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Light-cone algebra is written for the currents in a unified theory of weak and electromag-
netic interactions, and is used to obtain predictions for deep-inelastic structure functions of
v+N v+ anything in terms of those of e+N + e+ anything and/or v, +N l + anything. The
predictions are characteristic of the theory because of the existence in the theory of a neutral
strangeness-conserving weak hadronic current which couples with a neutral lepton current,
whereas in the conventional theory with only charged currents the process v +N v + anything
does not occur in the lowest order.

A number of attempts have been made to unify
weak and electromagnetic interactions in a Yang-
Mills theory with spontaneous breaking of gauge
invariance. ' In the version studied by Salam and
Weinberg these interactions are mediated by two
massive charged vector bosons W„', a neutral
massive vector boson Z&, and the massless photon

A&. Recently the model has been extended by Wein-
berg' to include the hadrons. In order to eliminate
the strangeness-changing neutral current, a four-
quark scheme of Glashow, Iliopoulos, and Maiani'
is usai. The symmetries act on two S~U(2) [S~U(2)
group being generated by a "left-handed isospin" ]
multiplets

Z„' =iqy„qq,
J ~ =iqy&(1+ y, )Wq,

JZ Lz W(0 (4 slI12$ )g e.m.
2 p ~ II' p

(la)

(lb)

(1c)

where q is the column matrix

q3

the electromagnetic, weak hadronic charged and
neutral currents in Weinberg's model are given by

Q is the charge matrix

with q,'=q, coso~+q3sin8~, q3'=-q~ i ~+q coso~
(ec being the Cabibbo angle) and on four right-
handed singlets ~ (1 - y, )q, (i = 1, . . . , 4). Here q„
q2 q3 and q4 denote the four quarks, the first
three forming an SU(3) triplet, while the fourth
quark q4 has the same charge as q, but differs
from the triplet by one unit of a new. quantum num-
ber, the "charm" 8. In terms of the four quarks,

a 0 0
0 a 0
0 0 (a-1)

iO 0 0

0
0

(a —1)J

(2a)

with a, a, a-1, and a-1 being the charges of the
quarks q4, q, , q„and q„respectively. In the
fractionally charged quark model a= —', while a=1
and a=0 provide examples of integrally charged
models. In Eq. (1b), W is the matrix
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(1 0 0 0)
0 1 0 0

[w, w+] =w'=

000-1
Note also that

[w, w'], =I, [ Wo, Wo]~ =2I .

( 0 0 -sin8c cos8c ]
0 0 cos8~ sin8~
0 0 0 0

to o o o

and J&(0) is defined by

J ~ t" = i qy (1+ y, )W'q,

with the matrix 8" defined as follows:

(2b)

(3a)

(3b)

(3c)

Note that the existence of the neutral current J~
would make predictions in processes like (N de-
noting a nucleon)

v+ N v+ anything,

e+ N -e+ anything,

v, +N-f +anything,

v+ N - v+ anything,

(5a)

(5b)

(5c)

for example. The purpose of this paper is to write
the light-cone algebra4 for the commutators of the
currents defined in Eqs. (1) in the free-quark mod-
el and to use this algebra for relating structure
functions (for the spin-averaged case) of the pro-
cesses

The angle 8v appearing in Eq. (lc) in Weinberg's
model is defined by tan8v = g'/g, where g/2v 2 and

2(g'+ g")'/2 appear in the interactions of J " and
sJ
&

with the gauge bosons 8" and Z,

(g 2+ gt2)1/2 g2gI2
m g g I & g2+gI2 &

Spy, e

(4)
8 +g

16m+2 16m' 2v 2

where e is. the electric charge and G~ is the usual
coupling constant of weak interactions.

in the scaling limit, supposing that the structure
functions of the process (5c) also scale as do those
of the processes (5a) and (5b). We obtain various
relations. The unequivocal new predictions of the
model are the relations between the corresponding
structure functions of Eq. (5c}and Eqs. (5a) or
(5b); in particular we obtain, independent of 8~, a
lower bound for I' 2" in terms of F,'", an experi-
mental test of which may be feasible in future. A

similar bound has recently been obtained by Budny, '
who has treated the problem in the parton model.

In order to write the light-cone algebra, let us define the bilocal operators

J"(r;S;x,y)=-,'[iq(x)y (1+ry,)Rq(y)+(x y)]= Vs(S; x, y)+rAs(S; x, y),

J",(r; A'; x, y) =-,' [i q(x)y, (1+ ry, )Rq(y)-(x —y)] = Vs(A; x, y}+rA"(A; x, y),

(6a)

(6b)

where 8 is any of the matrices 8', W', 8", I, etc. introduced above and x =+1. The light-cone algebra
satisfied by the commutators of the currents defined in Eq. (1) can be easily worked out in the free-quark
model and is given below:

[J&~(x),J~~(y)j ~ 2(s»~, [Jf~"(1, S;x,y)+ J~I(1, A;x, y)]

+e&„& [J' &0~(1, A;x, y)+ J/(1, S; x, y)] j D(x-y),
Xp

(7a)

[J'„(x),J'„™(y)] ~ 2[s„„p,V@ (A; x, y)+e„,q,A~o (S; x, y)] D(x -y),
P

[Jx(x),jx(y)j ~ —,'2( s„„z [2J/(1, A; x, y)+16sin48~Vo (A; x, y) —4sin'8~ J', (1, A; x, y)]

(7b)

+e„„~,[2J/(1, S; x, y) —4sin'8~ Jx(l, S; x, y)

where

a 0 0
0 a 0x=[w', q]+=2

i o o o

Spvpa ~y p~va+ ~vp~p a ~pv ~pa

+16sin48vAO (S; x, y)jf D(x y), -
Xp

0
0
0

-(a —1)

(Vc)

(Sa)

(Sb)
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D(z) = ——«(zo)5(z ) .1
(Sc)

In order to use the algebra, let us define the spin-summed matrix elements of the bilocal operators be-
tween the one-nucleon states to be

l(2v)' ~ &pl&'. (1, ~;z, o}Ip&=Gzs(p. z) —'+ "=s(2s)'~ &pl l'zo(~;z, 0)I p& (9a)

—.'(2v)'~
& pl~".(I, ~;z, 0)l p& =GA(p') —'+ ~ ~ =-'. (2s)' —'& pl I'(~;z, 0}lp&, (9b)

where z is lightlike, z' =0. The omitted terms are proportional to z„and play no role in the discussion
below. We also define the Fourier transform of Gzs "(P z)

G s~A (g) d(p, z)et K(P ~ n) Gs ~ A(p, z)
2n R

( +1
G SIA(p Z) dge tK(P 'n)G SsA ($)z -J z

(10)

Then following the method of Fritzsch and Gell-Mann, it is easy to see that one has the following relations:

2$E, ($) =E,((), for all the processes

F," '
(5) =25 [G'.(5)+G,"(4)],

E".'(t) =2k [-G'.(4)+ G,"(&)],
E".'(5) =-2[G"..(5)+ G,'(h) 1,
F,"'(&}=-2 [-G"..(&)+ G,'(k) ],
E:(&)=2& [G". (&)],
Fvv(() = —,'2( [2Gl (])+16sin48~GAes($)-4sin'8vGl((&)1,

E","(()=-—,
' x2[2Gls($) -4sin'8~Gz(t) ],

(11a)

(11 )

(llc)

(lid)

(1le)

(11f }

(11g)

(11h)

where g is the scaling variable g = rf'/2mv = I/&u and F, , E„and E, are the usual structure functions in the
scaling limit. The nonzero value of I ", " is the essential novelty of Weinberg's model. If one notes that

(t)' = (a —a+ s) I + (a - n) w ',
X' = I + 2 (a - s) Wo,

& Gl &proton & Gl '
& neutron r

it follows from the above relations that

(12a)

(12b)

(13)

F' "(5)+E""(5)=F" '"(5)+Ev ™(4)
[F"(() -E'"(()]=-(~--.')( [E"'"(5)-F"."(5)]

=-(~--.')k [E." "(5)-E". ' "(5)l,
[E,""

(&) -E"""(g)] =-2 sin'8„(1 —2 sin'8 )[E,'(() -E',"(4)],
g [F vp(g) vFvvnw) ] 2(tt t) sins8 [Fvrp g) Evr n(g) ]

E,""(g}=[u—a(1 —a) sins8v] [Fn '

($)+En�'($)

] —2sinn8~(1 —2sin 8~)Fun($),

E, ($v)v= —,
' (1 —2 sin'8~) [F", ' (g)+F", '

(g) ] —4(a ——,') sin'8~

(14a)

(14b)

(15a)

(15b}

(15c)

(15d)

In the relations (14b) and (15b)-(15d) a= —,
' or 1, 0 for fra, ctionally or integrally charged (Iuarks. The rela-

tion (14b) is the same as in the usual theoryn while the relations (15}are characteristic of Weinberg's
theory. The relations (15}involve the parameter 8~. We, therefore, look for other relations independent
of 8~.
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We shall now confine ourselves to the fractionally charged quarks (a= —,'). The cases a=i and a=0 can be
similarly worked out and we give the results for these in the Appendix. For a=.&, note that we can write
the matrices Q' and X as

Q g (3 N4 + a Ng + 3 N2 +g N3) P

X =
2 ($ N4+ 3 N, + 3 N2 + ~ NS),

where N, (i =1, . . . , 4) are 4 x 4 diagonal matrices with non-negative eigenvalues, e.g.,

(16a)

(16b)

N =
1

They have the property N,
' = N, and can be expressed as

N4 ——A~,

N, =--,'A~+A, +-,'A„+A, ,

N, =--, A, +A, +;A, -A, ,

N3 = (Ae —Ar),

(17)

where Ae, Az, A„and A„are the 4x 4 matrices corresponding to charm (8) (6=1 for q, and 0 for q„
q, , and q, ), baryon number (B), isospin (T,), and hypercharge (Y), respectively, e.g.,

+2
1

0 I

It is clear that for the matrix elements t" ~~ of the bilocal operators we have

(Gz~)~ =(Gz)„=c,b, y for R =A„As, Ar,

& Gz &~ =& Gz")„=3b since I =3Az,

&G„"),=-&G~&„=d for R =A, ,

(18)

where P or n denotes the matrix elements with respect to proton or neutron. If we now define currents
V"~ (0)- iq(0)y N, q(0} and the corresponding bilocal operators V"~(A;z, 0), it follows in exactly the same
manner as in obtaining the relation (11f) that E,"~ =2) [ G"„,($) ) . Then from the positivity of E2~~, it follows
that

(GA ) &0

which gives on using Egs. (17) and (18)

c&0, u~ =-—,'c+b+d+ —,
' y& 0, v =(b —y}& 0, b&0. (20)

The positivity conditions (20) are the ones which result from SU(2) invariance of the hadronic vertices.
Using the results (16) and (20), we have from Eqs. (11f) and (11g)

~ eP
= -', [& (u + c}+& (u + v}J, (21a}

y en
= -', [g (u + c)+ g (u, + v)), (21b)

= ~(6b+~6 sin'8~ [4(u++c)+(u +v)) —~8 sin'8v [2(u, +c)+(u +v) ]j, (22a)
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Fvvn
= -' {6b+ —"sin48~ [4(u + c) + (u, + v) ] —~8 sin'8~ [2(u + c) + (u, + v) ] ] . (22b)

From Eqs. (21), using the positivity conditions (20), it follows that

,.F:"(&).1
pep(g) 4 ~

which is the same result as in the usual theory. ' Further,

&."(&) =
6 [$ (u+ + u + c+ v) - 2 (u + v) ]

(23)

and

= -', [ 8b —2 (u + v) ] ~ &4 b

z2v /2g»-', b.

(24a)

(24b)

Similarly

+2" + 4+:" 5~ 2 4 2 ) 5 gT2 (25)

Also from Eqs. (22a) and (20) [the latter also gives 3b -(u, +c) = u + v«0]

= ~ {2b+~ (u + v)+& [(1-4sin'8~)'(u, +c)+ (3 —4sin'8~)'b} j «-', b. (26)

If we now use Eq. (24a.) we get

F""'(().--'F"(&) (27a)

and if we use (1la), (lib), and (18) we obtain

F""'(&).- —' [F""(~)+F""(t)1 (27b)

Actually one can obtain a stronger bound than that given in the inequality (2Va) as follows'. From Eqs.
(21a), (22a), and the relation 3b=(u++c)+(u + v) we have

F""'(5) F"(&)—p ' = —,', {~ (u++c) [(18—16p) —48 sin'8~+64 sin'8~]

+ ~ (u + v) [(~4'-4P) —24sin'8~ + 16sin~g~] +v(u + v)) . (2Vc)

Now from inequalities (20), (u, + c)» 0, (u + v) «0
and their coefficients in the first and second terms
on the right-hand side of Eq. (27c) are perfect
squares for P = —,', so that F2"v —~98 E2v «0, giving
the bound

d5 G'(k)=-G'(0)=&+ &,
4

G" (0) =0,
(28)

where E„edntoes a generator of SU(4). Now we

can express the matrices I, W', and X as

F""'(&).- —' F"(&) (2Vd)

The inequalities (27b) and (2Vd) are the primary
predictions of steinberg's model in the light-cone-
algebra approach. It may be feasible to test these
bounds in the future.

Several sum rules follow from Eqs. (11) if we
multiply them with e '~~~' and integrate them with
respect to g from -1 to +1. Then we note that for
z = 0 the bilocal operator Vs(S; z = 0, 0) reduces to
the local current operator V",(0}while Vs(A; z = 0,0)
= 0 so that from Eqs. (10) and (9)

I =SA„
Wo= Ae + 2 A~ —(As —A„},
X = gAg+ gA~+ gA3+ gA„.

Then, using the above results and the crossing
property

2, 3 2 ~ 3

Fvv (g) Fvv ( $)

the following sum rules follow from Eqs.
(11b)-(11e)and (llh), respectively:

(29)
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[E; '(t)-E,"'(5)]—=2(~-B+Y+2T,),
0

(31)

t 1

(4)+E,"'(4)] dt =2,
4 p

(36)

1

-jt [E", ' (t)+E", '(5) ] d5 =6B,
0

(32)
4 p

EeP(()d( (4
(37)

E", '(g) d t = ~[6B- 4 sin' 8~( ~8 +~8 B+& Y+& T,)],
4 p

E (g) d$ o--', ,
30

I
i~ E""'())d(o--'.
0

(38)

4 p
d$ [E,"'~(g) -E;""(t)]= g sin'8~, (34)

which gives a means for determining the parameter
8~ experimentally. By using the relation Q = T,
+ —,

' (Y+6) where Q here denotes the charge of the
hadronic target, one can express the right-hand
sides of (31) and (33) in terms of the charge Q and
the baryon number J3 of the target.

The fractionally charged quark model considered
in the previous two paragraphs corresponds to a
hypercharge assignment to q, such that Q= T,
+ —2(Y+6), where Q here denotes the charge of the
hadron. A different hypercharge assignment has
been given to q'4 in Bef. 3 which corresponds to
Q = T,+ —,

' Y+&. The results for this case triv-
ially follow from the previous considerations by
making the replacements Y -Y + 6, ~A~,-A~,+ A~.
The only effect is that for this case the sum rules
(31) and (33) take the form

[E," (4) -E2'(4) ] —=2 (28 —B+Y+2T,),

where 6, B, Y, and T, , respectively, denote the
charm, baryon number, hypercharge, and third
component of isospin of the target. For proton or
neutron target t'=0, B=1=Y, and T, =+ —,'. Note
that Eqs. (31) and (32) are, respectively, the Adler
and Gross-Llewellyn Smith sum rules ' in the pres-
ent theory. We note that in particular from Eq.
(33)

The lower bound provided by Eq. (38) is quite
large if we compare with the second of the inequal-
ities (37). The factors on the right-hand sides of
the above relations arise in the pure quark model.
If there is a gluon present, one would obtain de-
viation from 2 in the relation (36), for example,
and such a deviation would measure the gluon con-
tribution.

Note addedin proof. After the paper was sub-
mitted for publication, we came across a report
by H. Budny and P. N. Scharbach' covering essen-
tially the same material.

One of us (R.) would like to thank Professor
A. Donnachie for hospitality at the Daresbury Nu-
clear Physics Laboratory.

APPENDIX.

In this appendix we summarize the results for
the integrally charged quarks (i.e., for a=1, and
a= 0) corresponding to the results we obtained for
the fractionally charged quarks in the text. For
a= 1., qI, q„and q, have the quantum numbers of
P, n, and A with zero charm while q4 has the
same charge as P but has charm 1. For a=0, q, ,
q', , and q, have the quantum numbers of - ', :-,
0, for example, while q4 has the same charge as
:-' but differs from the triplet by one unit of charm.
We first note from Eqs. (12a) and (12b) that for
both these cases

(31')
X=2Q (Al)

E~"(t)d$ =g[6B—4sin 8~(g8+gB+g Y+g T )].
so that from (lib), (llc), (llf), and (llg) we have

E;"(&)=-.' [E," '(k)+E."'(&)]

(33') —2sin 8~(1 —2sin 8~)E2($), (A2)

Finally if we identify in the free-quark model
--,' (q y„8 „q + p, —v) with the energy-momentum
tensor, we have4

f +1'

g t g)dg = -' . (35)

which is a particular case of the relation (15c) for
a=1 or 0.

Case a =l.

Then from Eqs. (11b), (llc), (24b), and (26), us-
ing the crossing property, Eq. (30),



2038 RIAZ UDDIN AND FAYYAZ UDDIN

[F". ' (5)+F". ($) ] =2B, (A13)

Q = N4+N~,

4 p

F 3" ($)d$ = —,
' [2B—4sin28~(8+ Y+2T,)].

(A14)

N~=Ac, N, = —,'(A„-Ae)+A, , N~= As —Ar, (A4)

so that following the same notation and same argu-
ment as in the text

The sum rule (A14) gives, in particular,

p 1

J 8 3 1V'[F""'(t)-F'""(])] =2 sm'8 (A15)

c&0, —,'(y —c)+d & 0, 5 —y& 0.
Now from Eqs. (12a) and (12b) for a = 1

I 2@2 Wo

Thus we can write (11g) as

0=-,'[G~q2($)+(1-4sin'8~)'Gqm (&)

+ G,"(5) —G"..(5) 1

(A5)

(A6)

(A V)

The sum rule (36) of the text, namely,

[F." ' (&)+F ." ' (5) ] d t = 2,
Jp

holds also in the case a= l. Using Eq. (A16),
we obtain from (A2)

p 1
E",". ($) dg -2 sin'8~(2sin'8~ -1)

p

(A16)

Now we can express W' as

Wo = Ae - (As —A „)+ 2 A3,

so that

( G ~0), „=c —(5 —y)+ 2d

(Gy Gyro)~ z =25 c yF 2d

= 2 (5 —y) + 2 [—,
'

(y —c) w d ]

(A8)

(A9a)

(A9b)

x F,'(g) dt = —,'. (A17)
Jp

Case a =0. We quote here the results without

giving details which are similar to the case con-
sidered above. The bound (A10b) holds here also
and so does the sum rule (A13). The sum rules
(A12) and (A14), however, are different and are,
respectively,

[F," ($)-F '2($)) —=2(6+B+Y+2T,),
0

on using the positivity conditions (A5). Thus using
the positivity condition (A9b) and positivity of G &2,
we obtain from Eg. (AV)

(A18)

~uyp, n - —.
' (G",2). ..

which gives on using Eq. (llf)

(A10a) «p
F","($)d$ =-,' [2B+4sin'8, (e+ Y+2T,) ] .

(A19)

F uvP, n(g) & LF eP, en(g) (A10b)

The z =0 sum rules are obtained by noting the
relation (A8), As =I and

The sum rule (A19) gives in particular

t 1

J 3 3
[E"" (g) F"'".($)] d& =--2sin 8~.

X =As+A„+2 A, (A11)

4 p

[F".' (4) -F."'(4)]—=2[& -B+Y+2T, ],

(A12)

and following the procedure used in the text. Such
sum rules are

The sum rules (A16) and (A1V) also hold in this
case.

By using the relation Q = T, = ~ (Y+ 8), one can
express the right-hand sides of the sum rules
(A12), (A14), (A18), and (A19) in terms of the
charge Q and the baryon number B of the target.

'%n leave of absence from Institute of Physics, Uni-
versity of Islamabad, Islamabad, Pakistan.
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