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Inclusive single-particle spectra are calculated according to the thermodynamic model in
the form dN/dgntan20). At asymptotic energies the model using the weak thermodynamic
bootstrap solution leads to double-peaked distributions whereas the model using the strong
thermodynamic bootstrap solution leads to a central plateau.

Recently a method was described' for calculating
approximately the distribution dN/d'(1n tan, —,'8*) of
secondary particles which result from a continu-
ous superposition of decaying fireballs. These
fireballs move with different velocities in the
c.m. system. According to the thermodynamic
model, "the inclusive single-particle spectra are
obtained in such a way. The distributions of the
thermodynamic spectra in the angular variable
g = ln tan-,'8* previously were calculated numerical-
ly, ' ' and it was found that the one-peak curves ob-
tained at small collision energy develop into
double-peaked distributions at higher energies.

This behavior of the thermodynamic momentum
spectra can be described and understood in model-
independent terms quite easily by noticing that for
inclusive single-particle spectra with exponential-
ly damped transverse-momentum dependence, the
variable $ = lntan-, '8* becomes proportional as-
ymptotically at s- ~ to the rapidity

dN
dY*dp ' ' f (p 2 y'g yg)

for Y~,„-A & Y* & Y*

where Y* =1n(vs/m) and A is a finite correlation
length. The region ~F*~ & 1'* -A is referred to
as the central plateau or the pionization region.
Distributions with g(p ) x0 are said to exhibit a
nonvanishing central plateau or pionization; if
g(P ') =0, no pionization is present. The regions
Y*,„-A & Y* «Y* are referred to as the target
and projectile fragmentation regions.

The inclusive single-particle spectra of particle
i according to the thermodynamic model' ' are
given in the c.m. system by expressions like the

Here g = (p~'+ m')'~' is the longitudinal mass.
The inclusive single-particle spectra O'N/dV'dp~'

are said to have scaling behavior if asymptotical-
ly

g(p, ') for il'*i & 1'* -A

following:

d3N*

P ' "-I
dA. F(A.) L(A., y )f,(p,', T(x, y )), (2)

where X = sgn(P)(y —1)/(y, -1) is a velocity param-
eter and E(X) is a velocity weight function. P and

y are Lorentz parameters of fireballs moving for-
ward (A. & 0) and backward (X& 0) in the c.m. system;
yp is the Lor entz parameter of the c .m . system .
I.(A., y, ) is a Lorentz boost operator transforming
the isotropic spectrum f,(p', , T (A., y, )) from the rest
system of the fireball (momenta p') to the c.m.
system (momenta p*). T(A., y, ) is a temperature
parameter in the Planck-type spectrum f, (p', 7). .

The fact that asymptotically with s -~ T ap-
proaches a finite limiting temperature T, explains
the exponential damping of transverse momenta in
the thermodynamic model.

Expression (2) refers to inclusive single-particle
spectra calculated from the weak thermodynamic
bootstrap solution. ' lt can be shown that the spec-
tra (2) have the scaling property in the fragmenta-
tion regions, and that they lead to a vanishing cen-
tral plateau; this means that they do not exhibit
pionization. " " At high energy the rapidity distri-
butions approach zero in the central region. Due
to the relation between Y* and the variable
$ = lntan-, '8, this is equivalent to double-peaked
distributions in $ as directly calculated. ~ '

Zgrablich
' calculates the $ distributions from

the continuous superpositions of isotropically
decaying fireballs in the following form:

W@p

I"(h) = d4 ~(4)/cosh'(0+()
4p

The term cosh '(Q + $) gives the g distribution of
one isotropically decaying fireball moving with

y = e ~ backwards. The integration extends only
over backward-moving fireballs. The expression
(3) with any function U(@) will not lead to a curve
E($) peaked at $ & 0. However, in the thermody-
namic model, fireballs moving forward as well as
backward in the c.m. system have to be considered.
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~he~e =p,U =In[(y, —1)Xsgn(p)+I] and =y, —1.
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N
= 5.6.

The curves in Fig. 1 agree with rp
u isagree with Z ra

peaked distr b
g ablich. The one-

is ri ution at low ener bec
urve wi increasing energy.

All resulults given so far refer to the inclusi
oy ' oo p

more recent version' of the
dynamic, inclusive

'
n o e thermo-

ing calculated u
'

usive, single-particle s ecp tra is be-

dynamic b t
using e stron stg atistical-thermo-

oo strap solution. " '4 In this m
th od ' ' 1-sing e-particle spectra are de-

scribed by

d'N*
6 P* dA. E(A.)q(A., y )I (A., y ) fAp', , T(x, y )),

q(x, y, ) =c
/X[y, +1 '

It has been shown '" that (6)
nonvanishing central lat

at 6 and (7) lead to a flat

~ ~ ~ ~

p a eau or to nonvanish'
yionization in agreem t 'th

ing

storage ring dat
en with recent in'th 'nters ecting

a a. In Fig. 2 such ra ' '
p v

p, are plotted. As m
th od 1 d t flre ic s flat distributions in
= lntan —,'L9~, with possibl two n= lnt —' ~, ' i y wo not-very-pro-

ce peaks in the fragmentat ion regions.

(6)

which corresponds to (2) exes texcept for the function

, w ic expresses the increase o
ylicity due to th d

se of multi-
o e ecay chain of fireb
f h

~G Z rab '

R.
G. Zgrablich, Phys. Rev. D 4 871

. Hagedorn and J. Rallft Su
(1971).

~J. Ranft, Ph sys. Letters 31B, 529 (1970'.
J. Ranft, Rutherford High Ener

No. RHEL R-165
ig Energy Laboratory Report

, 1968 (unpublished).

ys. Letters 338, 481 (1970).J. Ranft, Ph s. Le

7R. P. Feynman, Phys. Rev. Letters 23 141
pp . uovo Cimento 3 147 1965).



INCLUSIVE SINGLE-PARTICLE SPECTRA ACCORDING TO. . 2057

9J. Ranft, Karl Marx University Report No. TUL-49,
1971 (unpublished).

~ R. Hagedorn and J. Ranft, CERN Report No. CERN-
TH-1440, 1972 (unpublished).

C. E. DeTar, Phys. Rev. D 3, 128 (1971).

S. C. Frautschi, Phys. Rev. D 3, 2821 (1971).
~3C. J. Hamer and S. C. Frautschi, Phys. Rev. D 4,

2125 (1971).
~4W'. Nahm, Bonn University Report No. BONN UNIV

P I-102, 1971 (unpublished) .

PHYSICAL REVIE%' D VOLUME 6, NUMBER 7 1 OC TOBER 1972

Connection Between Nonlinearity of the Pomeranchuk Trajectory and an Intercept Below I

Q. F. Chew*
National Accelerator Laboratory, Batavia, Illinois 60510$

and

D. R. Snider
University of Wisconsin, Miluaukee, Wisconsin 53201

(Received 31 May 1972)

An order-of-magnitude relation is suggested between the curvature of the Pomeranchuk
trajectory and the displacement of its intercept below 1.

Experimental evidence has recently been re-
ported for curvature of the Pomeranchuk trajecto-
ry 'For t .in the range 0.05& ~t~& 01 OGeV', the
slope has an average value of 0.37 + 0.08 GeV ',
while for 0.10& ~t ~&0.30 GeV' the average slope is
0.10 +0.06 GeV'. Such behavior has been qualita-
tively anticipated from the multiperipheral model
as a consequence of interaction between the leading
pole and the leading branch point. ' We here pre-
sent a simplified description of this pole-branch-
point interaction which allows an immediate order-
of-magnitude estimate of the displacement of the
Pomeranchukon intercept below 1. We avoid the
detailed model-dependent considerations of Ref. 2

which tend to obscure the essential elements of the
mechanism.

The source both of the curvature of n p(t) and of
the displacement of o.~(0) below 1 is the Finkel-
stein-Kajantie requirement of a nonvanishing in-
terval between pole and branch point. ' The argu-
ment of these authors establishes such a gap only
at t = 0, but the multiperipheral model extends their
argument to make plausible that the pole and
branch point are not allowed to intersect for any
real negative t.' The magnitude of the separation
between pole and branch point is model-dependent,
but at t =0 the branch-point position is related to
that of the pole by the formula

so the gap width

b, = o. p(0) —n, (0} (2)

is also equal to 1 —o. ~(0), the displacement below
1 of the Pomeranchukon intercept. How do we in-
fer curvature of the trajectory?

We may infer curvature from the circumstance
that if the pole trajectory were linear, the branch-
point trajectory would also be linear and with half
the slope, because

n, (f) = 2n, (-.'f) -1. (3)

Since the branch point lies beneath the pole at t =0,
an intersection at some negative value of t would

be inevitable. To avoid intersection with the
branch point the trajectory must develop positive
curvature.

We are now in a position to make an order-of-
magnitude estimate. With no curvature, and a
slope n~', intersection would occur at

(4)
c'p'(0)

'

To avoid intersection the trajectory slope must de-
crease by about a factor of two in going from t =0
to t = t. The recently acquired CERN Intersecting
Storage Rings (ISR) data' suggest that the order of
magnitude of t is 0.1 GeV', while o.~'(0) =0.4
GeV '. Thus from formula (4) we estimate

n, (0) = 2n p(0}—1, 4 =2nI, '(0)t =0.02. (5)


