110 WALTER DITTRICH

where

S

(x(s)'(x(0)")=(x'[e '"'[x")= it ~
e"[' ' ]exp i ds'[yil(s')]'

~

. (3.12)

IV. VARIABLE TRANSFORMATIONS ON |,'x(s)'Ix(0)" &

It is now our intention to show that Schwinger s proper-time technique is equivalent to our procedure.
Armed with the results of the last section, we just have to perform some changes of variables in

S

(s(s)'(s(0)")= s"i*' *"iexp -i
I ds'[q —xsqd(s" +xs'q)+sd (s"+qs'q) —,saP(s" +xs'q)]) .

(2m)'

As a first step toward the reconstruction of Schwinger's result, let us look at the various terms separately:
S f S

(() exp (-i ds'( —xs)qA(s" + xs'q) = exp 2»'s
I ds 'q "as»d»(("+ qs 'eq))

0 0

Introducing a new variable $ = $"+ 2s'nq, and performing a shift in the q variable thereafter, q- q'
= q —(x' —x")/2s, we obtain

2sqc +e x —x )
exp iea, „l d A~, '=nx'; "=nx".

2sqn+ $' —g"

The same choice of variable transformations leads to

(X) expc-Se f dd(s"s+Xs'q) =exp —i(ea) X, „f d(rd» (i)].
0

In order to transform the spin-dependent term, it is convenient to recall the relation

, A), ($"+2s'nq) =2nq „A),(E"+2s'nq) .

This can be used to show that

(3) exp(-sy"y" ds'esd„(s''axe'q) =exp -sa, „[d»(('sxseq) -A»((")]) .
0

The next stage is reached by using a new coordinate system based on the null vector n, i.e.,
q=q'+Pn, nq'=0.

This transformation implies a simplification, namely,

(1') exp iea
2sqe~+ e~(x' —x")

d(d»(q)),

g
l

(X') exp(-i(sa)', „J d(rd»'(()),
g

II

(X') exp sa, „s[d»(q')-d ((")] =exp )sassy, „[P»(()di),(r ')(r )
)(

where the result for the spin-dependent part was derived by employing the decomposition

y PyV gPV gO. PV

and using the antisymmetry of f~&„. +e also introduced

ag s
g

I

&),((') —&g((")=
~( A = J" &),(5)dh.

Incidentally, when the remaining q terms in (x(s)' ( x(0)") are subjected to the q shift, we simply get

l dq ( qqxssx)ssq p dq eq2d (x x )
(2), e e - 2, e ' expi

Accordingly, we have produced
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(x(s)')x(0)") = 2, exp(-iq's) exp i
4

exp iea, „Jt dg Az($)
. (x' —x")' . 2sqe~+e~(x' —x") f

~'

w 4s g
II

'g I g
t

x exp(-i(sa), „d(QA» (1) ezp isasaf», „( p»(i)di) .
II

A final change of variables
gt gt

q' = q —ea, „d$A. ~($),I )if

and use of

then leads us to the following form for the transformation function:

. (x'-x")2l 2

(x(s)')x(0)") =
2 . , exp i

4
~expi(ea)'s, „2g d(A~($)

4w ' is'
X

p I
g

I zl
x exp(-i(sa) s, „(dQ A»( )(exp) ,isssaf, —„fd(P»(i} ezp is dx"A„(x)) .

c- z Il

Our eikonal propagator then takes the form

b""(x', x")A. ) =i ds e *"'(x(s)')x(0)")
~o

=i des ' '. ,exp i exp -i(sa) s, „) d(QA» (())Jp 4s
2-

x exp i(ea)'s g, „A},(()d&}(

f«
exp —,isasaf, „p»(i}d( exp is

) ds»A„(x))
+«"

1 ""ds . (x' —x")'
=

(
„—exp i -[m +s'em'(A»)]s)

4m)' „p s' 4s

g
I «'

x exp 2isae(r f", „( F„($)d) exp ie dX"A„(x) ~,'k

« ll

where
L' I 2 g

t
L

I

(}m(A»)=, „J d(A»(()A'(() —,„.( d(A»(() J dpA'(z)ep.

If we define

]„J A F~(h)
ea 1

we can show, with the aid of the relation
~f' l
2X+pv~ ~EKE= ~pz~vK ~pK~v X+ ~~pvXB'5 ~

that

exp(isM„a ""f~„)=1+ isla w"f~„.
Therefore our final answer is

1 "ds (x'-x")'(s', x"(A) =, —,exp i — —(m'+s em )s)(4w)' ., s' 4s

1
t «'

x 1+,isae, „diaf»p»(i} exp is dx"A„(x))
t II J «tt
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where

~x'
=exp ie dx"A.„x 4'"" x', x" A.„=ad~A. &

g&n

&" (x', x"~as~A~($)) =, —,exp i —(m'+e'5m')s i+is, „d$2evaf~E~(&)
17 dp t"

which is precisely Schwinger s result, except that we still have the option of summing over the polarization
indices X = 1, 2.

Note also that, since nA =0, the quantity 5m' is invariant under gauge transformations

A„(])- A„(()+ B„X(&)= A„(()+ n „—&(() .

So indeed, the entire gauge sensitivity of 6""(x',x"
~ A) is contained in

P(x', x")=ie dxuA (x)
g +f1

It is worth mentioning that the author's results
on intense field QED, Ref. 4, can be calculated
immediately by assuming the polarization indices
to be A. =+, —,i.e., by introducing circularly po-
larized light:

A.„(x)= 2a Re(e„e'"*}.

In that article we analyzed the electron's Green's
function in the presence of a circularly polarized
laser beam. It was shown that the electron, while
traveling in the laser field, experiences a mass
shift 5m'=2e'a', which is constant. In the present
situation One is not constant, nor is the laser
light circularly polarized. Therefore we conclude
that, independent of the kind of polarization, there
will be a mass shift 5m'(A~); however, more
significantly, the choice of a laser of arbitrary
strength and spectral composition as external field

makes it possible to reduce the original eikonal
approximation to an exact propagator theory.

V. CONCLUSION

The complementarity of proper-time and eikonal
methods was displayed in the text. We reviewed
Schwinger's work and developed an eikonalization
procedure thereafter to obtain a closed-form ex-
pression for the electron's Green's function in the
presence of a laser field. This particular choice
for the external field made it possible to convert
the original approximate eikonal propagator into
an exact one.
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