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~2Such a phenomenological interaction could be induced,

however, by baryon loop graphs and the current-current
weak interaction. This anomalous, strange axial-vector-
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A simple Veneziano-like representation for the pion form factor is related to the two-pion
unitarity equation and the Veneziano formula for the m-n scattering amplitude. Some further
approximations to the unitarity equation are also discussed.

Recently there has been considerable interest in
describing the hadron electromagnetic form factors
in terms of Veneziano-like expressions. In partic-
ular, for the pion form factor it has been suggested
by Jengo and Remeddi and by Suura' that

pect to obtain a formula equivalent to (1) from the
resulting Omnes equation. ' We proceed to discuss
this approach.

Let

r (1 —o.p(s))E,(s)-
F(n —np(s))

'

A way to introduce a, Veneziano-like formalism
for the form factor is to adopt a model in which the
photon interacts with hadrons through pair cre-
ation, say of partons. The form factor then arises
from the strong final-state interactions. For the
pion form factor, for example, keeping only the 2-
pion intermediate states, one may use the Venezia-
no formula for the mn scattering amplitude and ex-

Here h, (s) is the s-n scattering amplitude in the I
=J = 1 state. N, (s) and 1/D, (s) have the usual left-
hand and right-hand cuts. Then, with the above
approximation, thepion form factor is given by

(2)

Now in the Veneziano model, the amplitude h, (s) ie

s-4p, ' '" 1 I'" &(1-o' (s))&(1-o. (t))
ps 32w J, 1'(1 —o~(s) —ot~(t))

It is clear from the above expression that right-
hand singularities in h, (s) can only come from the
function 1 (1 —n~(s)).

Thus

-&(s) -&(1 - o',(s))
1

D, s

in the Veneziano model. We may of course multi-
ply E(s) by an entire function to have proper as-
ymptotic behavior. Thus

I'(1 —o.p(s))
&(s) =

I'(n —o.p(s) )
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is one of the possible solutions of the Omnes
equation.

In equating F(s) to 1/D, (s), one assumes two

things:

(i) Neglect of all intermediate states except 2w

from the spectral function of the form factor.
(ii) The n -w scattering amplitude h, (s) satisfies

elastic unitarity,

Imh, (s) = ~h, (s)P,
i.e. , h, (s) = e'~ sin6, 5 real, so that

ImF(s) = F(s)h,*(s)g(s —4g') .

If we relax condition (ii), i.e. , take into account
the contribution of other states in nm scattering as
is the case when we use the Veneziano model, 5

complex, (2) should be replaced by ImF(s)
= Re(F(s)h,*(s)), since the spectral function should
be real. %e no longer have the equality of the
phases of the form factor and the partial-wave am-
plitude, and (2) does not hold.

The expression (1) cannot, however, be con-
fronted directly with data in the timelike region
until the width of the resonances have been incor-
porated in it. One way to shift the poles of F(s) to
the second sheet is to use Martin's prescription
for smoothing out F(s) (Refs. 2, 4), i.e. ,

F( )= I day(Z) r(n —n(zs))
'

The smoothing function p(A) is chosen to give the

proper threshold behavior for the p-wave amplitude
and suitable positions for the poles on the second
sheet. As shown in (2),

gives a reasonable fit to the data.
It is also of some interest to discuss a different

distortion of the unitarity equation. We put F(s)
=1 on the right-hand side in (8):

ImF(s) =h,*g(s —4g') .

Note that in Veneziano model, since h, (s) is real,
the "approximation" preserves the reality of the
spectral function. A dispersion relation for F(s)
with one subtraction gives the following:

"" h, (s') d s'
F(s) =1+-

7 a 4p2 s s —s

where

4 2 j./2 y
r +1

h, (s)=
32 P

' sdr V(s, t).s 32&

Let us now take p. , =0 for simplicity. Then

„() P '„(2 4t)g f(t)
n

The series g„converges for Reo.(t) &0.

This gives

F(s) = 1+4, g d t " [(ln(1+ s/t)) (2 + t/s) —1]+—,p
"' f„(t) CS

n=0

where c is a constant, or

p CS
F(s) =1+, ] dx V( —x, s)[(ln(1 —s/x))( —,

' —x/s) —1]+—
0

which is identical to the formula obtained by Gerstein et al. The difficulties associated with this approach,
for example the improper asymptotic behavior, emergence of vector dominance through second-order
poles, etc. , can be traced to the drastic assumptions made above.
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