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frame and the n' momentum in the dipion rest
frame. As can be seen from the figures, this
model gives essentially the same curves as

Moffat' s model, and we would expect that in other
reactions we would also be able to get reasonable
results.
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The second-order weak amplitude forK& m e e has a finite imaginary part arising from
the presence of a 7rv intermediate state in the channels X2+e' xo+e~, which we calculate
in terms of the amplitudes forK& x~e v and 7r~ x e~ v. The real part is determined by
means of a dispersion relation, and the result converges for a simple choice of the K2,3 and

~~3 form factors.

A major unknown in weak-interaction physics is
the magnitude and structure of amplitudes that are
second-order in the Fermi constant G. In a re-
cent survey of the experimental possibilities in
this fieM, ' the decay K,- n e'e has been spot-
lighted as a promising reaction in which to look
for such higher-order effects. Vfe describe here

a calculation of the second-order weak amplitude
for K,- n e'e . In the limit in which the effects
of strong interaction are ignored, the amplitude
diverges logarithmically. Inclusion of the strong-
interaction effects in a reasonable way leads to
a finite result.

We denote the momenta of the reaction by
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.FIG. 2. Unitarity relation for the absorptive part of

the X2 m e e amplitude.

FIG. 1. Dalitz plot for X2 n e+e
b, =t' —t,

zo =t'+t=M'+ p, '- s,

K,(Q)- m'(p)+ e (k)+ e'(k'),

and define the three invariants

s=(Q-p)', t=(Q —k)', t'=(Q —k')',

s+t+t' =M + p.',

s=0,
(t' - t)' = (M'+ p,

' - s)2 —4M'p'
(2)

It is convenient to define two further quantities

where hI and p. are the masses of the E, and w',

and the mass of the electron is neglected. The
physical region of these invariants is shown in the
Dalitz diagram of Fig. 1, and is bounded by the
curves

5R =E(u, ~)u(k) Q(1+ y, )v(k') . (4)

CP invariance requires that E(w, L) be an odd
function of b, , so that the amplitude vanishes along
the vertical axis t =t'. To calculate the form fac-
tor E(w, A), we observe that the amplitude II pos-
sesses a nonvanishing absorptive part arising
from the presence of a v'v, (n v, ) intermediate
state in the t (t') channel for values of the invari-
ant t (t'}&p'. This absorptive part can be cal-
culated by means of a unitarity relation (Fig. 2),

which are related in a simple way to the horizontal
and vertical coordinates of the Dalitz plot.

The most general form of the second-order
weak amplitude for K, w e'e, in the limit of
zero electron mass, is'

ImÃ = —,
' g(v'(q) v(l) l Sgl v'(p)e'(k')}*(~'(q) v(l) l SRl )f(Q)e'(-k) }

x( " l(2n)'6'(Q —k —q —l) + crossed t'erm,
( 2qolo)

(5)

where we have written the contribution of graph (a} and the crossed term is the contribution of graph (b).
In Eq. (5), q and l denote the momenta of the intermediate m and v and g stands for a sum over the inter-
mediate spin and an integration over the intermediate momenta. The first-order ampltitudes may be pa-
rametrized as

(& (q)"(1)ll&~(Q)e (-k)}= -26 sin& f, (&')(Q+q)„u(k)y (1+y )v(l)

(& (q'}"(I)lill v (P)e (k')}=Gcos6f(N )(P+q)„V(k')y„(1+y,)v(E),

'wh~~~ &=9—q, N=p —q, and 8 is the Cabibbo angle. The form factor f is normalized to f(Q) =] (by the
isotriplet vector current hypothesis} while f, is normalized to f,(()}=1 [the deviation from unity being sec-
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ond order in SU(3) symmetry breaking]. Carrying out the spin summation, we obtain

ImII =—,cos 8 sing
t f,(R')f(N'}u(k) I'(1+ y, )v(k') 8(t —p') + crossed term,

6' . d qd'l
32lr2 &olo

where

(7)

r=@P+qY4+0@-p9'+2t ed.

We examine first the situation when the form factors f„and f are taken to be constant, that is, when the
strong-interaction effects are neglected. The integral in Eq. (7) is then equal to

[4n (t —p, ')'/t]8(t —p')ug(1+ y, )u,

and we obtain for the imaginary part of F(v, b.) the simple form

G2 (t ~2)2 (ti ~2)2
ImF(w A) = ——cosgsing 8(t —p, ') — 8(t' —p')

8m t'

[where, by definition, t= ,'(w —A),-t' = —,'(w+b, )]. To obtain the real part of F(w, 6), we write an unsub-
tracted dispersion relation in the variable s (or, equivalently, in w), keeping A fixed:

1 " ImF(w', a)dw'
ReF w, 6 = ——P

1T K

(9)

(10)

An examination of the behavior of ImF(w, A) in the limit w -~ shows that the integral diverges logarith-
mically. Explicitly, we find

1 G' A
ReF(w, 6) = — —cosgsing —6 ln —+1+ 1 — » ln

m 8m ZO

(w -' 2p--
)

w -2p'+~
j (ll)

where A' is a "cutoff." For small values of 4, and in the limit p, '=0, the expression in curly brackets re-
duces to -A ln(A'/w).

Because of the mild nature of the divergence obtained above, one may expect that inclusion of the form
factors f,(R') and f(N') will lead to a convergent result. We are able to demonstrate this in the case where
the form factors have a pole-type behavior, that is, when

f, (R') =M, '/(M, ' —R'), f(N') =M, '/(M, ' -N ), (12)

where M, and M, are mass parameters (which could be of the order of the K* and p-vector-meson masses,
respectively}. The integration in Eq. (7) now leads to the following result, which is a simple modification
of Eq. (9):

G2 (t ~ 2)2 (tl p2)2
ImF(w, A) = ——cosgsin8 I(t)8(t —g') —,I(t') 8(t' —p, ') (13)

where

dyf(t) =
A+ By+ Cy

t —p,
' t —p,

' t —M0 1 (t —p')'s
+

2t M2 M2]l 4M2M2

t —p,
' t —p,

' t-M'&i (t —p, ')'s
2 ~ 2 ( y Qg 2~ 2

(14)

In the limit w-~, for fixed b. , I(t) goes to zero like 1/w', thus showing that ReF(w, 6) derived from Eq.
(13) converges

For the purpose of estimating the decay rate, we work with the expressions for ImF(w, 6) and ReF(w, b, )
given in Eqs. (9}and (11), using in the latter a value of A' equal to 0.7 GeV', which is the average of the
(mass)' for the p and K*. The precise choice of A' is unimportant for our conclusions, as the dependence
of ReF(w, L).on A,

' is weak, and, further, because the real part of the amplitude makes a minor contribu-
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tion to the decay rate. To a good approximation, it is sufficient to keep in E(m, 6) only the terms linear
in b. and to neglect those which vanish when LL(.

2 = 0. We then have

G2 1 G2 AImF(tv, b, )= —.cos8sin8 6, ReE(tv, 4)= —— —cos8sin8 A ln —,
8n n 8m' 'N

(16)

and the decay rate is

1 G2 2 AE2+ p2 J2 (m -4' p ) ~

I'= 8» —cos8sin8 dw 1+—
2

ln' — db, b, '(gv' —4~'p, '- a')2aM Bn 2ep, - (~2 4 +~2p2)1/2

=(0.36X10 ') —
~

cos'8sin'8=0. 9&&10 ' sec ',, M GM2i4

n 4n) (16)

where sin0 has been taken as 0.2. The bulk of the
decay rate is absorptive, the dispersive part be-
ing about 10/o. The branching ratio I'(8, -woe'e )/
I'(K, -all) is 4.5 && 10 '6.

Our calculation neglects the effects of the mass-
shell intermediate states pwv and mmnv which can
also appear in the t and t' channels. The correc-
tion to ImF is likely to be small because of the
low phase space available. The correction to ReI'
is hard to estimate, because little is known about
the form factors involved.

The low value of the second-order weak contri-
bution to K,- woe'e found in Eci. (16) indicates
that this effect will probably be much smaller than
the weak-electromagnetic amplitude of order Ge4
or the CP-violating amplitude of order roe' (e
being the amplitude of E, present in Jf'~). 'Esti-
mates of the decay rate of' K,-n'e'e suggest
that the latter effect alone should give a branching
ratio for K - w e'e of 10 "-10 ". The hope that
the O(G') amplitude might be enhanced by the pres-
ence of some large cutoff parameter does no)
receive support from the present calculation.

Some remarks may be made about other decays
of the type K- wll (I = e, g, v). The result obtained
in Eg. (16) holds, for obvious reasons, also for

the decay K,- m'v, v, . Since the weak-electromag-
netic effect in this case is even smaller than the
O(G') effect, this decay should be forbidden to a
very high degree. The same comments apply to
the decay K2-n v„v„; however, since the mass of
the muon in the intermediate state is not negligible,
the numerical result may differ slightly from Eq.
(16). For the decay EC, - w'p, 'p. , the second-order
weak matrix element will be more general than
that for K, —w'e'e [given by Eq. (4)] and will have
the form

3K =E,(tv, 4)ug(1+ y, )v+E, (w, ~)uy, v,

where the second form factor E2 vanishes in the
limit of vanishing muon mass. This complication
should not alter the order of magnitude of the
O(G') decay rate from that found above. Finally,
the charged-K-meson decays E'- m'll differ from
EC, -w'll in one essential respect: The O(G') am-
plitude is quadhatically, rather than logarithmical-
ly, divergent. This comes about because CP in-
variance puts no restriction on the individual am-
plitudes of K'- n'll, and the analog of the unitar-
ity relation (6) for these processes does not con-
tain a "crossed term. "
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