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The various versions of the scalar-tensor theory (e.g. , the theories of Jordan, Hoyle, and
Brans-Dicke) are derived from a general variational principle. It is shown that scalar-con-
formal transformations not only interconvert the various current versions of the scalar-
tensor theory (i.e., Brans-Dicke theory —Hoyle steady-state theory), but also convert the
scalar-tensor variational principle into the variational principle of general relativity. The
scalar-tensor formalism is therefore implicitly embodied in the theory of general relativity,
thus illustrating the considerable freedom available in specifying the nature and physical con-
tent of the "matter tensor" in the Einstein equation.

Various versions of the scalar-tensor theory of
the gravitational field have been suggested and
widely discussed. The theory is attractive to many
mainly because fundamental physical quantities be-
come space -time dependent. The scalar -tensor
theory, as first proposed by Jordan, ' was inspired
by Dirac's principle. ' One interpretation of this
principle, adopted by Jordan, is that the gravita-
tional constant varies with time. The Brans-Dicke'
theory, motivated by similar considerations,
was inspired by the principles of both Mach and
Dirac. The steady-state theory of the universe,
proposed by Bondi and Gold, ' also conforms to the
Mach and Dirac principles and was formulated by
Hoyle' as a version of the scalar-tensor theory.
The Mach and Dirac principles, insofar as we
understand them, can be expressed in crude form
by the relation

GNm ~ size of observable universe.

According to this cosmological "law" the gravita-
tional constant G, the total number of particles N,
and the particle mass' m, either separately or in

possible combinations, are time-varying as the
univer se expands.

The scalar-tensor theories of Jordan, Hoyle,
and Brans-Dicke all conform to the Mach-Dirac
law (1). The basic physics involved in these and
other scalar-tensor theories is still obscure, and
except by appeal to observation we are at present
unable to determine which, if any, of the ~' pos-
sibilities represents the physical world. We show
below that all versions of the general scalar-tensor
variational principle are conformally equivalent to
each other and to the Einstein equation, and as a
consequence the law (1) and similar laws are em-
bodied in the theory of general relativity.

In the various versions of the scalar-tensor the-
ory the equations of motion and the field equations
are derived from the general variational principle

6)I(R) +X)'P&P +KL) )(-g)' 'd x=0, (2)

I.(x) = 2(-g)'"P rn, t g,„(x)z'z"]"8'(x z, )d~p, —

(8)

where f' =dzt/dr~ and r& is a path parameter of
the Pth particle. The inclusion of electromagnetic
interactions introduces only slight modifications.
Equation (2) is invariant under coordinate trans-
formations but not under conformal transforma-
tions. ' "' Applying in succession to (2) the
scalar and conformal transformations

gran- +~a = 4 «a
and also using"

L (a,)- f '(a, ) = e "'""L(a-)-
in which particle masses transform as"

(4)

(5)

(8)

~(«a)- ~'(g'a) = 4 "m(aa),

gives, after discarding a divergence term,

A' +A.' '; '+~L' -g' ' 'd x=0,
(8)

in which

where R is the scalar curvature, P is the scalar
function (where g; =—S(/Bx'), X and g are coupling
constants, and A and B are constants assigned by
different authors" '' ('values of A and B are dis-
played in Table I). The matter-Lagrangian density
L in the various versions of the theory is often ex-
pressed as a density of particles moving along
trajectories x' =z~(v~}:
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TABLE I. Values of constants A and B used by
authors of different versions of the scalar-tensor theory.

References

(13)

The equations of general relativity are derived
from the variational principle

8
9, 10,11
1 12
13
3,4
7
14

2
2

1
1
1
0

-1

L=0
0
2

1
0
0
0

(14)

where L is a function of g;„and any number of
scalar functions f(», P(», . . . , (()(,), . . . and their
first derivatives. '0 From (14) we obtain the Ein-
stein equation

C=pA —F,
D= pB+H —~E,
X' = )).')(+3F()),A ——,'F) .

where

(15)

(R(", —25„'R')p +D—(q(p)+)(T„"(t) =0,
CR'(t) —)('[2Q 'Q-(2 —C)Q'P, ]P +)(DL'P =0,

(10)

in which

and T," is the energy-momentum tensor. From
(10) and (11) it follows (pressure =0) that

(3+2)('/C ) 'P —((T'(I +2D/C)g =0, (12)

In the variational equation (8) uncharged particles
follow geodesics when H=0; world lines intersect-
ing a hypersurface are conserved (i.e. , no crea-
tion) when pB = ,'F; and t—he gravitational "constant"
is then constant when ))A=F. Equations (2) and (8)
are identical in form, and it is evident that an ap-
propriate choice in the parameters p. , E, and H
interconverts any two versions of the scalar-tensor
theory. The arbitrariness in the value of the cou-
pling constant, owing to the scalar transformation
(4), means that there are only two disposable con-
stants, A and B (or C and D), thus affording the
~' versions required by (1).

The conformal equivalence of scalar-tensor mod-
els of the universe is illustrated by the intercon-
version of the Brans-Dicke (A=1, B =0) and the
continuous -creation models. Particle masses are
constant in both, and the transformation p. = 2E,
H=O converts the Brans-Dicke model of X= -2 into
a steady-state continuous creation model" (C =D,
A.

' = -2C'). Other values of the Brans-Dicke cou-
pling constant correspond to continuous-creation
models not in a steady state. Similarly the Jordan"
(A = -1, B =0) models convert to Brans-Dicke mod-
els with p. = -1, E=O, and become the steady-state
model with X= -2, p. =-—2F.

Independent variations in g,'„and (I) of (8) give the
field equations

(17)

For our purpose a suitable and relatively simple
Lagrangian density of matter, incorporating a sin-
gle scalar function f, is

L =)g'(g;g '+ KLg (18)

where I is a function only of g;„, and B is an arbi-
trary constant. By comparing (2) and (14), and
using the special form of I. in (18), it is seen that
the transformations (4)—(7) convert the Einstein
equations (15)-(17) into the scalar-tensor equations
(10)-(13).

If follows that the physically inequivalent but con-
formally equivalent versions of the scalar-tensor
formalism are all implicitly embodied in the field
equations of general relativity. They constitute in
fact a limited and particular class of equations that
derive from general relativity and are of lesser
generality. In the Einstein equation (15) geometry
is coupled to rnatter and imposes minimal physical
constraint on the nature of matter apart from the
zero divergence of the "matter tensor. " According
to this interpretation the Einstein equation repre-
sents a diversity of universes whose range in phys-
ical properties is quite capable of accommodating
the modest requirements of the Mach-Dirac law.
The elementary energy-momentum tensor that is
commonly used is not an essential feature of gen-
eral relativity. Mccrea" has shown, for example,
that a matter tensor containing a negative stress
term not only accounts for the continuous-creation
universes" but also offers physical insight into the
creation process. The actual nature of the matter
tensor in our universe must be determined either
by observation and experiment or by appeal to the
theories of other branches of physics. The virtue
of the scalar-tensor formalism is that it displays
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explicitly in differential equations our implicit as-
sumptions concerning the content of T;„. It is a
debatable matter, however, whether these equa-
tions provide physical understanding of the Mach-
Dirac law.

The transformations we have discussed are sim-
ple, but the physical meaning of the transforma-
tions is evidently far from trivial. The scalar-
tensor formalism offers us an overwhelming wealth
of possible universes. " By recognizing that the

formalism is not a fundamentally new departure
from the Einstein equation, and by paying attention
to the physical nature of the matter tensor, it is
possible that we may eventually single out an ac-
ceptable and convincing model of the universe.

I am grateful to Robert V. Krotkov and Leonard
Parker for discussions on such matters as confor-
mal transformations.
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