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accurately, as long as (x„~'/y„) « l, the second-
order emission is of order —3e and is essentially
independent of .electron energy, magnetic field
strength, and hn for all hn such that y„„,«l.
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A modification of the Sugawara model is presented in which all components of the currents
have scale dimension three, all requisite Schwinger terms are present in the stress-tensor
commutators, and in which the trace of the stress tensor is a sum of terms of fixed scale di-
mension.

I. INTRODUCTION

In the original Sugawara model, ' the vector and

axial-vector currents are a complete set of oper-
ators (in the absence of symmetry breaking), in
the sense that they alone determine the dynamics.
The energy-momentum tensor of the theory is

e&"(x) = --(V~(x)V."(x)+A."(x)A."(x)1

', g~'[V (x—)V~-„(x)+A~(x)A.,(x)]},

where the constant C is the Schwinger term in the

V'-V' and A'-A' commutators.

[V'. (x), V,'(y)] = [A', (x),A', (y)]

=if~, V,' (x)5(x —y) —iCB„' 5(x —y) .

Two difficulties with the model are the implied
parity degeneracy of states' and the fact that requi-
site Schwinger terms are absent in the e"-8" and
e"-e~' commutation relations. ' Another difficulty,
from the viewpoint of asymptotic scale invariance,
is that the temporal and spatial components of the
currents have different scale dimensions, namely,
three and one, respectively. 4
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Suppose that one poses the question as to whether
the model can be modified so that all components
of the currents have scale dimension three. The
first thing that one must take note of is that the
Schwinger term in the time-space current commu-
tators can no longer be a c number, but must have
scale dimension two. ' We write this Schwinger
term as
[V'. (x), V*, (y)] = [A'. (x),A,'(y)]

[R(x),R(y)] = [O'R(x), O'R(y)] =0,

[R(x), O' R(y)] = -4iR(x}5(x—y),

[A'(x), o'(y)] = 2im(x) 5(x —y),

[A'(x), 7z(y }]= -2iv (x) 5(x —y),

[A'(x), v (y) ] = [A'(x), m(y) ] = 0,
[v(x), v(y)] = [v(x), zz(y)] = [zz(x), ~(y)] = o,

(12)

= if„,V,' (x)5(x —y) —4iR(y)8„' 5(x —y) .

(~)
The question that now forms is the following: "Are
the vector and axial-vector currents and the oper-
ators R(x) and O' R(x) (plus appropriate scalar and
pseudoscalar densities to account for symmetry
breaking) a complete set of operators in the sense
that they alone determine the dynamics?" This
paper will answer this question in the affirmative.
The resulting model is not parity-degenerate, and
all requisite Schwinger terms are present in the
stress-tensor commutator s.

II. THE o MODEL

[v(x), R(y)] = [zz(x), R(y)] = 0,
[v(x), O'R(y)] = -2iv(x)5(x —y),

[m(x), O'R(y)] = -2iw(x)6(x —y) .

(14)

~„A"=Fp,'m,

8 "A' —O'A" = --(A~8 "R -A "B~R)1

1
R =

2
[A.'+ (O„R)(8"R)]-2P,'R

+8AA(R+ ~F') + p. Fv,

(15)

(18)

The equations of motion implied by (9)-(14) are

We use as our guide the following model:

2 = -', (8 „w)(8"m) +-', (8 „o)(8"v) —,' p'(zz'—+o,')
- A (n'+ v' ——,'F')' —,' iz'Fv, —

A& =2(vB" m —vB"v),

8"' = 8"wB
' w+ 8 "vB "v —g"2

—
—,
' (8 "8" "g' )8(n' v-+') .

(4)

(5)

(8)

8 "v = —(zzA" +vO "R),1
2B

18"m = ——(vA" —nB "R) .
2g

(18)

(19)

III. THE MODEL

Using Sec. II as a guide, we assume the following
equal-time commutation relations:

This is the 0 model of Gell-Mann and Levy, ' with
an isoscalar pion and with the energy-momentum
tensor improved. ' All fields in this model have
scale dimension one. The operator R(x) is

[A'(x), A' (y)] = 4i [m'(y) + o'(y) ]8„' 5(x —y)

[V'. (x), V', (y)] = [A:(x),A; (y)]

= f.„,V'. (x)5(x-y),

[V'. (x), V', (y)] = [A'. (x),A,
*'

(y)]
= if.„V,' (x)5(x —y)

= -4iR(y)8„' 6(x —y) . (8)
—4iO„R(y)8„' 5(x —y), (2o)

[A'(x), A'(y) j = -4iR(y)8„' O(x —y),

[A'(x), R(y) ] = [A'(x), R (y) ] = 0,
[A'(x},O'R(y)] = 0,
[A'(x), O'R(y)] = -4zA'(x)5(x —y),

(10)

It is easy to see that this model can be rewritten
in the following manner:

e~'= (»A—'—+»RO "R ,' g~'[A'-+-(O„R)(»R) j]

+ g""[-,' p'R+ A(R+ -'F—')'+,' g'Fv]—
+ ,' (8 "8' g—"'8')R, - (9)

[A'(x), A'(y)] = [A'(x), A (y)] =O,

[V'. (x),A~(y)] = [A'. (x), V~(y)]

= zf„,A" (x)5(x -y),
[V.'(x), V,'(y)] = [V*.(x),A, (y)]

= [A'. (x),A', (y)] = 0,
[V."(x),R(y) j = [A."(x},R(y)] = O,

[V'. (x), O' R(y)] = [A'. (x), O'R(y)] = O,

[V', (x), O' R(y)] = -4i V', (x)5(x —y),

[A.', (x), O' R(y)] = -4iA', (x)5(x —y),

[R(x),R(y)] = [O'R(x), O'R(y)] = 0,
[R(x), O' R(y)] = -4iR(x) O(x —y),

(21)

(22)
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[V'. (x), S, (y)] = if„,S, (x)5(x —y),

[V', (x), P, (y)] =if„,P, (x)5(% —y),

[A'. (x), S, (y)] =id...P, (x)5(x —y),

[A', (x), P (y)]= -id„,S, (x)5(x —y),
(23)

[V', (x), S, (y)] = [V', (x), P, (y) ]

= [A](x), S, (y)] = [A.'(x), P, (y)] = 0,

[S, (x), S, (y) ] = [S, (x), P, (y)]

= [P, (x), P (y) ] = 0,

[S,(x), R(y) ] = [P, (x), R(y)] = 0,
[S (x), (]'R(y)] = -2diS, (x)5(x —y),

[P, (x), 8'R (y) ] = -2di P, (x)5 (x —y) .
The appropriate generalization of (9) is

(24)

8]'"(x)= —
4 {V,"( x)v,'(x) +A,"(x)A,"(

x) +BR(x)~"R(x) ,' g"-"[V](x) V, (x)+A]'(x)A, (x)+&]'R(x)& R(x)]]
1

N

+ 4" Q x„R"(x)+x s, (x)+ x.s, (x)) +-,'(2~2" —s~"2')R(x).
n=O

The equations of motion implied by (20)-(25) are

5, V,"(x) = -~,f.„S,(x),

&„A."(x)= [(2 )'"e,5„+e,d„,]P, (x),

&"V,'(x) —~ "V,"(x)= — {f„,[V]'(x)V,'(x) +A,"(x)A;(x)] + 4[v,"(x)& 'R(x) —V,'(x)]]"R(x)]),
1

8 „A.'(x) - 5 "A."(x) = — {f.„[A„(x)V,"(x)+ V]) (x)A,"(x)]+4[A]) (x)a 'R(x) -A."(x)s])R(x)]),

R(x)= '((Vx) qV( )+xA.'(x) pA( ) x'xx(Sly a(xR)]+ +22xl„R"(x)+S[xS(x)+x,S(x)]),2R x n=O

s "S,(x) =
4 )

[f„,S, (x)V,"(x) + d„,P„(x)A,"(x) + 2dS, (x)& "R(x)],
1

& "P, (x) =4 )[f„,P, (x)V,"(x) —d„,S, (x)A,"(x) +2dP, (x)& "R(x)] .
1

abc R

Using (26)-(31), one obtains for the divergence and trace of 8"'(x)

&„8""(x)=0,

8~, (x) = g (4 - 2n) ~„R"(x) + (4 - d) [~,S,(x) + ~,S,(x)] .
n=O

The various operator -stress -tensor commutation relations in this model are

[e"(x),V'(y)] = i[-S V]'(x) + V'. (x)S' ]5(x —y),
[8"(x), V', (y) ] = iV', (x)8,' 5(x —y),

[8"(x),V','(y)] = i[-&'V','(x) + V'(y)&'„'] 5(x —y),

[8"(x), V', (y) ] = i[-&' V, (x) + V' (y)&' + -'V (y) 9„']5(x—y),

[V'. (x), e"(y)]=i[g"(1——,
' d)S„V."(x) + —,

' g"V'. (y) —g" V.'(y) -g" V'. (y))8„'5(x —y'),

[e-(x),R(y)] = -i&'R(x)5(x —y),

[e"(x), R(y)] = i[-5'R(x) + -', R(y)&„']5(x —y),
[8"(x),a'R(y)] = i[-(&')'R(x) + s'R(y)&'„—-', R(y)(&'„)']5(x- y),

[8"(x), ~'R(y)] = i[-&'&'R(x) + &'R(y)8„']5(x —y),
[8"(x), S, (y)) = -is'S, (x)5(x -7),
[e"(x), S.(y)] = i[-5' S.(x) + —,

' dS. (y)S„']5(x—y),

(26)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

with corresponding results for A, (x) and P, (x). The last two commutation relations in (34) were derived in
a previous paper by requiring that the spatial components of the currents have scale dimension three, and
that the V'.-e--e" Jacobi identity be satisfied. '
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Finally, for the stress-tensor commutators, we have

[8"(x), 8"(y)] = i[e"(x) +8"(y)]S„' 5(x —y),
[9"(x),8"(y)] = i[8"(x) —g"9"(y)]a„' 5(x —y) ——,

' i(a„' s'„8', ——,
' 8', 8',

'
a„')[~(x)5(x —y)],

[e"(x),e"(y)]= i[e"(x)8„'+8"(y)S„']5(x—y),

[8"(x),9"(y)]= -is'9"(x)5(x —y) +i[8"( y) 8'„ +8"(y)B,']5(x —y) ——,'i(s„' s~ + -,
' g'~B'„ 9'„)[s'Z(x)5(x —y)],

[e'*( ), e"(y)]= ia'8-"(x)5(x y) +—i(e*'(y)s„' +8"(y)s„' + -', »'(y)s,' + ,' g"—[8"(y)s,' ,' 8-"-(y)s„'])5(x y)—

N

+i —' 2n 4 —2n A,„R" y +-,'d 4 —d e S, y +eeS8 y -e
& y -'g' ~„' 6 x-y

n=p

V~ y V y +A.~ yA, & y +~~R y ~zR y + 1 ——'n A. Rn y
n=p

+ () —-'d) [sS[y) + aS[y)]) (g"9', +g" S',
' ——', g" 8')ll(x —) )

—-'its' s'Z(y)s„'+ -'a' s'Z(y)a'„—-'s' s'Z(y) a„' + -' g"[s' a'ft(y)a„' ——'s' a'Z(y)a„'g5(x —y)

+ —,'i[-'O'It(y)a„'a~ +-'8"it(y)s'„'&„'+-'g" a'R(y)s„'9„']5(x —y)

+ ,'i[ ,' s,'(s—', -„'s + 's &s) ——,' s„' a& s„']f1(x)5(x- y) .

All requisite Schwinger terms are present in (3'l) —(41).'

(37)

(38)

(39)

(4o)

{41)

IV. SUM RULES

In this section we derive two sum rules implied by the foregoing model. The following vacuum commu-
tators define the relevant spectral functions:

(0 1[V."(x), V,'(0)] Io) =i J) dp.'[p'.,'(p,')(g"'+ p '3"s")+s s "p', '( 'p) &]( xp,'),
OO

&0 I[&."(x),&,'(0)] lo&=i dp'[p'.".'(p')(g""+ p 's"s")+s"s'p".,'(p')]&( px'),
+0

(42)

(43)

&o I[8~"(x), e~" (o)] lo) = i
+0

dip. (p')[ ,'(g"'+ p -'s "a')(g""+p
'a "e")+,'(g""+p—'s"a")(g"+v 'a' s' )

1 (g))u+ p-2s[)s v)( pi+ ~-2a pa x)]

+ p (p')(g""+ g '8 "a')(g "+p, 's 8"))~(x, p,'), (44)

where

s'b, (x, p.') I„o,=-5(x), ( +g')a(x, p') =0.

»om (20), (36), and (42)-(45), there foUows

&0 I[v'. (x), v'. (o)]„., lo& = (o l[w'. (x),w.'(0)]„=.Io&
= -4i5.,(0 lz(0) Io) s' 5(x),

&o l[e"(x),e"(o)]„. , Io& = 'i&0 lfi(0) Io& ~'s* 5(x),

(45)

(46)

(47)

40
dp'[p:(p') p '+p'."(V')1= dp'[p'. ",'(p')u '+p".,'(p')] =C5.. .

40

dp'p '[-', p.(p')+p. (p')]= —,', C.
dp

Equation (48) is the Weinberg sum rule. '
(49)

U. CONCLUDING REMARKS

The model presented in this paper is a complete
dynamical theory with the following properties:

(1) V."(x), X."(x), Z(x), s'Z(x), S.(x), and a. (x)

are a complete set of operators.
(2) The terms which break SU(3) xSU(3) belong

to the representation (3, 3*)+(3*,3)., and have
scale dimension d.

(3) All components of V,"(x) and A,"(x) have scale
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dimension three.
(4} 8~~(x} is a sum of terms of fixed scale dimen-

sion; the R"(x) terms breaking only scale invari. -
ance, and the S,(x) and S,(x) terms breaking both
scale invariance and SU(3) x SU(3).

(5) All requisite Schwinger terms are present.
Properties (2)-(4) are. , at present, all deemed

desirable in a theory of strong interactions. Vfhat
remains to be explored are the dynamical conse-
quences of the model.
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A canonical representation is given for a recently proposed theory of currents. The solu-
tions differ from the analogous representation of Sugawara's theory in that one less constraint
is present. This allows one to break the additional O(4) symmetry which would otherwise be
present. The difficulties in obtaining perturbative solutions are the same in- both theories.

I. INTRODUCTION

In the preceding paper, ' a theory of c.urrents is
presented in which all components of the currents
have scale dimension three, all requisite Schwin-

ger terms are present in the stress-tensor com-
mutators, and in which the trace of the stress ten-
sor is a sum of terms of fixed scale dimension. In
this paper we use the techniques of Bardakci and

Halpern' to solve the equations of motion of the

theory, and give explicit Lagrangian representa-
tions of the solutions for the cases of SU(2) and

SU(2) &&SU(2). One less constraint is present than
in Sugawara's theory. ' This additional degree of
freedom allows one to break the additional O(4)
symmetry before the inclusion of partial conserva-
tion of axial-vector current (PCAC). As in the
Sugawara theory, there is no obvious way to do
perturbation theory.

II,. FORMAL SOI.UTION

The model presented in I is defined by the energy-momentum tensor

e~"(x) = - ( V. ( «)Vx.'( ) xA.+. ( ~)Ax."( ) xS~+R(x)S'R(x) ,' g &'[V~(-x)-V.,(x)+ A~(x)A. ,(x)+ a ~R(x)e,R(x)))

+g"" Z A„,lt"(x)+a,s, (x)+a,s,(x))+-,'(8 "9 g"'8 )R(x)"— (I)
n=0

and the equal-time commutation relations (I20)—(I24) [i.e., Egs. (20)—(24) of paper I). The resulting equa-
tions of motion, (I26)-(I31), can be consolidated by writing'

v~(x) = -,'z, v."(x), a~(x) = -,'x,A.,"(x),

S(x) = —,'~.S.(x), Z(x) =-,'Z, P,(x).
(2)


