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The spectrum of neutral-pion momentum (projected on an arbitrary axis) can be measured
by measuring the corresponding component of the individual photon spectrum. The only
assumption required is that the photons are predominantly produced from the pion decay.

I. INTRODUCTION

In many high-energy experiments there is a
moderately high detection efficiency for photons.
In these experiments the number of neutral pions
which can be observed from the observation of
both photons in its normal decay is much less than
the number of individual photons. If the predom-
inant source of photons is from neutral-pion de-
cay, then the spectrum of projected pion momen-
tum along arbitrary axes in any convenient frame
of reference can be derived from the (derivative
of the) corresponding photon spectrum.

II. LORENTZ TRANSFORMATION

Consider the two-body decay: A— B +C. In the
reference frame of particle A, particle B has the
4-momentum (f’,E). The magnitude of E is con-
stant from energy-momentum conservation, so if
A is unoriented, the vector P has an isotropic dis-
tribution (and is of constant magnitude).

In any other frame S, in which particle A has

the 4-velocity (77,7), the 4-momentum of B is given

by the Lorentz transformation®:

> -

= _= n.P
PS—P+<’}/+1

+E> 7, (1a)

Eg=yE +7+P . (1p)

From (1b) follows the well-known result? that the
energy distribution of B in frame S (for fixed n)
is rectangular, since Eg is proportional to the
cosine of the angle between 7) and P:
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A similar result can be obtained for the projec-
tion of the momentum on an arbitrary direction.
(See Fig. 1) Let # be a unit vector defining the
direction. Then, if ¢ denotes the projection of _155
along #:

o

- = (7P .
=N-* =N E .
q=N+*Pg=n P+<7+1+ >n 7

which may be written:

g=m-P+n-7E , (3)
where

> NR

m=ﬂ+———;’/+1n. (4)

The magnitude of M is
[#]=[1+@-FP]*/2. (5)

Since for fixed 7 the value of ¢ is seen from (3) to
depend only on the cosine of the angle between P
and m in the frame of A, the distribution of ¢ is
rectangular:
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It should be noted that in (6) the distribution of
q (which is the component of P along 7) depends
on 7] only through its projection on »n. It should
also be noted that the components of _153 along dif -
ferent directions are not statistically independent,
so that although we could apply this theorem to
any three independent directions, we do not get
the vector distribution of _155 by multiplying the
three distributions. (See also the remarks at the
end of Sec. III.)

III. PARENT-DAUGHTER RELATION FOR 7% DECAY

The theorem of the previous section was given
for an arbitrary two-body decay. The relation to
be derived in this section is valid only when one
of the decay products is of zero mass and is most
interesting for the case of the two-photon decay of
the neutral pion, so the algebra will be simplified
by considering only this case. The energy and
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FIG. 1. Shows the relationship between some, of the
vectors involved in the two-body decay. 7 is the spatial
part of the 4-velocity of the parent particle in frame S.
P is the momentum of the daughter particle in the rest
frame of the parent. ﬁs is the corresponding momentum
of the daughter in frame S. ™ is a vector in the plane of

7 and the arbitrary unit vector #, such that# * ﬁs depends

only ont « P

magnitude of momentum of the photon in the pion
rest frame are then given by E = | P|=M/2 (where
M is the neutral pion mass).

As shown by (6), ¢q, the projection of the photon
momentum on 72, depends on the pion momentum
only through v, its projection on #. So we can
specialize (6) to the present case:
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Now, if the pion momentum component is dis-
tributed according to some distribution g(v), then
the photon momentum component is distributed
according to
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Change the variable in (7) to » =g —~M?/4q obtaining
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and differentiate (7’) with respect to 7:
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This gives the desired relation between the photon
spectrum f(g) and the parent pion spectrum g(v).
For photon momenta large compared to the pion
mass we get the approximate relation:

g~ —rf'() (9)
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which is similar to the result derived by Stern-
heimer.®

There are two equations in each of (6)—(9) since
in principle the entire pion spectrum g(v) can be
obtained from the values of f(g) for only positive
(or negative) values of ¢g. If g(v) is symmetric
under reflections in the origin, then f(q) is also
and the spectrum can be determined separately
from the data with ¢ = M/2.

There is also a similar relation for the energy
spectra. From (2) the distribution of photon ener -
gy, k, for fixed pion energy E is
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and this leads by the same algebraic derivation
as for the momentum components to
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In (11) A(s) is the pion energy spectrum and d(k)
is the photon energy spectrum.

We can directly apply (11) to deduce pion energy
spectra from 7y energy spectra, and (8) to deduce
longitudinal-momentum spectra from y longitudi-
nal-momentum spectra. For the transverse mo-
mentum there is a slight problem. Equation (8)
applies directly to any one component of trans-
verse momentum but there are two (algebraically)
independent directions transverse to any primary
direction and the distributions are not (statistical-
ly) independent. So we cannot get the total trans-
verse-momentum distribution this way. The in-
dividual components of transverse momentum are,
however, actually observed in many experiments,
and (8) can be applied to this data and the result
converted to the total momentum transverse to the
primary direction.

Throughout this section the spectral functions
have been considered as probability distributions
of their variable. One can also interpret them as
cross sections. The only change necessary is to
insert on the right-hand side of Eqs. (6), (7’), and
(10) a factor of 2 and on the right-hand side of
Eqgs. (8), (9), and (11) a factor of ; to account for
the two photons produced by each neutral pion.
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General features of absorption are used to derive simple relations for hypercharge-exchange
differential cross sections at small ¢, with the Pomeranchukon permitted to have an octet as
well as a singlet part. The data for these reactions are then used to extract, as a function of
s and t, the ratio of the octet absorption term to the sum of the Regge-pole and singlet ab-
sorption terms. Four independent determinations yield a unique ratio which is essentially
independent of s and exhibits a very slow ¢ variation. It is noted that these features, as well
as the sign and magnitude of the ratio, are in excellent agreement with f-dominated Pomer-

anchukon predictions.

I. INTRODUCTION

It is well known from the high-energy inequality
of mp and Kp total cross sections that the Pomer-
anchukon cannot be a pure unitary singlet. An
octet component of the Pomeranchukon is an ob-
vious candidate for the major nonsinglet part and,
as we discuss below, several models for the
Pomeranchukon exhibit such a component.

The presence of an octet component has con-
sequences for Regge-pole absorption. We use the
term “absorption” in the present paper to denote
any of several prescriptions for reducing the s-
channel lower partial waves of a Regge-pole am-
plitude. Only the most general features of absorp-
tion will be required to derive the consequences
of the presence of “octet absorption” in addition
to “singlet absorption.” Specifically, we assume
that at high energies (i) the Pomevanchukon fac-
torizes and has both singlet and octet components
in the t channel, (ii) the K* and K ** Regge poles
ave exchange-degenevrate, and (iii) the phase of
the absorbing amplitude is, fov small t, approxi-
mately opposite to that of the Regge-pole ampli-
tude .2 These assumptions are clearly of an ap-
proximate nature, and we correspondingly con-
sider general features of differential cross sec-
tions in limited kinematic regions, and not more
sensitive features such as polarizations and
crossing properties.

Omitting spin indices for the moment, we can
thus write an amplitude for an inelastic reaction
ab—~ cd as

A(s, t)=Ag(s, 1)+ Agpa(S, 1)+ Agp($, t) (1)

at high energies. The three terms on the right-
hand side represent the Regge-pole term, the
singlet absorption term, and the octet absorption
term, respectively. Equivalently, Eq. (1) can be
written as

A(S, t) =AR(Ss t)[cl(s; t) + (Y(I)/b'*' yc'}/d)cz(s; t)]’
(2)
where

Cy(s, =1 +[ARP(1)(S, t)/AR(S; t)] ’

CZ(S’ t) = ARP(a}/(Ya’yb'*' 'Vc'}/d)AR(s, t)’

and 7y, is the Clebsch-Gordan coefficient for d-
type coupling of particle a to P(8).° [P(8) trans-
forms as the isosinglet member of an octet.]
From assumption (iii), C,(s,t) and C,(s, t) are
real functions of s and ¢ (the over-all phase is the
pole phase contained in Ag). Our simplifying as-
sumptions limit the range of validity of Eq. (2) to
large s and small ¢; the limits are hard to esti-
mate but P, = 8 GeV/c and |¢|<0.2 (GeV/c) are
safe limits and perhaps, as the data suggest,



