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Modified scalar Debye potentials for electromagnetic (EM) waves in spherical gravity and
spherical media are found. These potentials decompose the EM waves into two completely
independent electric and magnetic radial modes and achieve scalarization and boundary fit-
ting. Their equations, being different in a vacuum medium from 4'".

&
=0 of a scalar field,

are reduced to one-dimensional Helmholtz equations under a separability condition, and can
have their gravity effect "nullified" by a particular medium. Also the reflection coefficient
R) for an l spherical wave satisfies a Ricatti equation, and the phase shifts 6& and scattering
cross sections are related to R&. For an incident plane KM wave, the nonforward differen-
tial scattering cross section is expressed in terms of the R& for the case where the medium
and/or gravity tapers off slower than (radius) and R„6, themselves diverge.

I. INTRODUCTION AND SUMMARY

To investigate and solve any electromagnetic
(EM) field problem, one must decouple the field
equations and the boundary conditions (BC) into in-
dependent scalar functions. ' The possibility and
the method of achieving this depend on the choice
of an observational frame, the geometry of the
BC's, and the properties of the gravity and media. '
In a flat vacuum with spherical BC's, the well-
known Debye potentials serve the purpose. ' In this
paper we investigate such a decomposition and the
results it produces for a space-time with spheri-
cally inhomogeneous and time-changing gravity and
medium.

Starting from the physical Maxwell's equations
we derive in Sec. II the modified Debye potentials,
their differential equations, and their BC's. Also
we point out the advantages of these potentials over
the 4-vector potential A", and emphasize how they
differ from the scalar wave 4. In Sec. IlIA we
separate variables under certain conditions and
obtain one-dimensional Helmholtz equations for the
l spherical partial waves of the Debye potentials.

Then a particular medium that "nullifies" gravity
is constructed, and other examples are given. In
Sec. III B, nonseparable cases are discussed. Sec-
tion IV presents the Ricatti equation for the reflec-
tion coefficients 8, of l waves, and the relations of
the phase shifts 6, as well as scattering cross sec-
tions o. and Ot, t with R, . Finally for an incident
plane EM wave we find an expression of the differ-
ential scattering cross section do„/dO in the non-
forward directions in terms of 8, and Q, (for mag-
netic wave), for the case where the medium and/or
gravity tapers off at radial infinity slower than
(radius) ' and 5„B, themselves diverge. This ex-
pression for the EM wave is analogous to a well-
known expression for the scattering of scalar
waves.

II. EM FIELDS AND MODIFIED DEBYE POTENTIALS

A. Physical EM Fields

In a spherical and time-changing gravity and
medium, naturally a "spherical" coordinate frame
should be used both to fit BC's and to separate
variables. Now, any spherical gravity can be de-
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For observers (0}fixed in this (t, b, 8, P}frame
with their spatial positions (b, 8, Q) = fixed, the
physical Maxwell equations are obtained by pro-
jecting the tensor equations G"'.,= -J" and *F"'.,
= 0 on the co-moving tetrads carri. ed by (0}.' A

straightforward algebraic calculation gives'

V, x [(g„)"'H]= (goo)"'J + —+ D —in[X(—g»)'"]

V~ D=p,

A.
+D ~ e(,)e(,) —t

ln
gyp J

(2)

v, x [(g„)'"E]= ———B—ln[(-g„)'"]

scribed by a spherical coordinate system (t, b, 8, Q}
with4

ds2 =g„dt '+g»db' —A.'(d 82 + sin28 dP'),

where gpp @] and A' are positive functions of
(t, b) and - &t&, O&b&

and p. (t, b) such that D=eE, H=(1/g)B. ' Notice
that this spherical material medium's contribution
to gravity through Einstein's equation is included
in (1), but the space-time gravity effect of the EM
field under investigation is neglected.

B. Radial EM Modes and Debye Potentials

Now consider an EM field in the sourceless re-
gion as described in Sec. IIA. Since everything is
spherically symmetric, we might expect to decom-
pose the field into decoupled scalar representa-
tions just as the Debye potentials do in a Qat vac-
uum. ' By examining the detailed components
structure of (2) and (3), and after very lengthy
mathematical manipulations, we find that this is
exactly the case, but with the modified decompo-
sitions

E = E (g~) + E ( mag)

= —V xV x(XV) — —[aV x(X.U)],g E g(g )1/2

(4)

8 A,

+B '
e(g,) e(g,) (-g )

(3)

B =—B(e]ec)+B(m~)

„,—[H, x(XV)]+V, x V, x(XU) . (5)

V, B=O.

Here the V~, x, operators are defined in accord
with the usual 3-vector analysis for 3-space
(b, 8& P}with metric dc'—= -g»db'+ X'dQ'. Also the
(E, B) and (D, H) are the usual macroscopic physi-
cal EM fields as observed by (0}. Similarly (p, J)
is the physical observable charge current to (0}.

Now. for the spherical case of present interest,
let the space be filled with an isotropic and angu-
larly homogeneous simple medium. Relative to
(0}this medium is electromagnetically character-
ized by the two local constitutive parameters e(t, b)

Here A. —= Ae&,~
is a radial "position vector" of (0}.

Also the subscripts denote the radial electric mode
for V wave and radial magnetic mode for U wave
which has respectively vanishing radial magnetic
and electric field components. Notice that, of
course, the fields relative to other observers
moving with respect to (0}are obtained just by
locally Lorentz transforming (4) and (5) which can
be rewritten into tensor expressions by reversing
the physical projecting process. "

These modified Debye waves, V and U, are sca-
lar functions independent of each other. They obey
the decoupled equations

-g» 1 p, 8 8b ~U ~ sin8 88 8 8 sing 8 ' U

8 -g„'~' p8 8gxy 6

In addition, the BC's for V and U at any radial dis-
continuity b = b„of the constitutive parameters p,

and e, as implied by (2) and (3), are decoupled:

1 8——~v =o [v]=oc 8b J

[U]=o, 1 8——AU =0,
p, 8b

where [y]=—y(b~) -y(b„). Here the assumptions of
finite and continuous gravity g„,g», A.

' at b„have
been used. If the medium at b & b„happens to be
perfectly conducting, the BC's reduce simply to
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e '(8 /eb) (X V) = 0 and U= 0 at b = b,'.

C. Remarks on Debye Potentials, 4-Vector
Potential, and Scalar Wave

Why does one need any potential as an interme-
diate artifice while the only quantities of physical
interest are the EM fields which can be dealt with
directly and exclusively'P The answer is just to
simplify the ZM vector problem so as to provide
insight into its physics and to make the mathemat-
ics easier to handle.

Now in a spherical gravity and medium, the De-
bye potentials V and U clearly and uniquely provide
such a simplification by decomposing EM fields in-
to completely independent scalar modes. They
have the following advantages over A": (a) They

consist of two unknown functions, but A" consists
of four. (b) Their equations are decoupled. How-
ever, the equations for A" are mixed badly, which
even in a vacuum with c =—1 =— p. and curvature ten-
sor A„„=O are coupled with each other by the
Christoffel symbols I""z in the A"' . & =0. Notice
that if and only if the space-time is Qat, there ex-
ists" a coordinate system with I ~8 = 0 in which
/i"'". ~=0 is decoupled. " (c) Their BC's are de-
coupled, but the BC's for A" at radial boundaries
are mixed and one component of A" can excite
others.

We must also point out that even in a vacuum
with its p,

—= e—= 1, except for the case A. '(b)[goo/
(-g»)]"' =const, (6) and (7) for the Debye potentials
are different from the scalar wave equation 4 '".„
= 0" which for geometry (1) becomes

(10)

Thus results on propagation and scattering of the scalar field 4 cannot be used for EM waves. " In fact, in

the spherical problem, the equations for E, B, A", V, and U are generally all different. None of them is
the same as (10). Only in a flat vacuum do they (of course for Cartesian components for 3-vectors) all re-
duce to V' —S'/St ' = 0 and become indistinguishable.

III. EFFECTIVE INHOMOGENEITY AND SPECIAL CASES

Since the e- p, substitution exchanges the equation for V and U, we discuss only U from here on. By
separation of variables as usual, with V—= 4, (t, b)~i (cos0)e' @, where m=-~l~ to ~ll and integer l~ 1,"
(6) gives

s ' (g 1/2 1 8 s ( g 1/2 s ( g g )1/2
——(~e, ) —.—

~

"
t —(~e, )-," t(t+1)(~e, ) =0.

I g &
E ~6 ~t (g ~t A,

This is the basic equation for any EM wave propagating in a spherical gravity and spherical simple medi-
um. Note that the slope db/dt =+[go,/(-g»)]' '/(I/e)'" of the characteristics gives the velocity of radial
propagation, slowed down to a non-null value as it should be by the medium's factor (pe) '/'. The sources
are coupled into the fields by BC's as multipole coefficients. Also for g„=-g»=1 and A. = b, (4) to (7) and

(11) reduce to those for angularly homogeneous simple media in flat space.

A. Radial Separable Inhomogeneity

Now if to 10}the medium and certain ratios of the gravity are "static, " i.e.,

=—time-independent,
gu)

then (11) can be separated into time harmonics. Thus by

(cosg)e im5e i&t--ti b

X(t, b)&
'

the propagating of the Debye wave V reduces to the one-dimensional problem

I/2 d
r . 1/2 ( )1/2—b + u'tie " —' ~ "' t(l+1) h=0

db C -gix db - — goo

for 0 &b&~. We now want to examine (13) by transforming it in two ways into a standard Helmholtz
equation.

(12)
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The first, transforming the dependent variable alone by h(b) —= (e/t))'/2 f(b), gives

1 (2) e I/2 (+ 1/2 - + 1/2-tif" l '(l)f-=f" — " " l(l+1) -~ f-0,n n Q
(14)

where n=[g»/(-g»)j'/2. Equation (14) is the same
as a radial Schrddinger equation with radial dis-
tance lt, and with potential energy v, (b) and total
energy F. given by

~(g..)'" „d~ (-g„)'"

(
2/2

r~=—A exp db- —",A =-const&0
A.

(17a)

(17b)

2 rnE
@2

2mv, (b) (I)"' (v)'" ",
(

VE)

(15a) then h satisfies

2h+N2 2 I 0 (18)

l(l +1) (1+g„). (15b)

Notice that v, (b) contains a mixture of the medium's
constitutive parameters, the gravity, the angular
momentum, and the ~' that makes the propagation
dispersive.

The second, changing the independent variable
by db*=-e (-g»/g„)'/2dl) or b* =fe (-—g»/g»)'/2db
+ const, "gives

d2 d2 (d„,h+h, '(b")h=— „,h+ —,", (((+())2=2.
E A.'c'

The range -~ & l)*& ~ in (16) may cover only part
of the whole range 0&b&~, and thus may exclude
and require separate treatment for the connective
behavior of V at the limits of the range 5*. To in-
vestigate the whole range 0& b & ~, (14) is prefer-
able.

Before giving some examples, it is interesting
and worthwhile to note that there is a medium
which can "nullifylr the gravity. From (13), if

Thus for the simple inhomogeneous medium (17a)
surrounding (0), the EM wave is formally re-
duced to the ordinary propagation in a flat vacuum
with (r*, 9, Q) as spherical coordinate by using
(17b) and (18).

Now, we give some simple examples of (14).
(a) Schwarzschild point-mass geometry:

ds = 1- dt —— -xdQ .2&8 2
dJ'

'V 1 —2 m/t

(u2 p, e l(l + 1) m(2t —Bm)
(1 -2m/2. )2 2.(2. —2m) r2(r —2m)'

1 3(e')' e" e'2m
2 2E E El'(E —hill)) (19a)

(b) Nordstrom point mass-charge geometry:

dS'= 1 — + —, dt'—,, —2 dQ2.
2m q 2 dY

1 —2m r+ q2/2'

For observer (0) at fixed 9, (t) and fixed 2" at
x' —2mx+q'&0, fixed t at 6 —2nn +q'&0, if such
regions exist,

For observer (0) at fixed 9, (t) and fixed r at 2 & 2m,
fixed t at x&2m,

(h)2ge l(l +1) 2mt'2 —B2"'(m'+q') 6+mq'r -2q4
(1 —2m/2+q2/2)2 2 —2m2 +q2 r2(22 —2mr+q')'

1 Be'2 e" e' 2(m2 —q2)

2 2E' I I E(r' —2IEEEE')) ' (19b)

l(l +1) 1 Be"
k '(t)=~'pe— (19c)

(c) Conformally flat geometry with any a(t, r):
ds2 8 R(t, r ) (d $ 2 (gtv2 tv2 dQ2)

For observer (0j at fixed 9, Q, and 2,

B. Non- Time-Separable Media and Gravity

Time and radial variables cannot be separated
if (12) does not hold. This may be caused by the
gravity of a spherically moving medium, the time
change of p, and e, and the chosen motion of (0}.

For example, an expanding Friedmann universe
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IV. REFLECTION COEFFICIENT

AND RELATED FORMULAS

To examine the reflected or scattered field of an
incident l wave propagating in the inhomogeneous
k, '(b) of (14), we can use the well-known Ricatti
equation. " This enables us to avoid solving for
the field itself and to obtain the reflection easily
by numerical method. To do so for (14), we as-
sume k, '—=K'+&, (b) with constant K'& 0 and

(, (b) -0 as b -~, and introduce a cutoff distance
at b, such that

l(2(b)IK'I«1 f» b-b. ~ (21)

Now consider a one-dimensional wave f in such a
medium that k'=K' at b& b, and k' =-k, '(b) at b & b, .
An incident wave e ' ' produces a reflection R,e'
at b& b, . Then with the aid of (14) the function de-
fined by"

(b)
'lk2 f +f
ik, f -f' (22)

filled with uniform "dust" has the conformal flat
factor e " "' = (1 2-/r)' and w = (t' —x')'~'. 27 But if
we include the dust's permittivity e(t, x)
= c,(1 -A/7) ' as corresponding to the expanding
proper volume, (19c) cannot apply. As another
example, for convenience of examining wave be-
haviors near x=2m in the gravity of a point mass
m, we can use the radially accelerated (0) in the
Kruskal coordinate (v, u, 8, Q]." Then for these
(Oj, (11)becomes

, (re, ) —
&

—e '""l(i+1)r,) (re, )=0,

(2o)

where x(v, u) is defined by

v'-u'=e"""(1 —x/2m), and r%, cannot be sep-
arated for v and u.

by the k, '(b) near that b, and by consideration of the
physics of the problem. In general, we have to
find the two limiting independent solutions of f
there, and impose a physical condition to select
their ratio. If a singularity of k, ' at 5, is strong
enough to reflect everything so that f (b,.) =0, or if
a perfectly conducting spherical surface is there,
then R(b,.) = -1.

The R, is related to the usual phase shifts 5, by

5, = lim —.ln[(-1)"'R,]2i (26)
C

and limlR, l' at b, -~ is the reflected energy of the
l wave. For an incident plane EM wave E
= e&„,e" ' ~" at z = -~, the total scattering or ex-
tinction cross section, "expressed by R, and Q, ,
is

e„,= —,Re lim P (2l ~ 1){2—(—1)"'{R,+Q, )]),
b ~2)O l 1

(27)

where Q, stands for the reflection of magnetic
wave U. The elastic scattering cross section 0„ is

0„=,p (2l+ I)

x ljm [11+( I)'R)I +11+( I)'@tl ]—& oo

(28)

which equals 0„, if k, ' is real.
If $, (b) of (21) vanishes slower than or at the

same rate as b ' at b ~, then 6, , a, and the
forward scattering amplitude all diverge. " For
this case lR, l' still converges and gives the re-
flected energy if Im(k, ')&0. But, although 5, di-
verges, the differential cross section do'„/dQ of a
scalar scattering in nonforward directions is finite
and can be expressed by the 6, 's. In trying to get
such an expression for the EM scattering consid-
ered, we need the relation

obeys the Ricatti equation [Tg(cos8) +7]'2 (cos8)] =0, 8 220
2l+1

(29)

-k, ~

(R, '= (1-(R,') —2ik, {R,, 0& b&b, (23)

and the connection condition at any 0' discontinuity

[k2 (+) —k, (-)]+[k, (+) +k, (-)](R, (-)
[k, (+)+k, (-)]+[k, (+)-k, (-)](R2(-)

'

This {R,(b) gives the reflection coefficient R, by
)(1-x')'"P', (x) =P„,(x) -P, , (x) (30)

where ~, -=P,'(cosH)/sinH and w, =(d/d8)[P', (cosH)].
To prove (29), we first express 7{, in terms of
P, (cosH) and P', (cosH), and then use the recurrence
formula

R ={R (b,')e "~'c
1 (25)

to rewrite (29). Then (29) is equivalent to

if an appropriate boundary value of (R, at some
b =b, &b, is used to start the integration of (23)
from b,. outward to b, . Similar procedure applies
to k,*'(b*) and (16).

The b, and the appropriate (R(b, ) are determined

Q (2l+1)P, (cosH) =0, 8 x0
2

(31)

which is readily seen to be true by expanding
5 (1 —cosH) on $P2 (cosH)). Then with (29) and the
well-known Mie scattering expression, "we obtain
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do„) cos' " 2l+ 1 [e'"~~ ~~'T (coso)+e""~ ~~'m (cos6)]
dQ j e„o 4 l(l+1)

+
sin' " 2l+14, l(l+ I)

te"~& ~~'m (cos0)+e'""~ ~~'T (cos8)] (32)

where q, is the phase shift for l partial waves of magnetic mode U. In (32) we used the assumption that if
p and e taper off at b - ~ slower than I/O, they do so at the same rate. This formula (32) is analogous to
the well-known expression for the spherical scattering of a scalar field. '~
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