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157, 1376 (1967).

Such a phenomenological interaction could be induced,
however, by baryon loop graphs and the current-current
weak interaction. This anomalous, strange axial-vector-

current divergence effect is being calculated.

3gee, for example, L. M. Brown, H. Munczek, and
P. Singer, Phys. Rev. Letters 21, 707 (1968).

HUpor simplicity we disregard w-¢ mixing effects.
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A simple Veneziano-like representation for the pion form factor is related to the two-pion
unitarity equation and the Veneziano formula for the 7~ scattering amplitude. Some further
approximations to the unitarity equation are also discussed.

Recently there has been considerable interest in
describing the hadron electromagnetic form factors
in terms of Veneziano-like expressions. In partic-
ular, for the pion form factor it has been suggested
by Jengo and Remeddi and by Suura’ that

(1 - a,s)
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A way to introduce a Veneziano-like formalism
for the form factor is to adopt a model in which the
photon interacts with hadrons through pair cre-
ation, say of partons. The form factor then arises
from the strong final-state interactions. For the
pion form factor, for example, keeping only the 2-
pion intermediate states, one may use the Venezia-
no formula for the 7w scattering amplitude and ex-
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pect to obtain a formula equivalent to (1) from the
resulting Omnés equation.2 We proceed to discuss
this approach.

Let

N (s)

h,(s) " D05

Here ,(s) is the n-7 scattering amplitude in the I
=J =1 state. N,(s) and 1/D,(s) have the usual left-
hand and right-hand cuts. Then, with the above
approximation, the pion form factor is given by

1
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Now in the Veneziano model, the amplitude %,(s) is
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It is clear from the above expression that right-
hand singularities in #,(s) can only come from the
function I'(1 - @ (s)).

Thus

1
T(S)~F(s) ~T(1 - as)

z\l/2 1 1 T(1=ay(s))T(1 - ayt)
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r

in the Veneziano model. We may of course multi-
ply F(s) by an entire function to have proper as-
ymptotic behavior. Thus

Fls)= T'(n - ays))
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is one of the possible solutions of the Omnés
equation.

In equating F(s) to 1/D,(s), one assumes two
things:

(i) Neglect of all intermediate states except 27
from the spectral function of the form factor.

(ii) The 7-7 scattering amplitude 7,(s) satisfies
elastic unitarity,

Imn, (s) = |k, (s) 7,
, h,(s)=e*®sing, 6 real, so that
ImF(s)=F(s)h¥(s)6(s —4p?). (3)

If we relax condition (ii), i.e., take into account
the contribution of other states in nm scattering as
is the case when we use the Veneziano model, &
complex, (3) should be replaced by ImF(s)
=Re(F(s)h¥(s)), since the spectral function should
be real. We no longer have the equality of the
phases of the form factor and the partial-wave am-
plitude, and (2) does not hold.

The expression (1) cannot, however, be con-
fronted directly with data in the timelike region
until the width of the resonances have been incor-
porated in it. One way to shift the poles of F(s) to
the second sheet is to use Martin’s prescription
for smoothing out F(s) (Refs. 3, 4), i.e.,

T(1-a(rs))

)‘m
F(s)= L:o dr o) T'(n-als)’

This gives

F(s)=1+

Zf dt

where c is a constant, or

F(s)=1

—x, s)[(In(1 - s/%)) (3 —x/s) -

The smoothing function ¢(x) is chosen to give the
proper threshold behavior for the p-wave amplitude
and suitable positions for the poles on the second
sheet. As shown in (3),

(A =2,)%2 T

PRI T,

gives a reasonable fit to the data.

It is also of some interest to discuss a different
distortion of the unitarity equation. We put F(s)
~1 on the right-hand side in (3):

=h¥0(s —4u?).

Note that in Veneziano model, since %,(s) is real,
the “approximation” preserves the reality of the

spectral function. A dispersion relation for F(s)

with one subtraction gives the following:

0 h ’ d ’
F(s)=1+£J- #)__s_’
T Jy2s'(s’ =)

ImF(s)

where
B s_4u2>1/2 1 J-—u ,
hl(s)—< 5 ——32n6 . 2dz V(s,t).

Let us now take yu, =0 for simplicity. Then

The series Z)" converges for Rea(t) <0.

[(1n(1+s/t Y& +t/s)-1]+2,

cs

1+,

m

which is identical to the formula obtained by Gerstein ef al.® The difficulties associated with this approach,
for example the improper asymptotic behavior, emergence of vector dominance through second-order
poles, etc., can be traced to the drastic assumptions made above.
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