Estimate of $\pi^{-}p \rightarrow \pi^{0}n$ Amplitudes in Terms of Direct-Channel Resonances and Dual-Absorptive Requirements

Ernestos N. Argyres*

Department of Physics, State University College of Arts and Science, Plattsburgh, New York 12901

and

A. P. Contogouris[†] Department of Physics, McGill University, Montreal, Canada (Received 22 May 1972)

The real parts of the s-channel helicity amplitudes, the differential cross section, and the polarization for $\pi^- p \rightarrow \pi^0 n$ are estimated at t = -0.175 and -0.5 GeV^2 by means of dispersion relations, s-channel resonances, and dual absorptive requirements. The results are in satisfactory agreement with experiment and with recent amplitude analyses.

I. INTRODUCTION

Important experimental work on pion-nucleon scattering has recently made possible model-independent amplitude analyses such as that of Halzen and Michael (HM).¹ So far, however, very little has been accomplished towards a theoretical understanding of the results of this analysis.

As a small step in this direction we present an estimate of the real parts of the helicity-nonflip (F_{+}) and -flip (F_{-}) amplitudes and of the differential cross section and polarization² for $\pi^{-}p \rightarrow \pi^{0}n$ at two characteristic values of the momentum transfer $\sqrt{-t}$. This estimate is based on

(a) the requirements of the dual-absorptive (DA) model of Harari,³

$$Im F_{\pm}(\nu, t_{\pm}) = 0, \qquad (1)$$

where $\nu = (s - u)/4M$, *M* is the nucleon mass, and $t_{+} \simeq -0.175 \text{ GeV}^2$, $t_{-} \simeq -0.5 \text{ GeV}^2$ [the requirements (1) receive definite support from the HM and other πN amplitude analyses^{4,5}];

(b) the resonance saturation of the imaginary parts of the $\pi^- p \rightarrow \pi^0 n$ amplitudes at low energies; and

(c) fixed-*t* dispersion relations. It will become clear that our procedure is almost model-independent.

II. ESTIMATE AT $t=t_{+}$

The amplitude F_+ is given by

$$\frac{4\pi\sqrt{s}}{M} \left[\frac{1}{2}\left(1+z_{s}\right)\right]^{-1/2} F_{+}(\nu,t) = A^{(-)}(\nu,t) + \left(\nu - \frac{t}{4M}\right) B^{(-)}(\nu,t),$$
(2)

where z_s is the cosine of the *s*-channel c.m. scattering angle and $A^{(-)}, B^{(-)}$ the $\pi N \to \pi N$ invariant amplitudes, which satisfy well-known dispersion relations.⁶ The important observation is that at sufficiently high energy $(\nu \gg |t|/4M)$ the right-hand side of (2) becomes approximately equal to

$$A^{(-)}(\nu, t) + \nu B^{(-)}(\nu, t)$$
,

and that this quantity has definite $s \rightarrow u$ crossing symmetry; hence a fixed-*t* dispersion relation for $A^{(-)} + \nu B^{(-)}$ can be written. At high energy $(z_s \simeq 1)$ we obtain

$$\frac{4\pi\sqrt{s}}{M} \operatorname{Re}F_{+}(\nu,t) \simeq \frac{g^{2}\nu_{B}}{2M} \left(\frac{1}{\nu_{B}-\nu} - \frac{1}{\nu_{B}+\nu}\right) + \frac{1}{\pi} \operatorname{P}\int_{\nu_{0}}^{\infty} d\nu' \operatorname{Im}\left[A^{(-)}(\nu',t) + \left(\nu' - \frac{t}{4M}\right)B^{(-)}(\nu',t)\right] \left(\frac{1}{\nu'-\nu} - \frac{1}{\nu'+\nu}\right) + \frac{t}{4M} \frac{1}{\pi} \operatorname{P}\int_{\nu_{0}}^{\infty} d\nu' \operatorname{Im}B^{(-)}(\nu',t) \left(\frac{1}{\nu'-\nu} - \frac{1}{\nu'+\nu}\right),$$
(3)

where $g^{2}/4\pi = 14.6$ and

$$u_B = -\frac{\mu^2}{2M} + \frac{t}{4M} , \quad \nu_0 = \mu + \frac{t}{4M} ;$$

 μ is the pion mass. Now, at $t = t_+$ the DA requirement $\text{Im}F_+(\nu, t_+) = 0$ via Eq. (2) completely eliminates the

6

first integral of (3).

In the remaining integral the high-energy part ($\nu > \nu_M$, ν_M to be specified later) is parametrized as follows:

$$\operatorname{Im} F_{-}(\nu, t_{+}) = \frac{M}{4\pi\sqrt{s}} \sqrt{-t_{+}} \beta \nu^{\alpha(t_{+})-1} \quad (\nu > \nu_{M}), \qquad (4)$$

where β is constant (at $t = t_{+}$) and $\alpha(t)$ is the "effective" Regge exponent. In view of the DA requirement (1) and the relation

$$\frac{16\pi s}{M} \left(\frac{1-z_s}{2}\right)^{-1/2} F_{-}(\nu,t) = \frac{4M\nu + 4M^2 - t}{M} A^{(-)}(\nu,t) + (4M\nu + 4\mu^2 - t)B^{(-)}(\nu,t),$$
(5)

we obtain at large ν $(1 - z_s \simeq -2t/s)$

Im
$$A^{(-)}(\nu, t_{+}) = -\nu \,\mathrm{Im}B^{(-)}(\nu, t_{+}) = 2M\beta\nu^{\alpha(t_{+})}$$

Defining

$$D_B(\nu) = \frac{1}{\pi} \int_{\nu_0}^{\nu_M} d\nu' \,\mathrm{Im}B^{(-)} \left(\frac{1}{\nu' - \nu} - \frac{1}{\nu' + \nu}\right) \tag{6}$$

and

$$I(\nu, \alpha) = \frac{1}{\pi} \int_{\nu_M}^{\infty} d\nu' \, \nu'^{\alpha} \left(\frac{1}{\nu' - \nu} - \frac{1}{\nu' + \nu} \right) \,, \tag{7}$$

we finally obtain

$$\frac{4\pi\sqrt{s}}{M} \operatorname{Re}F_{+}(\nu, t_{+}) = \frac{g^{2}\nu_{B}}{2M} \left(\frac{1}{\nu_{B} - \nu} - \frac{1}{\nu_{B} + \nu}\right) + \frac{t_{+}}{4M} D_{B}(\nu) - \frac{1}{2}t_{+}\beta I(\nu, \alpha(t_{+}) - 1).$$
(8)

By a similar procedure Eq. (5) gives at large ν

$$\frac{4\pi s^{3/2}}{M} \operatorname{Re} F_{-}(\nu, t_{+}) = \sqrt{-t_{+}} \left[4\pi \sqrt{s} \operatorname{Re} F_{+}(\nu, t_{+}) + \nu D_{A}(\nu) + 2M\beta \nu I(\nu, \alpha(t_{+})) \right],$$
(9)

where $D_A(\nu)$ is given by (6a) with $B^{(-)}$ replaced by $A^{(-)}$.

The integrals $D_A(\nu)$ and $D_B(\nu)$ (\equiv low-energy parts) will be calculated by saturating Im $A^{(-)}$ and Im $B^{(-)}$ by the known πN resonances.⁷ The contribution of a resonance of spin J, mass M_J , width Γ_J , and elasticity x_J to the partial wave $f_{(J\pm 1/2)\mp}$ is

$$f_{(J \pm 1/2)^{\mp}}(s) = -\frac{1}{q} \frac{x_J M_J \Gamma_J}{s - M_J^2 + i M_J \Gamma_J}.$$

q is the c.m. momentum. Then Im $A^{(-)}$ and Im $B^{(-)}$ are calculated using well-known partial-wave expansions.⁸⁻¹⁰

Through the various πN amplitude analyses that have reached us, the value $t = t_+$ of the DA requirement (1) varies between -0.15 and -0.2 GeV²; we take $t_+ = -0.175$ GeV². It is known that the basic features of the helicity-flip amplitude $F_-(\nu, t)$ are reasonably well accounted for by a single ρ trajectory; we thus take $\alpha(t_+) = 0.473 + 0.9t_+ = 0.316$. We fix the constant β of Eq. (4) by requiring that at 6 GeV Im $F_- = -0.29$, which is (within error bars) in agreement with both HM and Kelly.⁴ The resonance parameters x_J , Γ_J of our calculation are given in Table I and are *always* taken to be the average of the values in the Particle Data Group tables.⁷ We carry calculations with three different values of ν_M corresponding to $\sqrt{s_M} = 2.0$, 2.5, and 3.25 GeV (Table II); of course, in every case the integrals D_A and D_B contain the contributions of the resonances with $M_J < \sqrt{s_M}$.¹¹

The resulting values of $\operatorname{Re} F_{\pm}$ for pion laboratory momentum of 6 GeV and at $t = t_{+}$ are given in Table II; to facilitate comparison we also list the corresponding values of the HM and Kelly analyses, after taking account of our sign conventions.¹² In general, our estimates can be considered as satisfactory. They can be brought into better agreement with either HM or Kelly by changing x_{j} and Γ_{j} (within the limits of the tables ⁷) or by introducing extra resonances reported in certain phaseshift analyses (especially for $\sqrt{s_{M}} > 2$ GeV); however, we feel this serves no purpose. The following remarks are in order:

(i) For $\sqrt{s_M} \leq 2$ GeV the πN resonances are fairly well established and known to provide a good description of the absorptive parts of the $\pi^- p \rightarrow \pi^0 n$ amplitudes. Thus our calculation with $\sqrt{s_M} = 2$ GeV is probably the most reliable. It turns out that the case $\sqrt{s_M} = 2$ GeV leads to the over-all best results

6

			t = t	t_+			6 T	$t = t_{-}$		
Resonance	Г <i>,</i> (MeV)	r_x	$-3 \mathrm{Im} A^{(-)} / 4\pi^{-}$ (mb ^{1/2})	3 Im ^B ^{-/-/} /4π ^e (mb ^{1/2} /GeV)	$D_{\rm B}/\nu$	$D_{\mathbf{A}}$	-3 1mA / 4 m (mb ^{1/2})	-3 1mb ^{3/2} /GeV)	Ŀ	D_A
N (938)	:	:	•	-4.64	:	:	:	-4.64	0.5	•
N = (1688)	142	0.6	2.29	-2.29	-0.3	1.77	-0.643	1.1	0.133	-0.5
N_{α} (2220)	295	0.15	18.19	-8.63	-0.137	1.68	-2.95	2.94	0.095	-0.274
Δ_{i} (1236)	116	66.0	3.24	-14.70	-1.78	2.44	-0.767	-15.936	-0.418	-0.586
$\Delta_{5}(1950)$	180	0.45	2.72	-1.7	-0.23	2.184	0.156	-0.455	-0.087	0.125
$\Delta_{5}(2420)$	310	0.11	1.797	-0.686	-0.1	1.67	-0.212	-0°043	-0.0168	-0.196
Δ_{5} (2850) ³	400	0.03	0.855	-0.237	-0.05	1.01	-0.23	0 °025	0.01996	-0.296
$\Delta_{\delta}(3230)^{a}$	440	0.005	0.187	-0.041	-0.019	0.499	-0.08	0.0112	0.025	-0.215
$\Delta(1650)$	165	0.28	0.798	0.3	0.0055	0.085	0.798	0.3	0 °0048	0.087
$\Delta(1670)$	237.5	0.15	-7.19	8.43	0.116	-0.586	-2.6	2.15	0.0266	-0.2157
$\Delta(1890)$	242.5	0.17	-11.14	8.798	0.13	-0.979	-2.1	0.46	0.00898	-0.186
Δ(1910)	325	0.25	-2.5	2.57	0.075	-0.43	-2.5	2.577	0.102	-0.436
<i>N</i> ., (1520)	128	0.5	1.45	-2.13	0.274	1.1	-0.28	0.836	0.0686	-0.218
N. (2190)	294	0.25	2.96	-1.58	0.224	2.5	0.49	-0.042	-0.01248	0.424
$N_{}^{\prime}$ (2650) ^a	360	0.075	1.68	-0.54	-0.0967	1.78	-0.0125	0.0936	0.052	-0.007
N_{γ}^{I} (3030) ^a	400	0.0625	0.20	-0.045	-0.0125	0.334	-0.04	0.0168	0.02	-0.066
N (1470)	282	0.6	3.7	-6.96	-0.527	1.666	3.7	-6.96	-0.292	1.685
N' (1535)	105	0.35	-0.77	0.312	-0.005	-0.0717	-0.77	-0.312	-0.003	-0.0724
N (1670)	140	0.4	-8.32	80	0.173	-1.073	-0.848	2.826	0.055	-0.11
N" (1700)	250	0.65	-0.8	-0.3	-0.0187	-0.297	-0.805	-0.3	-0°018	-0.299
N" (1780)	250	0.3	2.7	-3.22	-0.089	0.446	2.7	-3.22	-0.098	0.45
N (1860)	255	0.25	-4.6	2.07	0.047	-0.63	-3.737	2.377	0.0686	-0.516

TABLE I. Resonance contributions to the absorptive and dispersive parts of $A^{(-)}$ and $B^{(-)}$ at $P_{\text{lab}} = 6 \text{ GeV}/c$.

2020

<u>6</u>

^a Assigned to the indicated Regge recurrence.

			Kelly	0.1 0 ± 0.033	226 ± 0.007		11 9 GoV/o	P	0.124	0.224	
-) = 0 .	$\text{Re}F_{-}$ (vmb)	Calculation with $\sqrt{s_M} =$	НМ	-0.292 ± 0.05	-0.0284 ± 0.007 -0.0		·	$\frac{d\sigma}{dt} \left(\frac{\mu \mathrm{b}}{\mathrm{GeV}^2} \right)$	95	1.2	
			3.25	-0.232	-0.0121			Ъ	0.186	0.286	
ted with $\alpha(t)$			2.5	-0.133	-0.0078	=2,0 GeV					
t/dt, and P calculat			2.0	-0.131	-0.0085	Calculation with 🗸		$\frac{d\sigma}{dt} \left(\frac{\mu \mathrm{b}}{\mathrm{GeV}^2} \right)$	145	2,3	
ABLE II. Re F_{\pm} , do	${ m Re}F_+~(\sqrt{ m mb})$	Calculation with $\sqrt{s_M} =$	Kelly	0.027 ± 0.007	0.017 ± 0.011			ď	0.262	0.344	
			МН	$\sim 0.07 \pm 0.12$	-0.036 ± 0.019		R GeV/r				
			3.25	0.041	-0.0346			$\frac{d\sigma}{dt}\left(\frac{\mu b}{\text{GeV}}\right)$	207	4,3	
			2.5	0.047	-0.016						
			2.0	0.047	-0.017			t	t_+	t _	
			t	t_+	t _						

t) ith , ρ + 11 Ŀ ρ Ħ TABLE I ESTIMATE OF $\pi^- p \rightarrow \pi^0 n$ AMPLITUDES...

<u>6</u>

(for $t = t_+$ and $t = t_-$, see below).

(ii) Assuming that $F_{-}(\nu, t \simeq t_{+})$ is dominated by a single ρ Regge trajectory, we have

$$\frac{\text{Re}F_{-}(\nu, t_{+})}{\text{Im}F_{-}(\nu, t_{+})} = \tan\left[\frac{1}{2}\pi\alpha(t_{+})\right] \simeq 0.5 .$$

With $\text{Im}F_{-} = -0.29$ our calculation at 6 GeV gives $\text{Re}F_{-}/\text{Im}F_{-} = 0.451$, 0.458, and 0.712, corresponding to $\sqrt{s_{M}} = 2.0$, 2.5, and 3.25 GeV.

Our values of $\operatorname{Re} F_{\pm}(t_{+})$ together with $\operatorname{Im} F_{-} = -0.29$ can be used to calculate the $\pi^{-}p \to \pi^{0}n$ differential cross section $d\sigma/dt$ and polarization P.¹³ Our results are in agreement with experiment² (see Table II for results with $\sqrt{s_{M}} = 2.0$ GeV; for other s_{M} they are comparable). It is to be noted that our approach leads to sizable polarizations at $t = t_{+}$ (and at $t = t_{-}$; see below and Table II).

Finally, we have extended our calculation of $\operatorname{Re} F_{\pm}$, $d\sigma/dt$, and P to 8 and 11.2 GeV. $\operatorname{Im} F(\nu, t_{\pm})$ is calculated from Eq. (4) with β and $\alpha(t_{\pm})$ the same as at 6 GeV. Our results (Table II) are also satisfactory.

III. ESTIMATE AT $t=t_{-}$

In view of Eq. (5) the DA requirement $\text{Im}F_{-}(\nu, t_{-}) = 0$ implies that at large $\nu (\geq \nu_{M})$

$$\operatorname{Im}\left[(\nu + M)A^{(-)}(\nu, t_{-}) + M\nu B^{(-)}(\nu, t_{-})\right] = 0.$$
 (10)

It is known that the helicity-nonflip amplitude cannot be well accounted for by a single Regge exchange. Nevertheless for our purpose we shall also write

$$\operatorname{Im} F_+(\nu, t_-) = \frac{M}{4\pi\sqrt{s}} \gamma \nu^{\alpha(t_-)} \quad (\nu \geq \nu_M)$$

 $\gamma = \text{constant}$ (at $t = t_{-}$), and shall vary the effective exponent $\alpha(t_{-})$ over a wide range of values. With this parametrization Eq. (10) gives

$$-\frac{1}{M} \operatorname{Im} A^{(-)}(\nu, t_{-}) = \frac{1}{\nu + M} \operatorname{Im} B^{(-)}(\nu, t_{-})$$
$$= \gamma \nu^{\alpha(t_{-}) - 1} \quad (\nu \ge \nu_{M}) \quad . \tag{11}$$

To calculate $\operatorname{Re} F_{\pm}(\nu, t_{-})$ we use the expressions (2) and (5) for $\nu \gg |t|/4M$, μ^2/M , together with the dispersion relations for $\operatorname{Re} A^{(-)}(\nu, t_{-})$ and $\operatorname{Re} B^{(-)}(\nu, t_{-})$.⁶ Again the dispersion integrals are split into a low-energy ($\nu_0 < \nu < \nu_M$) and a highenergy ($\nu_M < \nu < \infty$) piece; and in the latter we use (11). The final result is

$$\begin{aligned} &\frac{4\pi\sqrt{s}}{M}\operatorname{Re}F_{+}(\nu,t_{-}) = D_{A}(\nu) + \nu G(\nu) + \gamma I(\nu,\alpha(t_{-})), \\ &\frac{4\pi s^{3/2}}{M}\operatorname{Re}F_{-}(\nu,t_{-}) = \sqrt{-t} \left\{ (\nu+M)D_{A}(\nu) + M\nu G(\nu) + M\gamma \left[I(\nu,\alpha(t_{-})) - \nu I(\nu,\alpha(t_{-}) - 1) \right] \right\}, \end{aligned}$$

where $D_A(\nu)$, $I(\nu, \alpha)$ as in Eqs. (6) and (7) and

$$G(\nu) \equiv \frac{g^2}{2M} \left(\frac{1}{\nu_B - \nu} + \frac{1}{\nu_B + \nu} \right) + \frac{1}{\pi} \int_{\nu_0}^{\nu_M} d\nu' \operatorname{Im} B^{(-)}(\nu', t_-) \left(\frac{1}{\nu' - \nu} + \frac{1}{\nu' + \nu} \right).$$

Again the integrals in D_A and G are calculated by saturating $\text{Im}A^{(-)}$ and $\text{Im}B^{(-)}$ with the same resonances (Table I).

In accord with HM we take $t_{-} = -0.5 \text{ GeV}^2$. The constant γ is fixed so that at 6 GeV, $\text{Im}F_+(t_{-}) = -0.0425$ in accordance with both HM and Kelly. We have varied $\alpha(t_{-})$ in the range $-0.2 \leq \alpha(t_{-}) \leq 0.2$. For all our s_M , ReF_ varies by less than 6%. ReF₊ is more sensitive: For $\sqrt{s_M} = 2.0$ the variation is $-0.0071 \geq \text{Re}F_+ \geq -0.027$, correspondingly; for $\sqrt{s_M} = 2.5$, $-0.008 \geq \text{Re}F_+ \geq -0.025$; for $\sqrt{s_M} = 3.25$, $-0.024 \geq \text{Re}F_+ \geq -0.042$.¹⁴ In Table II we present results for $\alpha(t_{-}) = 0$. Then ReF₊ agrees in sign and magnitude with HM. Our ReF₋ is somewhat too small in absolute value, but still acceptable.

The calculated polarization P at $t = t_{-}$ (Table II)

is at the lower limit of the experimental value P_{\exp} (6 GeV, t_{-})=0.62±0.21.¹ At all energies (and for all s_{M}) our $P(t_{-})$ is larger than $P(t_{+})$, in accord with experiment. However, our calculated $(d\sigma/dt)(t_{-})$ are somewhat smaller than the experimental. Again improvements are possible by changing x_{j} , Γ_{j} , and/or the input value of Im $F_{+}(t_{-})$; however, we do not pursue this point.

At 8 GeV with $\sqrt{s_M} = 2.0$ we also obtain Re $F_+(t_+)$ = -1.025 $\sqrt{\mu b}$; this is in agreement with the corresponding amplitude of the Ringland-Roy analysis.⁵ Also, we obtain Re $F_+(t_-) = 0.0098 \sqrt{\mu b}$, which is within their error bars. With $\sqrt{s_M} = 2.5$ and 3.25 our results are very similar.

Finally Table II contains our prediction for $P(t_{-})$ at 11.2 GeV.

*Research supported by Department of Physics, State University College of Arts and Science, Plattsburgh, N. Y.

†Also supported by the National Research Council of Canada.

¹F. Halzen and C. Michael, Phys. Letters <u>36B</u>, 367 (1971).

²M. Wahlig and I. Mannelli, Phys. Rev. 168, 1515 (1968); A. Stirling et al., Phys. Rev. Letters 14, 763 (1965); P. Sonderegger et al., Phys. Letters 20, 75 (1966); P. Bonamy et al., in Proceedings of the Amsterdam International Conference on Elementary Particles, 1971, edited by A. G. Tenner and M. Veltman (North-Holland, Amsterdam, 1972); Phys. Letters 23, 501 (1966).

³H. Harari, Phys. Rev. Letters 26, 1400 (1971). ⁴R. L. Kelly, Carnegie-Mellon University report, 1972 (unpublished).

⁵G. A. Ringland and D. P. Roy, Phys. Letters <u>36B</u>, 110 (1971).

⁶G. Chew, M. Goldberger, F. Low, and Y. Nambu, Phys. Rev. 106, 1337 (1957).

⁷Particle Data Group, Rev. Mod. Phys. <u>43</u>, S1 (1971). ⁸R. J. Eden, High Energy Collisions of Elementary

Particles (Cambridge Univ. Press, New York, 1967), Chap. 3.6.

⁹G. V. Dass and C. Michael, Phys. Rev. 162, 1403 (1967); 175, 1774 (1968).

¹⁰We work in the narrow-resonance approximation, where

 $\mathrm{Im} f_{(J\pm 1/2)\mp}(s) = (\pi/q) x_J M_J \Gamma_J \delta(s - M_J^2);$

PHYSICAL REVIEW D

VOLUME 6, NUMBER 7

1 OCTOBER 1972

Renormalizable Model of Weak and Electromagnetic Interactions with CP Violation*

Rabindra N. Mohapatra

Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742 (Received 21 April 1972)

A renormalizable gauge-field model of weak and electromagnetic interaction of leptons and hadrons is constructed. The model can explain CP violation in hadronic weak processes and the suppression of hadronic neutral currents.

I. INTRODUCTION

Recently, considerable attention has been focused on the problem of constructing models¹ of weak and electromagnetic interaction of leptons using the Higgs-Kibble mechanism for spontaneously broken gauge symmetries. The spontaneity of symmetry breaking enables one to have a massive vector boson mediating the weak processes and a massless one mediating electromagnetic processes, while simultaneously preserving the gauge invariance of the Lagrangian. This gauge

freedom can be exploited to show that such models are renormalizable.² In order to give a unified theory of weak and electromagnetic interactions various attempts have been made to include hadrons³ in such a scheme, and the most symmetrical way to do this seems to be to enlarge the hadron spectrum from the SU(3) to the SU(4) group.⁴ This model is consistent with the present upper limits on the coupling of $\Delta S = 1$ neutral hadronic currents; however, it appears to violate experimental upper limits⁵ on the process $\sigma(\nu + p \rightarrow \nu + N^{*+})$. The purpose of this note is to

e.g., the works of Ref. 8 indicate this is satisfactory

for our purpose. Our procedure can be repeated with ImA^- and ImB^- calculated through phase shifts; whether

ation is rather unclear.

unaltered).

of F_{++} (F_{+-}) of HM.

is smaller.

this is a significant improvement over resonance satur-

¹¹Our resonance contributions to $\text{Im}B^{(-)}$ at t=0 (not

presented in this paper) have been compared and found

in approximate agreement with the corresponding re-

sults of Ref. 8; also, they are in agreement with

 $P(\pi^{-}p \rightarrow \pi^{0}n) = 2 \operatorname{Im}(F_{+}F_{-}^{*})/(|F_{+}|^{2} + |F_{-}|^{2}).$

The sign of our F_+ (F_-) is the same (opposite) to that

¹³An estimate of the polarization by a somewhat simi-

lar approach has been reported by M. S. Chen and F. E.

Paige, Phys. Rev. D 5, 2760 (1972); there are impor-

tant differences in our approach and in our results.

¹⁴For pion laboratory momentum of 6 GeV with $\sqrt{s_M}$

= 2.0 GeV and $\alpha(t_{-})$ varying in the range $-0.2 \leq \alpha(t_{-})$

 $0.384 \ge P \ge 0.287$. With $\sqrt{s_M} = 2.5$ and 3.25 the variation

 ≤ 0.2 , we find $3.9 \leq (d\sigma/dt)(t_{-}) \leq 5.2 \ \mu b/GeV^2$ and

¹²Our normalization is as follows:

 $\frac{d\sigma}{dt}(\pi^{-}p \to \pi^{0}n) = \frac{8\pi}{2}(|F_{+}|^{2} + |F_{-}|^{2}),$

R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166,

1768 (1967) (a comparison of the signs of the contributions can easily be made by means of our results of

Table I; between t = 0 and t = -0.175 the sign remains