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Inclusive single-particle spectra are calculated according to the thermodynamic model in
the form dN/d(Intan}6). At asymptotic energies the model using the weak thermodynamic
bootstrap solution leads to double-peaked distributions whereas the model using the strong
thermodynamic bootstrap solution leads to a central plateau.

Recently a method was described?! for calculating
approximately the distribution dN/d(Intan}6*) of
secondary particles which result from a continu-
ous superposition of decaying fireballs. These
fireballs move with different velocities in the
c.m. system. According to the thermodynamic
model,?2 the inclusive single-particle spectra are
obtained in such a way. The distributions of the
thermodynamic spectra in the angular variable
£ =Intan6* previously were calculated numerical-
1y,*~® and it was found that the one-peak curves ob-
tained at small collision energy develop into
double -peaked distributions at higher energies.

This behavior of the thermodynamic momentum
spectra can be described and understood in model-
independent terms quite easily by noticing that for
inclusive single-particle spectra with exponential-
ly damped transverse-momentum dependence, the
variable £ =Intan36* becomes proportional as-
ymptotically at s— « to the rapidity
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Here p = (p, 2+ m?)'? is the longitudinal mass.
The inclusive single-particle spectra d®N/dY*dp,®
are said to have scaling behavior ” if asymptotical-
ly
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where Y¥,, =In(Vs /m) and A is a finite correlation
length. The region |Y*| < Y*,, —A is referred to
as the central plateau or the pionization region.
Distributions with g(p,?) #0 are said to exhibit a
nonvanishing central plateau or pionization; if
2(p.,?) =0, no pionization is present. The regions
Yaxax—=A sY* <Y} are referred to as the target
and projectile fragmentation regions.

The inclusive single-particle spectra of particle
i according to the thermodynamic model 23 are
given in the c.m. system by expressions like the

|

following:
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where A =sgn(8)(y —1)/(y,-1) is a velocity param-
eter and F(\) is a velocity weight function. 8 and

v are Lorentz parameters of fireballs moving for-
ward (A>0) and backward (A<0) in the c.m. system;
Y, is the Lorentz parameter of the c.m. system.
L(, y,) is a Lorentz boost operator transforming
the isotropic spectrum f,(p}, T (A, 7,)) from the rest
system of the fireball (momenta p’) to the c.m.
system (momenta p*). T(,y,) is a temperature
parameter in the Planck-type spectrum f;(p’, T).
The fact that asymptotically with s -« T ap-
proaches a finite limiting temperature T, explains
the exponential damping of transverse momenta in
the thermodynamic model.

Expression (2) refers to inclusive single-particle
spectra calculated from the weak thermodynamic
bootstrap solution® It can be shown that the spec-
tra (2) have the scaling property in the fragmenta-
tion regions, and that they lead to a vanishing cen-
tral plateau; this means that they do not exhibit
pionization.%%! At high energy the rapidity distri-
butions approach zero in the central region. Due
to the relation between Y* and the variable
£=Intan30, this is equivalent to double-peaked
distributions in & as directly calculated.?-¢

Zgrablich! calculates the ¢ distributions from
the continuous superpositions of isotropically
decaying fireballs in the following form:

%0
FE)= [ apu®)/cosh®@ +£). @)

The term cosh~2(¢ +£) gives the ¢ distribution of
one isotropically decaying fireball moving with
y=e® backwards. The integration extends only
over backward-moving fireballs. The expression
(3) with any function U (¢) will not lead to a curve
F(¢) peaked at £>0. However, in the thermody-
namic model, fireballs moving forward as well as
backward in the c.m. system have to be considered.

2055



2056 J.

Q.
Z

[=%
T

\‘\\\‘“v’
%
X

arbitrary units
a

E =3 5 \35 V8 77 \35 884 \976

-2
i 2 4 6 8§ 3

FIG. 1. The angular distribution function (4) according
to the thermodynamic model (2), using the weak thermo-
dynamic bootstrap solution.

The £ distribution corresponding to the thermody-
namic model (2) can be calculated with the follow-
ing integral:

F(§)= %’ﬂf_l‘ dU F<exp(¢0§lUl) _1>

exp (¢,|U|)
cosh®(£ +¢oU)’
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where ¢ =¢ U =1n[(y, —1)rsgn(p)+1] and &=y, -1.
In Fig. 1 we plot the curves F(¢) for £>0 and dif-
ferent c.m. system energies E,,, =Vs , which were
obtained using the velocity weight function

F(A)=l%(1—>\)e"‘“‘, A=5.6. (5)

The curves in Fig. 1 agree with previously found
curves,*~% but disagree with Zgrablich.! The one-
peaked distribution at low energy becomes a two-
peaked curve with increasing energy.

All results given so far refer to the inclusive
spectra using the weak thermodynamic bootstrap
solution. A more recent version!? of the thermo-
dynamic, inclusive, single-particle spectra is be-
ing calculated using the strong statistical-thermo-
dynamic bootstrap solution.!?=!* In this model the
thermodynamic single-particle spectra are de-
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FIG. 2. Distributions d?N*/dY*dp? according to the
thermodynamic model, using the strong bootstrap solu-
tion (6). The curves plotted are for secondary m* created
in proton-proton collisions.
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which corresponds to (2) except for the function
q (\, v,) which expresses the increase of multi-
plicity due to the decay chain of fireballs. This
function is of the form

Y

qa(, v,) —CW;:-H . (7)
It has been shown *1° that (6) and (7) lead to a flat
nonvanishing central plateau or to nonvanishing
pionization in agreement with recent intersecting
storage ring data. In Fig. 2 such rapidity distri-
butions d2N*/dY*dp ,? are plotted. Asymptotically
this model predicts flat distributions in §
=Intan} 6*, with possibly two not-very-pro-
nounced peaks in the fragmentation regions.

G, Zgrablich, Phys. Rev. D 4, 871 (1971).

’R. Hagedorn and J. Ranft, Suppl.Nuovo Cimento 6,
169 (1968).

3J. Ranft, Phys. Letters 31B, 529 (1970).

43. Ranft, Rutherford High Energy Laboratory Report
No. RHEL R-165, 1968 (unpublished).

5J. Ranft, Phys. Letters 33B, 481 (1970).

63, Klosinski, Acta Phys. Polon. A37, 251 (1970);
Jagellonian University, Cracow, Report No. TPJU-13/67,
1967 (unpublished).

'R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969).

8R. Hagedorn, Suppl.Nuovo Cimento 3, 147 (1965).



%J. Ranft, Karl Marx University Report No. TUL-49,
1971 (unpublished).

10R, Hagedorn and J. Ranft, CERN Report No. CERN-
TH-1440, 1972 (unpublished). :
YC. E. DeTar, Phys. Rev. D 3, 128 (1971).

INCLUSIVE SINGLE-PARTICLE SPECTRA ACCORDING TO. . . 2057

123, C. Frautschi, Phys. Rev. D 3, 2821 (1971).

3¢, J. Hamer and S. C. Frautschi, Phys. Rev. D4,
2125 (1971).

4w, Nahm, Bonn University Report No. BONN UNIV
PI-102, 1971 (unpublished).

PHYSICAL REVIEW D VOLUME 6, NUMBER 7 1 OCTOBER 1972

Connection Between Nonlinearity of the Pomeranchuk Trajectory and an Intercept Below 1

G. F. Chew*
National Accelevator Labovatory, Batavia, Illinois 605107

and

D. R. Snider
University of Wisconsin, Milwaukee, Wisconsin 53201

(Received 31 May 1972)

An order-of-magnitude relation is suggested between the curvature of the Pomeranchuk

trajectory and the displacement of its intercept below 1.

Experimental evidence has recently been re-
ported for curvature of the Pomeranchuk trajecto-
ry.! For t in the range 0.05< |#|<0.10 GeV?, the
slope has an average value of 0.37+0.08 GeV 2,
while for 0.10< [¢]|<0.30 GeV? the average slope is
0.10+£0.06 GeV?. Such behavior has been qualita-
tively anticipated from the multiperipheral model
as a consequence of interaction between the leading
pole and the leading branch point.> We here pre-
sent a simplified description of this pole-branch-
point interaction which allows an immediate order-
of-magnitude estimate of the displacement of the
Pomeranchukon intercept below 1. We avoid the
detailed model-dependent considerations of Ref. 2
which tend to obscure the essential elements of the
mechanism.

The source both of the curvature of a p(¢) and of
the displacement of a (0) below 1 is the Finkel-
stein-Kajantie requirement of a nonvanishing in-
terval between pole and branch point.> The argu-
ment of these authors establishes such a gap only
at t=0, but the multiperipheral model extends their
argument to make plausible that the pole and
branch point are not allowed to intersect for any
real negative £.> The magnitude of the separation
between pole and branch point is model-dependent,
but at £=0 the branch-point position is related to
that of the pole by the formula

ac(o)’_‘zap(o)_ly (1)

so the gap width

A=ap(0)-a.0) (2)
is also equal to 1 —a (0), the displacement below
1 of the Pomeranchukon intercept. How do we in-
fer curvature of the trajectory?

We may infer curvature from the circumstance
that if the pole trajectory were linear, the branch-
point trajectory would also be linear and with half
the slope, because

a.(t)=2ap(st)-1. ®)
Since the branch point lies beneath the pole at £=0,
an intersection at some negative value of { would
be inevitable. To avoid intersection with the
branch point the trajectory must develop positive
curvature.

We are now in a position to make an order-of-
magnitude estimate. With no curvature, and a
slope ap’, intersection would occur at

_ 2A

f= a0 (4)
To avoid intersection the trajectory slope must de-
crease by about a factor of two in going from £=0
to t=7f. The recently acquired CERN Intersecting
Storage Rings (ISR) data' suggest that the order of
magnitude of 7 is 0.1 GeV?, while ap’(0)=~0.4
GeV ™2, Thus from formula (4) we estimate

A=1ap'(0)F~0.02. )




