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The real parts of the s-channel helicity amplitudes, the differential cross section, and the
polarization for 7l P Vf On are estimated at t = -0.175 and -0.5 GeV2 by means of dispersion
relations, s-channel resonances, and dual absorptive requirements. The results are in
satisfactory agreement with experiment and with recent amplitude analyses.

I. INTRODUCTION

Important experimental work on pion-nucleon
scattering has recently made possible model-inde-
pendent amplitude analyses such as that of Halzen
and Michael (HM). ' So far, however, very little
has been accomplished towards a theoretical under-
standing of the results of this analysis.

As a small step in this direction we present an
estimate of the real parts of the helicity-nonf lip
(F,) and -flip (E ) amplitudes and of the differen-
tial cross section and polarization' for p p- mon at
two characteristic values of the momentum trans-
fer v'-t. This estimate is based on

(a) the requirements of the dual-absorptive (DA)
model of Harari, '

ImE, (v, t, ) =0,

where v = (s —u)/4M, M is the nucleon mass, and
t, = 0.1'75 GeV', t-= -0.5 GeV' [the requirements
(1) receive definite support from the HM and other
mN amplitude analyses" j;

(b) the resonance saturation of the imaginary
parts of the p p - m n amplitudes at low energies;
and

(c) fixed tdisp-ersion relations.
It will become clear that our procedure is al-

most model-independent.

II. ESTIMATE AT t=t,

The amplitude I', is given by

4)( s
[2 (I + z )] "'E (v, t) = A (v, t)

+ v-4 B~-' v t,
(2)

where g, is the cosine of the s-channel c.m. scat-
tering angle andA. ~ ), B ' the gX- gN invariant
amplitudes, which satisfy well-known dispersion
relations. ' The important observation is that at
sufficiently high energy (v» i t) /4M) the right-hand
side of (2) becomes approximately equal to

A( '(v, t) + vB( '(v, t),
and that this quantity has definite s u crossing
symmetry; hence a fixed-t dispersion relation for
A( +vB( ) can be written. At high energy (z, =1)
we obtain

417Ws g vs 1 ' 1 1 "
( ) t ( )ReE+(v, t) =

2
+ —P dv'Im A (v', t)+ v' —

4
B (v', t)2M Vg —V Vg+ V 1T 4M ' v' —v v'+ v

1 &", (), 1 1
7T "o v —v v@v

where g'/4)(=14. 6 and

t
4M ' o ~ 4M

p, is the pion mass. Now, at t =t, the DA requirement ImE, (v, t, ) =0 via Eq. (2) completely eliminates the
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first integral of (3).
In the remaining integral the high-energy part (v& v„, v~ to be specified later) is parametrized as fol-

lows:

ImE (v, t, ) = v'-t, Pv ~"~ ' (v& v„),4mvs
(4)

where p is constant (at t =t.) and n(t) is the "effective" Regge exponent. In view of the DA requirement (1)
and the relation

-g/2 4M +4M'-t16gs 1 -z'~ 4Mv+4M —t ( ) 2 ( ) (5)

we obtain at large v (1 -g, = -2t/s)

lmA& '(v, t, ) = vl-mB& &{v, t, ) =2MPv &'+&.

Defining

and

Ds(v) =- — dv' 1m'&-&
7T p V —V V+V (6)

I(v, n) -=— d v' v'
77 J V —V V+V

we finally obtain

2

ReF, (v t, ) =
2M

— +
4M

D (v) — t, p I(v, o.(t, ) —-1).
2M V~-V V~+V

By a similar procedure Eq. (5) gives at large v

4~s3~2
ReF (v, t, ) = v'-t, [4~@s ReE, (v, t ) + vD„(v)+2Mpvl(v, n(t, ))],

(8)

(9)

where D„(v) is given by (6a) with B& & replaced by
~ (-)

The integrals D„(v) and Ds(v) {—:low-energy
parts) will be calculated by saturating ImA& ~ and
ImB~ ) by the known zN resonances. ' The contri-
bution of a resonance of spin J, mass MJ, width
r~, and elasticity xz to the partial wave f&»»»,
is

1 ager~
qs-M'+ MrJ 2 J J

q is the c.m. momentum. Then ImA& ) and ImB~ )

are calculated using well-known partial-wave ex-
pansions. ' "

Through the various zN amplitude analyses that
have reached us, the value t=t, of the DA re-
quirement (1) varies between -0.15 and -0.2 GeV';
we take t+ = -0.175 GeV2. It is known that the basic
features of the helicity-flip amplitude F (v, t) are
reasonably well accounted for by a single p trajec-
tory; we thus take o.(t, ) =0.4'f3+0.9t, =0.316. We
fix the constant P of Eq. (4) by requiring that at
6 GeV ImE = -0.29, which is (within error bars)
in agreement with both HM and Kelly. 4 The reso-
nance parameters xJ, I'J of our calculation are
given in Table I and are alsoays taken to be the

average of the values in the Particle Data Group
tables. ' We carry calculations with three different
values of v„corresponding to ~s„=2.0, 2.5, and
3.25 GeV (Table II); of course, in every case the
integrals D„and D~ contain the contributions of the
resonances with Mz & vs„."

The resulting values of ReE, for pion laboratory
momentum of 6 GeV and at t =t, are given in Table
II; to facilitate comparison we also list the corre-
sponding values of the HM and Kelly analyses, af-
ter taking account of our sign conventions. " In
general, our estimates can be considered as satis-
factory. They can be brought into better agree-
ment with either HM or Kelly by changing x,- and
I',. (within the limits of the tables ) or by intro-
ducing extra resonances reported in certain phase-
shift analyses (especially for ~s„&2 GeV); how-
ever, we feel this serves no purpose. The follow-
ing remarks are in order:

(i) For Vs„s 2 GeV the wN resonances are fairly
well established and known to provide a good des-
cription of the absorptive parts of the g p g n
amplitudes. Thus our calculation with 4s~ =2 QeV
is probably the most reliable. It turns out that the
case Vs„=2 GeV leads to the over-all best results
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(for t=t, and t =t, see below).
(ii) Assuming that F (v, t = t, ) is dominated by a

single p Regge trajectory, we have

=tan[-,'vo. (t, )]= 0.5.

With ImE = -0.29 our calculation at 6 GeV gives
ReE /ImF =0.451, 0.458, and 0.712, correspond-
ing to v's„=2.0, 2.5, and 3.25 GeV.

Our values of ReE, (t, ) together with ImF = -0.29
can be used to calculate the g p- g'n differential
cross section dv/dt and polarization P." Our re-
sults are in agreement with experiment' (see Table
II for results with v's„=2.0 GeV; for other s„ they
are comparable). It is to be noted that our ap-
proach leads to sizable polarizations at t =t, (and
at t = t; see below and Table II).

Finally, we have extended our calculation of
ReF„dv/dt, and P to 8 and 11.2 GeV. ImF(v, t, )
is calculated from Eq. (4) with P and o((t, ) the same
as at 6 GeV. Our results (Table II) are also satis-
factory.

III. ESTIMATE AT t=t

In view of Eq. (5) the DA requirement ImE (v, t )
=0 implies that at large v (~ v„)

Im[(v+M)A~ l(v, t )+ MvB ~ l(v, t )]=0. (10)

ImF, (v, t ) = —yv &'-& (vz v„),4mvs

y= constant (at t = t ), and shall vary the effective
exponent o.(t ) over a wide range of values. With
this parametrization Eq. (10) gives

1 ( 1——ImAt ~(v, t ) =
M

ImB~ l(v, t )&+M

=yv "-&-' (va v„) .

To calculate ReF, (v, t ) we use the expressions
(2) and (5) for v»)t(/4M, l(, '/M, together with the
dispersion relations for ReA~ '(v, t ) and
ReBt )(v, t ).' Again the dispersion integrals are
split into a low-energy (v, & v& vs) and a high-
energy (v~& v& ~) piece; and in the latter we use
(11). The final result is

It is known that the helicity-nonf lip amplitude can-
not be well accounted for by a single Regge ex-
change. Nevertheless for our purpose we shall al-
so write

4w Ws ReF (v, t ) =D„(v)+ vG(v)+yI(v, o.(t )),

4~s'~'
ReF (v, t ) = v'-t [(v+M)D„(v)+MvG(v)+My[I(v, o(t )) —vI(v, o(t ) —1)]},

where D„(v), I(v, o() as in Eqs. (6) and (7) and

G(v)-=q~M( + )+ —j dv ImB '(v 't)(, ',+, ).
Vo

Again the integrals in D„and Q are calculated by
saturating ImA. ~ ~ and ImB~ ~ with the same reso-
nances (Table I).

In accord with HM we take t =-0.5 GeV'. The
constant y is fixed so that at 6 GeV, ImE, (t )
= -0.0425 in accordance with both HM and Kelly.
We have varied c((t ) in the range -0.2 & o.(t )
«0.2. For all our s~, ReF varies by less than
6/o. ReE+ is more sensitive: For v's„=2.0 the
variation is -0.0071» ReF, » -0.027, correspond-
ingly; for vs„=2.5, -0.008~ ReF, ~ -0.025; for
~s„=3.25, -0.024~ ReE, ~ -0.042. '4 In Table II
we present results for o, (t ) =0. Then ReE,
agrees in sign and magnitude with HM. Our ReE
is somewhat too small in absolute value, but still
acceptable.

The calculated polarization P at t=t (Tabl, e II)

is at the lower limit of the experimental value
P,„~ (6 GeV, t ) =0.62 s 0.21.' At all energies (and
for all s„) our P(t ) is larger than P(t, ), in accord
with experiment. However, our calculated
(da/dt)(t ) are somewhat smaller than the experi-
mental. Again improvements are possible by
changing x,, I'„., and/or the input value of Im E,(t );
however, we do not pursue this point.

At 8 GeV with vs„=2 Owe also. obtain ReF, (t, )
= -1.025 4p, b; this is in agreement with the cor-
responding amplitude of the Ringland-Roy analy-
sis.' Also, we obtain ReE, (t ) =0.0098 v'p, b, which
is within their error bars. With ~s„=2.5 and
3.25 our results are very similar.

Finally Table II contains our prediction for
P(t ) at 11.2 GeV.
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A renormalizable gauge-field model of weak and electromagnetic interaction of leptons and

hadrons is constructed. The model can explain CP violation in hadronic weak processes and

the suppression of hadronic neutral currents.

I. INTRODUCTION

Recently, considerable attention has been fo-
cused on the problem of constructing models' of
weak and electromagnetic interaction of leptons
using the Higgs -Kibble mechanism for spontane-
ously broken gauge symmetries. The spontaneity
of symmetry breaking enables one to have a mas-
sive vector boson mediating the weak processes
and a massless one mediating electromagnetic
processes, while simultaneously preserving the

gauge invariance of the Lagrangian. This gauge

freedom can be exploited to show that such models
are renormalizable. ' In order to give a unified
theory of weak and electromagnetic interactions
various attempts have been made to include had-
rons' in such a scheme, and the most symmetri-
cal way to do this seems to be to enlarge the had-
ron spectrum from the SU(3) to the SU(4) group
This model is consistent with the present upper
limits on the coupling of AS = 1 neutral hadronic
currents; however, it appears to violate experi-
mental upper limits' on the process
g(v+p- v+¹'). The purpose of this note is to


