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It is shown that for a CPS-invariant S matrix which treats Es and Kz states as overlapping
resonances, one can always define E and K states which are consistent with the usual
phenomenology. In particular the unitarity and CPT analysis of the Kz p+p puzzle are
contained in such a phenomenological S matrix.

I. INTRODUCTION

In the past few years there has been some dis-
cussion on treating Ks and K~ states as overlapping
resonances in an $-matrix theory. ' Many au-
thors". have addressed themselves to the problem
of relating theoretically the weakly decaying states
Ks and K~ to the states K' and K' produced in
strong interactions. In particular Stodolskym and
Gien' have shown that starting from a Hermitian
potential V, which connects the degenerate, dis-
crete states, say K' and K', to the continuum
states, a Lippmann-Schwinger type of potential
theory of scattering gives an S matrix which can
be reduced easily to the form of a phenomenologi-
cal S matrix such as the one given by Durand and
McVoy' which identifies Ks and K~ states to be
those which diagonalize the corresponding mass
matrix. The author4 himself in a recent note has
shown that even the converse of the above state-
ment is true, i.e., given a phenomenological S
matrix which treats Ks and K~ states as overlap-
ping resonances, one can construct the matrix
elements of an effective Hermitian potential in
terms of the given (i.e., of Kz and K~) parameters
such that the given arbitrary $ matrix can always
be written in a form derivable from a potential
theory of scattering. The matrix elements of this
effective Hermitian potential so constructed are be-
tween the continuum and discrete orthogonal states
called I I) and I2). These states are related to the
standard IS) and I L) states representing K~ and K~
states, respectively, via two real parameters, z
and s, which are also given in terms of the decay
parameters of the $ matrix by the Bell-Stein-
berger sum rule. '

In the present article we extend these previous
results by including a background $ matrix and
showing that for a CPT-invariant $ matrix one can
always define a set of states &' and K such that
the mass matrix in the $ matrix has equal diagonal
elements and such that the decay amplitudes for
K' and K' are related in a way usually derived
from CPT arguments assuming CPTIK') =IKO)

That such "resonance" K'-K' states can always
be defined we find particularly gratifying in light
of the essential "unitarity" and "CPT" arguments
applied to decay amplitudes that are used in the
discussion of the K~ -p. 'p puzzle. ~ That is, we
find the conventional discussion of these unitarity-
CPT relations obtainable from an $ -matrix phe-
nomenology.

II. UNITARITY, CPT, AND Eo-K BASES

We start with a phenomenological S matrix of
the Durand-McVoy' type:

S

where M~ ~ = m~ ~ —i r~ ~/2 and g~ ~ and h~ ~ are
column and row vectors, the components of which
represent the partial decay and production ampli-
tudes of Ks and K~ resonances, respectively. B is
the background scattering term.

The unitarity conditions for the above $ matrix,

s'(z*)s(z) = I,
implying B~B= 1 throughout, can be written exact-
ly as

h, =x[gJ'-(r, /r, )'~2&g,']a,
h, =X[g,' —(r,/r, )'~' o.*g,']a,

where

and we have used the normalization for decay
amplitudes as

gs8's =gl. gr, =1 ~

(2a)

(2b)

(3)

(4)

Since in Eqs. (2) the background term B is sepa-
rated, B can be factored out of the full $ matrix
and hence the results of Ref. 4 apply to the present
case as well. In other words, by using the same
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1Sa(E)=B 8-i +out V V P inE-p,

where in the present paper we have used the
identifications

(6)

1
ii; = (i[ Vl a, in), i=S, L'=vI,.

instead of the ones used in Ref. 4. Also

B~s = ( n, out I P, in),

(~ [ v[i)*=( i [ v[n),

i.e., V is Hermitian. The unitarity condition for
Eq. (6) is still the Bell-Steinberger sum rule:

o. =(Sl I-) (written in IS), I
1.) basis)

arguments as in Ref. 4, we can show that the above
$ matrix can be written in an orthonormal basis as

lal'+[bi'=1 (12c)

Here a and b are two complex parameters. In this
new basis, Eg. (6) can be written as

1
S z(E)=B 8-i o., out V V P in

(13)

&1'I& I
1'& =(2'I G I

2'& = k(Mg +I,)

(ii) The decay amplitudes of the K' and K' states
are related in the following manner [expressed in
the notation defined by Eq. (7)]:

How are we to identify the [1') and [2') states with
the conventional IK') and II7') states'P Clearly
CPT properties must be used. We will show that
the following two properties derived in the conven-
tional formalism can be used to define the K'-K
states:

(i) The diagonal matrix elements of the mass ma-
trix are equal in the K'-K' basis, i.e.,

or

i(g-Li');, =g & i[ VI +, out&&o. , out[ vlq &,

i,j =1, 2 (9b)

(ci, out[ V[1') =(n, in[ V[2')*,

(o.', out[ V[2') =(6, in[ V[1')*, (15)

Ms —irs M~

1 —irs
is(M, -~,))

, (1o)
M& —irs M&

where [1),I 2) basis is as defined below and origi-
nally in Ref. 4, and the 2x 2 complex mass matrix
p. is the same as given in Ref. 4:

B~~=B (16)

where the caret denotes the CPT conjugate of the
corresponding state. '

It is easy to see that if there exist basic states
such that (i} and (ii) are true and if the background
matrix is CPT-invariant, i.e.,

IS&= (1,)„,(Il&+r[2&),
1 then S(E) is CPT-invariant, i.e.,

(17)

I I'& =
(1+ a age (I 2& + is I

1 & )
1

[r, s being two real parameters in Eq. (10}].
For the purpose of identifying IK') and [I7') basis

with an orthonormal basis, the transformation (11)
is obviously not general enough and we therefore
introduce another orthonormal basis, [1'),[2') re-
lated to I 1), I 2) by a unitary transformation U:

(1+irs)([a I'-[bP)+2isab —2ra*b*=0,

and Eil. (17) implies Eq. (16) and

g; ha=gah;, i=S, L

(18)

(19)

We now proceed to show the converse, i.e., if
Eq. (17) is valid there exists a basis [1'),

I
2') such

that (i) and (ii) are satisfied. (i) is implied by a
complex condition on the parameters,

4 [2&)
(12a)

or

hg h;
A gg

(20)

where

with

(a b)
(-b* .*)

(12b)

implying

h" =& g~

We notice that due to Eqs. (2) and (5)

hghg =hI.hI. =N (22)
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and hence'

IXs I=IX~ I= MÃ .
For later convenience we choose the following
phases of Xs and A

(24)

where p = arctan(rs).
Now by putting Eq. (21) in Eq. (2) and using Eq.

(8), one obtains

(1'I Vln, in) = . 2 ([(1+r )(a- isb*) -(1+s')(b*+ar) ](n, outl Vl 1')
N 1+irs'

+[(1+r~)(a —isb*)(b+ isa*) + (1 +s )(b*+ ra)(a* —rb)] ( n, out I Vl 2') ], (25a)

(2'I VI n, in) = . , ([(1+r')(b+ ia*s)' —(1+s')(a*—rb)'](n, outl VI2'&
N 1+irs '

+[(1+r')(b+ ia*s)(a —isb*)+(1+s')(a*- rb)(ar+b*)](n, outl Vl 1')}. (25b)

The condition

(1+r')(a —ib*s)' = (1+s')(b*+ ar)' (26)

along with Eq. (18) imply that the coefficients of (n, outl Vl 1') and (n, outl VI 2') in Eqs. (25a) and (25b),
respectively, vanish, and the coefficients of ( n, out I Vl 2') and ( n, out l VI 1') in Eqs. (25a) and (25b), re-
spectively, become unity.

We can now, through Eqs. (10) and (ll), write down the states IS& and I L) in terms of IK') and IK') by
identifying

Is&=
[2 1 It ]jism

[(1+n*)IK &+(1 lnl ) & IK &]
(27)

IL) =
[2 1 R ]gga [(1+n)IK & (1 Inl ) e IK &]'

A careful analysis of the phase arbitrariness in the above two equations reveals that they are completely
consistent with the standard results of CP phenomenology. '

III. PHASES making the following transformation in ~:

In Eq. (1) there are two kinds of phase freedoms
involved. First is freedom in the relative phase of
g~ and g~ which can be fixed by choosing a phase
of a and second is the freedom in the phase of g~
or g~ itself. Because of this second-phase arbi-
trariness and some freedom in choosing the phase
in CPT operation on I n, out& or I n, in) the phase of
X~ or X~ remains completely arbitrary. We have
already chosen by Eq. (24} the relative phase of As

and X~. A motivation for such a choice is the phys-
ical requirement that in the limit of CP invariance
(i.e., r, s tend to zero and a, b tend to I/v 2 ) Eqs.
(25} should imply Eq. (15). Therefore, since the
phase of Xs or X~ is arbitrary, the phase p, al-
though known in terms of Re+ and Imz, is arbi-
trary.

To fix the first arbitrariness in the relative
phase of gs and g~ we choose n to be real (and al-
so to agree with Wu-Yang phase convention) and by

obtain

I2)A)2 [ I ) I )]

(29)

IV. DISCUSSION

We have seen that starting from an arbitrary
CPT-invariant $ matrix involving two overlapping
resonances, it is possible to define K and K
states such that the standard CP phenomenology
results.

which is just the result of Wu-Yang phase conven-
tion in CP phenomenology.
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In particular, the "unitarity" and CP conditions
used in the analysis of the K~ - p. 'p. puzzle are
contained in such an S matrix. Thus, any results
relating K~ decays to Ks decays are valid in a pure
S-matrix formulation.
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Scaling of hadronic resonance excitation is discussed within the framework of a simple
potential-theoretic parton model.

I. INTRODUCTION

The experimental scaling behavior of deep-in-
elastic electroproduction cross sections' and
diffractive resonance excitations' raises a number
of questions which we will consider in this paper:

(1} What is the scale of energies and momentum
transfers which determines the onset of scaling?

(2) What is the role of resonances in the scaling
phenomena T

(3) In terms of which kinematic variables does
the scaling work best'

The experimental answer to question (1) is that

scaling sets in for values of v and Q' in excess of
1 GeV'. This suggests that the important scale in
the problem is the hadronic level spacing (inverse
Regge slope}.

Questions (2) and (3) were answered by Bloom
and Gilman, ' who observed that in the scaling vari-
able

2Mv M

S1 + 2


