
THEORY OF CURRENTS

dimension three.
(4} 8~~(x} is a sum of terms of fixed scale dimen-

sion; the R"(x) terms breaking only scale invari. -
ance, and the S,(x) and S,(x) terms breaking both
scale invariance and SU(3) x SU(3).

(5) All requisite Schwinger terms are present.
Properties (2)-(4) are. , at present, all deemed

desirable in a theory of strong interactions. Vfhat
remains to be explored are the dynamical conse-
quences of the model.
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A canonical representation is given for a recently proposed theory of currents. The solu-
tions differ from the analogous representation of Sugawara's theory in that one less constraint
is present. This allows one to break the additional O(4) symmetry which would otherwise be
present. The difficulties in obtaining perturbative solutions are the same in- both theories.

I. INTRODUCTION

In the preceding paper, ' a theory of c.urrents is
presented in which all components of the currents
have scale dimension three, all requisite Schwin-

ger terms are present in the stress-tensor com-
mutators, and in which the trace of the stress ten-
sor is a sum of terms of fixed scale dimension. In
this paper we use the techniques of Bardakci and

Halpern' to solve the equations of motion of the

theory, and give explicit Lagrangian representa-
tions of the solutions for the cases of SU(2) and

SU(2) &&SU(2). One less constraint is present than
in Sugawara's theory. ' This additional degree of
freedom allows one to break the additional O(4)
symmetry before the inclusion of partial conserva-
tion of axial-vector current (PCAC). As in the
Sugawara theory, there is no obvious way to do
perturbation theory.

II,. FORMAL SOI.UTION

The model presented in I is defined by the energy-momentum tensor

e~"(x) = - ( V. ( «)Vx.'( ) xA.+. ( ~)Ax."( ) xS~+R(x)S'R(x) ,' g &'[V~(-x)-V.,(x)+ A~(x)A. ,(x)+ a ~R(x)e,R(x)))

+g"" Z A„,lt"(x)+a,s, (x)+a,s,(x))+-,'(8 "9 g"'8 )R(x)"— (I)
n=0

and the equal-time commutation relations (I20)—(I24) [i.e., Egs. (20)—(24) of paper I). The resulting equa-
tions of motion, (I26)-(I31), can be consolidated by writing'

v~(x) = -,'z, v."(x), a~(x) = -,'x,A.,"(x),

S(x) = —,'~.S.(x), Z(x) =-,'Z, P,(x).
(2)
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Z~(x) = V~(x)+y, A~(x),

M(x) = y'S(x) +iy'y, P(x),

-1 ~5 1 0

V,"(x)= Tr(—,'X,J"(x)), A,"(x)= Tr(—', X, y, J"(x)),

S,(x) = Tr (-,'A., y'M(x)), P, (x) =i Tr (-,'A., y'y, M(x)) .

Equations (I27), (I28) and (180), (131), now become

(4)

8"J"(x) —8 J"(x) = f[J"(x), J (x)]+4i[J&(x)8"R(x) —J "(x)8"R(x)]j,4R(x)

8 "M(x) = — ([M(x), J"(x)] + 2zd 8 "R(x)] .
4R(x)

The solutions to (5) and (6) follow immediately from the work of Bardakci and Halpern. ' They are

J"(x) =4iR(x)[ U '(x)8" U(x) ——,
' Tr(U '(x)8" U(x)) ——,'y, Tr(y, U '(x)8"U(x))],

M(x) =R"'(x)U '(x)C U(x),

(5)

(6)

(7)

(8)

where U is any nonsingular 6 x6 matrix, and C is any constant 6 x6 matrix. The traces are subtracted in
(7) to remove the singlet currents.

The next step is to represent the theory in Lagrangian form. We shall do this in the next two sections
for the cases of SU(2} and SU(2}xSU(2). The form we adopt for Z(x) is that suggested by (1):

1 N

g(x) = — [V."(x)V,„(x)+A."(x)A.„(x)+8"R(x)B,R(x)] —Q X„R'(x)—e,S,(x) —e,S,(x)8Rx n=O

1 N

[ Tr (Z&(x)Z„(x))+ 8 R(x)8 „R(x)]—g gR"(x) —~.S.(x) —~,S,(x) .8R x n=O

m. sU(2)

We consider here an SU(2) version of the fore-
going theory, described by

[V,"V, q
+ 8 "RBq R] —Q A„R"

n=O

g =-8R —,(8"u„B„u„)—,8"(u')8„(u')

N

B~RB„R—P X„R",
n=O

(14)

where

[2Tr(V~V„)+BARB„R]—g X„R", (10)8A n=O

In the Sugawara theory, ' which can be obtained by
setting 4R =C, the Lagrangian can be written'

2CB"u B-„u„, u, =u /(u')"'. (15)
V" =-'7- V~a a

=4iR[U '8" U- —,
' Tr(U '8"U)].

Introducing the variables'

This implies the constraint u' = constant. In the
present theory, because of the presence of R(x),
there is no constraint.

Writing

U —27ouo+ g2y, gg, ,

01

R = F(u, ', u'),

we have
BZ

8(8'u, )

B~R =Z, B~u,2+Z, B~u2,

U ' = —,(-,'7,u, —i ', r,u.), -
Q

O
+ a -MO +u -+n'Mn~

the Lagrangian and currents become

16E o 16F E~
8 ~QO+ 4

— QOBQO
Q

16E F,F2+ 4
— LCOQ~B Q
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Bg
8(8'u. )

16F 16F F, ».+ 4—
u u

16F F,F2
+ 4 upug8 up j

[u„(x), ))()(y)] =f5 ()5(x —y).

(17)

2

(v."(~),".()')(=l((~,' z-. ~.)(x-v),Fpup + F2u

[V',(x), u, (S)]
(22)

and (18)-(20), it is straightforward to show that
the commutation relations (I20)-(I22) are satisfied.

The commutators of u, and u, with V', are

From (14), (16), and (17), it follows that

2Fu~r
(19)

1 ~ 1 ~

2 2 E'z~zut; —2 2
(F2 —F))u,u (

+ 2U

V~ = 26~()(,u()&(, + 2(u(&))g —ug&0) + uou~8 R .4F

(20)
Using

[g(u(x)), )) 8(y)] = ~ [u„(x), )) 8(y)] = i ~ 6(x —y)
Bus

showing that these fields transform nonlinearly
under the isospin group. The only exception to
this occurs when F, =F„which corresponds to
R =R(u'). However, this choice for R is unaccept-
able since it implies an additional O(4) symmetry
in the theory.

Finally, we note that Lagrange's equations of
motion for the fields u, and u, imply that R satis-
fies the equation of motion (I29).

IV. SU(2) X SU(2)

The extension of the preceding results to SU(2) xSU(2) proceeds straightforwardly, the only difference
being that a constraint exists among the variables. The Lagrangian is

1 E
[V,"V,q+A,"A,q+8"RsqR] —Q A.„R"

n=p

1 N

[Tr(Z~Z„)+8~R8„R]—P gR",8R (23)

where

Z~ =-,'~.V~+ y,—,'~,a ~

=4iR[U '8"U ——' Tr(U '8" U) ——'y Tr(y, U '8" U)].

Introducing the variables'

U= (-,'roy, 0+i 2r, P„),'(I + y, ) +—(-,'rog -0+fi27 Q, )2(1 y, ),

2 (2~04 +p 2T 0+a)2( +1,) + 2 (2TO(t)-p ~2~ p-g)2( I w, )

(24)

(25)

the Lagrangian and currents become

N

2 =-4R, »y, „8„y,„—,»(y, ')8„(y,')+(+ - -) — 8~R8„R —Q ~„R".
n=Q

V. +A. =-,[&.„e,„8 0„+(e„s~e,. 0,.8 0„)],-8R

(26)

(27)

Writing

F(2(4+0 4 0 )) 0+04 OP 2(4+ +0- )) 4+ 4 ))
8"R= ,'F,8"(P„'+P,')+F,-8"((I)„P,)+ ',F,8"(P, '+P ')+F,8—"(P, ~ P ), (28)
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we can calculate the canonical momenta m, and m . However, not all of these momenta are independent.
One finds

Q+ w, „=- — (E,$„2+E p, Q +E,p '+E,Q, Q )O' R,

—(E—,y, '+E,y,.y, +E,y '+E,y, y )s'R,
(29)

(30)

The validity of (30) is borne out by the consistency
of all of the consequent results. Redefining

R =E(e'),
soR =E's"y2, (31)

which implies one constraint among the variables.
%e have not been able to find the constraint for ar-
bitrary R. We consider, instead, as a particular
example, R = E[2($, '+ &jr ')]. A consideration of the
constraints present in the Sugawara theory (Q,
= P 2 =1) (Ref. 2) leads one to conjecture that the
correct constraint in this case is4

o 2F
Ery2 (4 + 4+a +a+0-a -a) r

V,' —A, =e,O, P 2&, +(Q' —Q ')"'&, . (35)

From (26), and (32)-(35), it is straightforward to
show that the commutation relations (I20)-(I22)
and the equation of motion (I29) are satisfied. We
note, however, that with the above choice of A, the
Lagrangian possesses an additional 0(4) symmetry.
It would, therefore, be desirable to obtain a repre-
sentation with a more general R.

To introduce chiral symmetry breaking, we add
a term -eS to the Lagrangian, ' where the scalar
density S and the associated pseudoscalar densities
I', are assumed to satisfy

and rewriting 2 in terms of Q, P„, and Q „we
have

Bg
s(s'0)

[I'(x), S(X)]= o,

[V.'(x), E,(y)] = ze.„r,(x)5(x —y),

[A,'(x), S(y)] = iP, (x)5(x —y),

[A;(x), P,(y)] = -25.,S(x)5(x —y),

(36)

Bo=
~(~ -~,')'"

PI
-~(~2 ~ 2)s 4' - - +~as —

2E
so( 2

y 2) soy2 soR

Bg
+a S (SOy )

4EA+a SO 2 2= F""~'(~ ~')'"-
Bg

s(s'p .)
8E, 4EQ,
~a

s'0 .+
~2(~2 -j 2)

s'(4' —0-')

I. A(x), &(y)1=25(x —y),

[4,.(x), &,o(S)] =25.&5(x y), —

[y .( ), .(y)]= 5.,5(x-y).
(33)

In terms of the momenta, the operator B 8 and the
time components of the currents are, respectively,

and the commutation relation (I24). The divergence
of the axial-vector current is no%'

Using (4) and (8), with C =-,'yo(1+ y, ), defines sca-
lar and pseudoscalar densities

S=R'"i(1/e')V, e ],

E.=R"'I,(lie')[ ...e,e,. (e' O')"'y, . -
(y2 y 2)l/2y ]},

From (34) and (35), it follows that these densities
satisfy (I24) and (36), and are, therefore, a repre
sentation of the above form of symmetry breaking.

The alternate form of symmetry breaking, dis-
cussed by Bardakei and Halpern, ' can also be rep-
resented in the form (8). Using C = —2'v. , defines iso-
vector, scalar, and pseudoscalar densities
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s.= Tr(-,'T. i(f)

=R"'(I/2e')f (e. 0+.+ 0' 4-.)-+ ~ .b[(4" e—.')'"e.b+ (0' 0—')-"'0 b]-+ ~. (0' e—.' —0'-'k

P.= Tr( ', T, y-, OUI)

=R"'(I/2A')((4„4, . 4-,4 .)+e. [(4' 0,-')'"0,. (4-' 0-')"'0 ] 5.-(4.' 0-')k

(39)

From (34) and (35), one obtains for the commnta-
tors of S, and P, with A', and O'A

[A,'(x), S,(y)] =i&„,P,(x)5(» —y),

new field

up uo (uo) (42}

[A.(x), P,(q)] = i~.„S,(x)5(x —y),

[S.(x), s'R(y)] =-2diS, (x)5(x —y),

[P.(x), s R(y)]=-2diP, (x)5(x-y).

(40}

with vanishing vacuum expectation value. One then
attempts to deal with the inverse operators occur-
ring in (13) by expanding them in the following
manner:

1 1

s„AI' = (2ic)e„,S,P, . (41)

This representation of PCAC corresponds to the
dotted spinor representation of Ref. 2.

V. CONCLUDING REMARKS

The preceding representations of the theory of
currents defined by (I20)-(I25) possess one more
degree of freedom than the corresponding repre-
sentations of the Sugawara theory. ' This is due to
the presence of the operator Schwinger term R(x).
This extra degree of freedom allows one to break
the additional O(4) symmetry which would other-
wise be present.

The two theories share a common problem in
the fact that neither allows a straightforward way
of doing perturbation theory. As an example of
this in the present theory, we consider the SU(2)
version described in Sec. III, with R = E(u, ').
Since (R), o0, ' one has (u,}e0. In order to attempt
a perturbation expansion, one first has to define a

By adding a term -eS,S, to the Lagrangian, one then
has

u2 u 2+u2
0

= [ (u,)'+ 2(u,)u, + u, '+ u'] '

, (I —2u, /(ug+3u, '/(ug'-u'/( u)' + ~ ~ ).

(43)

However, since the fields u, do not have definite
isospin, the above expansion violates isospin con-
servation at each order. This follows from the
fact that, whereas the isospin generators commute
with the full Lagrangian (13}, they do not commute
with the above term-by-term expansion. Similar
considerations apply in the SU(2) &&SU(2) theory,
with regard to the operators (Q'- Q, ')"' and (P'
—P ')"'. What remains to be done is to develop a
suitable approximation procedure to deal with La-
grangians such as (13) and (26).
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