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~~Of course, in the calculations we ignore the effects
of strong interactions, so the results cannot be con-
sidered better than order-of-magnitude estimates.
The infinity multiplying y5 in the weak graphs can be
ignored since between free spinors u(p)y5u(p) is zero.

PHYSICAL REVIE W D VOLUME 6, NUMBER 7 1 OC TOBER 1972

Consistent Solution to the E&3 Problem in the (3,3) Model

J. H. Danskin*
L,yman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02238

(Received 20 March 1972)

It is shown that the (3, 3) model can provide a consistent solution to the K&3 problem, pro-
vided that A+ = 0.08. Although only one experiment has given this result at the present time,
it is only in this region that the following criteria can be satisfied simultaneously: (i) ((0) is
close to the experimental mean of —0.65, (ii) f+(0) is within 10% of unity, i.e. , second-order
SU(3) corrections are small, (iii) the vacuum is approximately SU(3)-invariant, (iv) the mass
of the ~ meson lies in the region where there is some experimental evidence for such a par-
ticle, and (v) the Callan-Treiman relation is reasonably well satisfied. It is also pointed out
that in some earlier solutions where a much lower value of X+ was fitted, an important inequal-
ity involving f+ (0) and mK was violated, thus rendering these models inconsistent.

I. INTRODUCTION

Recently, among the many papers devoted to the

Kl 3 problem, ' ' contradictory claim s"have been
made concerning the success of models involving
current algebra and the usual (3, 3)-symmetry-
breaking Hamiltonian H'. In the present paper, we

point out a basic inconsistency appearing in both
solutions, but then show that the (3, 3) model can
provide a consistent solution with the following
desirable features: (i) $(0) is relatively large and

negative, in agreement with the present mean ex-
perimental value, ' (ii) f, = f, (0) is very close to-
the SU(3)-symmetric value of unity, a,s required
by the Ademollo-Gatto theorem, ' (iii) the vacuum
is almost SU(3)-invariant, which is consistent
with having approximate SU(3) multiplets of parti-
cles, (iv) the mass of the z meson lies within the
present rather vague experimental limits. The
unusual feature of our solution is that it needs a
value of ~,= 0.08, and although this is consistent
with one recent experiment, ' it is certainly larger
than the average experimental result; one conse-
quence is that the ratio fz/f, is approximately
1.42, which is slightly higher than expected. Nev-
ertheless, the Callan-Treiman relation" is now

reasonably well satisfied, since the model predicts
Ao to be positive, but much smaller than ~+.

In fact, it may be thought that this last is a triv-
ial result, but this is not the case, as may be seen
from the following consideration. The ratio fr/f, f,
—=N is determined experimentally from the decay
rates for the K», n», and K„processes, but the
value for the last rate depends on' " A.+, in addi-
tion, the relevant equations in the (3, 3) model in-
volve N, and hence, X, . Accordingly, for fixed
values of f, and rn„a variation of A., (i.e., N) pro-
duces a corresponding variation in Ao, and there
is no guarantee that for "reasonable" values of f,
and m„suitable combinations of Xo and X, will
occur which give the correct value for $(0) or sat-
isfy the Callan-Treiman relation, nor is it certain
that the vacuum will be approximately SU(3)-in-
variant. Fortunately, it is possible simultaneously
to satisfy all of these constraints in a reasonable
fashion, although a brief consideration of Table I
shows that this is not trivial. It is interesting that
such consistent solutions exist, in the light of the
other successes of current algebra and partial

13conservation of axial-vector current (PCAC).
As far as the earlier, apparently contradictory,

attempts" to fit the negative value of A., in the con-
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TABLE I. Variation of cuz/~„andE&3 parameters with%=—fz/f f+ for ~ =1.0 GeV, 1.6 GeV, agd f+ —=f+(0) =1;
when ter/v =1, the vacuum is exactly SU(3) -invariant.

~'=1.0 GeV' I(:2 =1.6 GeV2

1.25

1.30

1.35

1.40

1.42

1.45

1.50

0.011

0.032

0.052

0.072

0.080

0.092

0.112

0.034
0.015

0.036
0.018

0.039
0.021

0.041
0.024

0.041
0.026

0.042
0.028

0.044
0.031

p.29
0.06

0.03
-0.17

—0.18
-0.38

-0.39
—0.59

—0.48
—0.67

—0.62
-0.80

-0.85
-1.02

17.3
1.20

17.4
1.29

17.3
1.40

17.p
1.52

16.7
1.62

16.4
1.69

15.5
1.95

0.025
0.018

0.029
Q.Q21

0.031
0.025

0.033
0.028

0.034
0.030

0.035
P.Q32

0.18
0.09

—0.03
-0.14

-0.26
-0.35

-0.45
—0.54

—0.57
-Q.62

-0.72
—0.75

12.2
2.60

14.2
1.56

12.7
1.94

10.8
2.41

9.4
3.09

7.9
3.48

text of the (3, 3) model are concerned, neither
paper considers an inequality, ' involving f, and m„
which is badly violated by their solutions, i.e.,
their solutions are not self-consistent. On the one
hand, in a hard-meson analysis which includes a
constant correction to pole dominance of the three
two-point functions of the current divergences and
imposes quadratic smoothness on the appropriate
three-point function, Olshansky and Kang' show
that the negative value for A,, leads to rather low
values for f„as well as indicating that pole dom-
inance is a much better approximation for the K
and K than for the m, i.e., quite the opposite of the
expected situation. But in a similar type of analy-
sis, Chan' claims that a satisfactory fit for $(0)
can be obtained in the (3, 3) model (he does not
mention f, ), although this involves breaking the
SU(3) symmetry of the vacuum to an appreciable
extent. The last-mentioned consequence could
possibly be considered sufficient grounds for re-
jecting the solution. But, in any case, both solu-
tions [which are equivalent as far as f, (0) and

f '(0) are concerned] fail because the negative value
of ~0, together with nz, '=1.1 GeV', corresponds to
f,= 0.70, whereas the above-mentioned inequality
leads to the condition f, ~ 0.93. In fact, when N
= 1.28, consistent solutions with negative values
for ~0 cannot be obtained unless m„~ mE, a condi-
tion which is quite unacceptable at the present
time. Finally, although Olshansky and Kang claim
at the end of Ref. 2 that a larger value of ~+ does
lead to a consistent solution, they do not consider
the effects of the corresponding increase in N,
and thus make the problem appear much simpler

than is actually the case.
In the remainder of the paper, we begin in Sec.

II by defining the relevant quantities, and summa-
rizing the hard-meson approach, while in Sec. III,
we discuss the consistency of the model and con-
sider the solutions for different values of ¹ A
brief discussion is given in Sec. IV.

II. BASIC (3, 3) MODEL

In this section, we begin by giving the basic def-
initions and equations for the (3, 3) model, but de-
tails of the hard-meson analysis will be omitted
since these appear in the paper by Olshansky and
Kang. '

First of all, we define the various K» form fac-
tors and associated parameters.

where K' and v' denote the squared masses of the
corresponding particles and t =(q —p)'. The usual
parametrization of the form factors is
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f (t) = f (0)((+—' t+
7r'

f(t)=f,(0)((+~ t+ ),
+2 2

k
=- $(0) =- = 2 (~()—&+) ~f, (0) w'

(2)

Next if we assume pole dominance of the usual
two-point functions t), (p') (i =7f, K, K), where, for
example,

a»(p2) -==,'i d4x e""

Next, we specify the symmetry-breaking Hamil-
tonian density H' by"'"

H EpZLp + 68Q8

where up and u, are the usual scalar densities
transforming according to the (3, 3)(l) (3, 3)
representation of SU(3) SU(3). Their equal-time
commutation relations with the SU(3) @ SU(3) gen-
erators V'(t) and A. (t) [where V'(t) =f d—' xVt()x)]
are

[V'(x,), u'(x) J =if""u'(x),

[V'(x,), v'(x)] =if"'v'(x),

[A'(x, ), u'(x)] = -zd"' v( )x,

[A'(x,), v'(x)] =i d"'u'(x) .

From these relations, the current divergences
take the form

f»'K
p2 ~2

then partial integration leads to the relations

a, (0) = f, '»—2= e,(v„,

+»(0) = f» K—=&»&»t

4„(0)= -f, 'K' = e„(v„,

(8)

[(f 2K +f 2»2) f 2K2]2 —4f 2K 2f 2

=(~2(v2-~~(d~) ) 0, (9)

where (v(-=(Oiu, io), and (v„, (v», and (v„are de-
fined in the same way as the e, etc. above. From
these last equations, we find

&"A.'„= -~,v',
gPn 4&&5 ~ 4&$5

K

and this leads to the alternative inequalities'

fKK - f»K —f,»

or

(10a)

&Oia "A'„(0) ~»') = f,»',

&oi&"A'„'"(0)iK ) =vYf»K',

(0 i() V„(0)iK ) ='Ev 2 f,»' .

(6)

~Py4~$5 + 4~~5
JJ K

where e,=(1/v3)(v2 e, +&2), e„=——2'v 3 e„and e»
Also, the decay constants f, are defined

by

f«) f»K+f & (lob)

where we assume that all of the f, are positive,
and that f»K) f,». However, the second inequality
is not satisfied in the SU(3) limit, so we shall fol-
low the usual practice' of rejecting it in favor of
the first condition.

For the hard-meson analysis, the three -point
function G(P', q2, t) is used, where

G(p', q', t) =i', ~2, 2, ~
d'x d'y e'~ '"(Ol TIa"A'„L(x)s"V", "(0)s'A';"(y)) io);

this is related to f(t) by

2 t(K(K'- »') f(t )=," G(»', K', t ) . (12)

The standard procedure of partial integration, etc.,"eventually leads to the results"

f.(o) =
2

(f»'+ f' f.'), -
»

f'(0) = ', + K, , 2 i
f»' f„'+f„'+2f»'-

6K

K gK K Q7&
(14)
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where the second version for f '(0) is valid even
when a (1, 8) term is included in H' (as pointed out
by Chan' ).

Finally, the quantity N= f~/—f,f, can be deter-
mined from the decay rates for the E„, E», and

w» processes in the context of the single-angle
Cabibbo theory. " Firstly, the Dalitz-plot expres-
sion for I'(K„) is'

KNf+ —w

[1-N(2-N)f ']"' ' (18)

From (17), we see that f, has an upper bound given

by

f, ' & 1/N(2 —N) (for 0& N& 2) (19)

Thus, from Eqs. (10) and (17), we obtain the impor-
tant relation

F(K„)=Af, ' sin'0 (I + ah.,+ PX,2),

where A, n, and p are factors depending on
masses, etc., with numerical values A /I'(K„)
= 20.75, n = 3.6995, and P = 5.4777. Then

(15)
and a rearrangement of (18) also yields a lower
bound for f, which now depends on a.

Next, from Eq. (14), we can obtain the following
expression for &ur/&v„viz. ,

2 2 N 1 1
N =tan 8~ [Y+ ~'-N(z'-K')], (20)

=tan'8„, , (I+a A.,+PA.,2)—,, (16)
+

where tan8~ is a number determined from the
ratio I (K»)/I"(v„, ); when A., takes the value 0.023
corresponding to K* dominance of f+(t) and f+= 1,
then N = 1.28.

III. NUMERICAL RESULTS

2

f = 1+N(N —2)f (17)

In this section, we begin by discussing the effects
of the inequality (10a) and then consider the varia-
tion of the results with N. First of all, the quantity
f„' can be eliminated by using Eq. (13):

where

Y = (K —v')(A2a /v'- 1) . (21)

f 2K 2 f 2~2 f 2~2

CO& M„
(22)

By substituting for f„' and &ur/e„we derive the
following quadratic equation for F in terms of N,
f„and a, viz. ,

This ratio is a useful quantity for measuring the
SU(3) symmetry-breaking of the vacuum since +E/
&u, = 1 in the SU(3) limit. In addition, we can ob-
tain an alternative expression involving ~r/&u,
from Eq. (8):

Y'- Y[N(K' —K')- (iP- w')/Nf, '] + K2[N(z' K2) +(z'- w-')/Nf, 2- x2 (iP-K' v-2)/f+'] = 0 . - (23)

To illustrate how we can use (18), (19), and (23),
we begin by putting N = 1.28, the conventional value
used in Refs. 2 and 3. For a fixed value of a2, f,
is constrained to lie in a narrow range, and we
can use this information to determine the corre-
sponding limits on. A., from Eq. (23). The results
for four values of ~' are given below:

z' = 1.60,

K' = 1.00,

K' = 0.50,

0.97&f, & 1.05, 0.019& A.,& 0.034;

0.93&f, & 1.05, 0.017& A & 0.041;

0.86&f, & 1.05, 0.011& A. & 0.020,

0.023& A, & 0.059;

g' = 0.25, 0.76&f, & 1.05, -0.001& A2& 0.020,

0.026& A, & 0.095.

The first two values of ~' correspond to the limits
of the region in which there is some slight experi-

mental evidence for the existence of a I(: meson,
while the other values are used simply to illustrate
how low z' has to become in order that Xo attain
negative values. Clearly, the mean experimental
value for X, of -0.024 cannot be obtained for real-
istic values of K' when N= 1.28, so some modifica-
tions must be made.

One change which is partially successful is the
inclusion of a (1, 8) term in H', since the two addi-
tional parameters introduced allow sufficient free-
dom to fit a negative A., with t&' around 1.0 GeV':
however, as is obvious from Chan's paper, this
corresponds to a large breakdown of the vacuum
SU(3) symmetry, since &u„/~, is not close to unity.

Another, somewhat different, alteration is to
allow N to vary over a range of values, "and to
check whether it is possible to obtain a "good" so-
lution, i.e., a self-consistent solution which in-
volves values of parameters which are close, ei-
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TABLE II. Variation of co+/cu and&, 3 parameters with f for K =1.0 GeV2, 1.6 GeV, andPf =1.42.

N =1.42

AD

K2 1.0 GeV2 =].,6 GeV

0.95
1.00
1.05
1.10

0.081
0.080
0.079
0.078

0.027
0.026
0.025
0.025

—0.67
-0.67
—,0,67
—0.66

2.90
1.62
1.21
0.98

0.030
0.029
0.028

No real roots for Ao.
-0.62
-0.63
—0.62

3.09
1.37
0.97

ther to present experimental numbers, or else -as
in the case of f, and &v»/ur, -to some desirable the-
oretical value.

In more detail, we take»', f„and N as our in-
dependent variables and require that v' lie in the
"experimental" range between 1.0 and 1.6 GeV',
while f, is restricted to the region close to unity,
since the Ademollo-Gatto theorem' tells us that
~ f, —1~ is of order O(e„'). As for N, we should ex-
pect that the combination Nf, =j, is not too far
removed from its SU(3)-symmetric value of unity;
in fact, to obtain negative values for $ in the mod-
el, we focus our attention on the range 1.25 &N
&1.50. Our dependent variables are $, u&»/ur„
and &,: experimental values for $ range widely,
although more recent values appear to be cluster-
ing around -0.65; as mentioned before, )&u»/&u, -1~
should be small in order to keep the vacuum al-
most SU(3)-invariant; and the experimental range
for ~+ is from 0.015 to 0.080, corresponding to N

lying between 1.26 and 1.42. For each combination
of »', N, and f„we find A., from Eq. (16) -actu-
ally, only the positive root is relevant -and &p

from Eqs. (23) and (21); then $ is evaluated from
Eq (3).

To illustrate general trends, we keep f, =1 and
consider the variation of A.„AO, $, and &u»/~„
for ~' = 1.0 and 1.6 GeV' as N goes from 1.25 to
1.50. The results are given in Table I and we see
immediately that for -0.7 & $ & -0.6, we require
N between 1.40 and 1.45, while the value of w' is
not critical. However, for &u»/&u, near unity (i.e.,
less than about 1.5), only the lower roots for &0

are relevant, and even then, we need ~' around
1.0 GeV'. From the pattern of results, it appears
that values of »' below 1.0 GeV' would yield $
= -0.65 with ~&u»/~, -1~ much smaller, and also
for slightly smaller values of N, but there is no
evidence for a ~ meson in this region.

Next, to demonstrate the variation of the param-
eters with f„we fix N= 1.42, take»'= 1.0 and 1.6
GeV', and consider the results {for the lower
roots of Ao only) for f, =0.95, 1.00, 1.05, and
1.10; in fact, for N= 1.42, we find 0.66 (0.64) &f,
& 1.10 where the lower limit corresponds to z'
=1.0 (1.6) GeV'. The results, which appear in

Table II, indicate that the effect on u&»/v „is con-
siderable, although $ is hardly affected, and we
are thus able to obtain "good" solutions over the
whole range of ~. Finally, we can check how well
the Callan-Treiman relation is satisfied. The
usual form of the equation,

f(A') = fxlf. ,

may be rearranged to give

~,Z'/2 =N 1. -

(24)

(25)

Thus, for N=1.42 and f, =1.05, the left-hand side
of Eq. (25) takes the values 0.34 (0.39) for» =1.0
(1.6) GeV', so that agreement is reasonably good,
especially for the larger value of K'.
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IV. DISCUSSION

Hence, we see that the value of $= -0.65 can be
obtained in the simple pole dominance (3, 3) model
without involving a large breakdown of the SU(3)
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extent of this region of suitable solutions is quite
limited, however, as can be seen from Tables I
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is somewhat larger than the present mean experi-
mental value.
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Errata

Single m' Electroproduction at m= 2 GeV and the

Pion Form Factor, R. C. E. Devenish and D. H.
Lyth [Phys. Rev. D 5, 47 (1972)]. The B, ampli-
tudes in Eels. (A7) of Appendix A are incorrectly
numbered. Only the six B, amplitudes chosen to
be independent should appear, namely B„B„B3,
B„B„andB,. The correct equations are ob-
tained by making the following replacement: B,
for B~, B~ for B„and B8 f B6.

Lepton-Number and Chirality Nonconservation

in Weak Processes, H. Primakoff and S. P. Rosen
[Phys. Rev. D 5, 1784 (1972)]. Page 1792, item

(1): g& (x) should be replaced by g&+(x). Page 1792,
item (5): The first sentence should read: The pair
of successive processes,

v„-e + (a + p), m', ...—v,

[Eqs. (28) and (8)],
where the intermediate lepton-hadron states are
virtual, provides a mechanism for Pontecorvo's
"neutrino oscillations. "" [Transitions of the
type v& —v&, v, are forbidden in vacuo by angular
momentum conservation because v„has average
helicity (-h) and v„,v, have average helicity
(+h) where h= (1 —(q)')/(1+ (7i(').]


