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A statistical approach to production amplitudes is used to investigate the consequences for
inclusive spectra due to (1) conservation laws, (2) small transverse momenta, (3) small av-
erage inelasticity, and (4) an asymptotically constant inelastic cross section. An analytic ap-
proximation of phase-space integrals is employed. Features of one- and two-particle in-
clusive spectra are discussed in terms of their exclusive components; both analytic and nu-
merical results are presented. As a specific example of the approach, the rapidity distribu-
tions for pp —m 7(. X are compared with data at 21 GeV/c. The above assumptions cannot ac-
count for some features of the x m spectra, indicating the necessity for additional dynamic
input.

I. INTRODUCTION

Recent papers on two-particle inclusive distribu-
tions and correlation functions' ' raise an impor-
tant question of whether such quantities show
dynamic features not already known from one-
particle spectra and exclusive data. We shall
attempt to analyze this question by means of a
calculation involving a simple generalization of
Fermi's statistical model. ' Our approach differs
from a Feynman gas-liquid analogy ' or a
Mueller-type analysis of discontinuities' " in
that we propose to discuss the inclusive distribu-
tions in terms of a model constructed for each of
the exclusive components. As argued by Berger
and Krzywicki, "this component approach can give
useful insight into inclusive distributions, insight
otherwise difficult to obtain. Constructing a sta-
tistical model which embodies the known features
of the data is one way of separating the known from
the unknown in a relatively unbiased way. A com-
parison of such a model with data will thus reveal
the sufficiency or insufficiency of the initial
assumptions. This method of separating new
dynamic effects from kinematic' "or phase-space
reflections of the original dynamic assumptions" "
has a long tradition in high-energy physics.

The first step in constructing a statistical model
is to decide what general features it should have.
We shall require of our model the following.

(1) Agreement with the conservation of isospin,
including charge conservation, and with energy-
momentum conservation.

(2) A transverse-momentum spectrum which is
quickly damped, producing a small average trans-
verse momentum.

(3) A small average inelasticity q, where ri is
the fraction of the total energy carried off by the
secondary, or nonleading, particles.

(4) A total inelastic cross section which is ap-

proximately independent of energy.
These four properties are generally recognized

to be reasonable empirically. In addition, they
are common to a number of the currently popu-
lar models such as the multiperipheral model, " "
bremsstrahlung model, ""and the diffractive
fragmentation" or nova models. " We note that,
in general, these models are in no way equivalent.
Nevertheless, our approach enables us to verify
that the success of these models in describing
data in certain regions of phase space is a direct
consequence of the above set of common assump-
tions.

For convenience, we call the statistical model
having the above features an independent-emission
model (IEM). Given the IEM for each exclusive
matrix element, all of the calculations necessary
to obtain one- and two-particle inclusive distribu-
tions can be done using standard Monte Carlo tech-
niques for phase-space integrals. " However, it
is a secondary purpose of this paper to show that
in practice one need not use such techniques. Al-
though the thought needed to employ Monte Carlo
methods is usually minimal, the computations
themselves can be very costly. Moreover, stan-
dard Monte Carlo programs are complex, making
it often difficult to obtain physical insight into the
results. An alternative is an elegant method pro-
posed by Lurgat and Mazur" (LM) which gives
an analytic approximation of phase-space integrals,
good at all energies. This approximation produces
an asymptotic expansion for the integrals valid
when the number of produced particles is large,
but when the errors are handled correctly the
estimate may be adequate at smaf1 multiplicities.
Moreover, the mathematics of the method bears
a close correspondence to ordinary statistical
mechanics. This correspondence may be useful
in obtaining physical insight into the results.

In its original form, the method applied to phase-
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II. THE MODEL AND EVALUATION OF
PHASE-SPACE INTEGRALS

To carry out our investigation into the dynamics
of inclusive distributions, we construct an inde-
pendent-emission model (IEM) for the reactions

P+P N+N+np. (2.1)

Since, experimentally, the number of produced
kaons is small compared to the number of pions, "
we feel justified in leaving out other final states.

A. Definition of the Model

The model is defined in terms of the modulus
squared of the S matrix for reaction (2.1):

(2.2)

The significance and definition of quantities in this
equation are as follows:

(1) Assuming a factorizable form for the momen-
tum dependence of the 8 matrix, and taking the
probability for producing n pions proportional to
g", we incorporate the basic statistical assump-
tions due to Fermi. Here, z is a parameter to be
determined by experiment.

(2) The assumption that the pion transverse-mo-
mentum distributions are sharply cut off is im-
plemented by taking for each pion in (2.2)

space integrals where the 5 matrix factorized
and was Lorentz-invariant. For our purposes, al-
though the momentum dependence of the S matrix
factorizes, there is only invariance with respect
to boosts along, and rotations about, a fixed di-
rection. For such integrals we follow Krzywicki's
generalization of the method. "" The errors
made in the approximation of the integrals depend
on the form of the matrix element. As an illustra-
tion of the type of errors which occur, we com-
pare the estimate for elastic scattering with the
exact form (see Appendix).

The main result of our calculation is a compari-
son of the pp- p p X inclusive distribution as a
function of rapidities at 21 GeV/c. The predictions
of the IEM for the g p distributions are particu-
larly interesting since this system is thought to
contain no resonances or strong final-state inter-
actions, so that we are looking directly at correla-
tions due to the production process.

In Sec. II, the IEM and formulas for its evalua-
tion are summarized. In Sec. III, analytic results
are obtained in the high-energy limit. In Sec. IV,
numerical results are given and compared with
data. A discussion of other models, or previous-
ly published results, is included where relevant.

(2.3)

This is the only dependence on the pion momenta
which the model contains. This particular form of
transverse-momentum damping was chosen partly
for convenience and partly because it emerges
from analyses of the dual-resonance model. " A
Priori, other forms would do equally well.

(3) The assumption of small inelasticity for the
through-going nucleons means that, on the average,
the pions have only a small fraction, q, of the
available c.m. energy. This constraint is also
called the leading-particle effect. For our pur-
poses, it is conveniently parametrized by taking
for the nucleons in (2.2) an f, of the form

f~(P) =exp(2~ Ps- '-It'Pr'), (2.4)

where s =I".
(6) Finally, isospin conservation is assumed «

be valid in an average sense as in Fermi's statisti-
cal model. In terms of reaction (2.1), the assump-

where AF is a four-vector which, in the c.m. frame,
has only a time component (A.'). For simplicity,
the transverse-momentum cutoff of the nucleons
is chosen to be of the same form as that for the
pions, although there is no particularly compelling
reason to think it so. Weighting the energies of
the final-state nucleons in this way incorporates a
t damping (where t is the square of the momentum
transfer between an initial and final nucleon) dif-
ferent from that found from a single Regge-pole
exchange. It can be argued that this is the most
statistically unbiased way of enforcing the experi-
mentally observed constraint that the fraction of
energy transferred to the pions is only a slowly
varying function of the energy available. " The
appropriateness of this parametrization will be
discussed in more detail when we present our
numerical r esults.

(4) The energy dependence of
~
S„„~'paramet-

rized in (2.2) by the factor ss is chosen to be such
as to give a total inelastic cross section which is,
within factors involving logarithms, asymptotically
energy independent. For inclusive cross sections,
s is replaced by (M') where M' is the missing
mass. Vhthout this factor, we would be incorpo-
rating a spurious dependence on the missing-mass
variable of inclusive distributions.

(5) Energy and momentum conservation are auto-
matically enforced by the phase-space integral

d P~n„(P) =s~ Q ~ exp(2X P, s ~'-It'P, r')
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tion is that all ways of forming I= 1 from the final-
state particles are equally probable. For n, z',
n 11, and n211' in the final state (n =n, +n +no),

this determines an isospin weight W(n, , n, n, ).
The isospin weight can be given in closed form by
a formula due to Cerulus, ""

W(n„n, n, ) = n f 2t +1
x x3x2 + — dx(I+x) + "- x

n+ ~ n ~ no n np nng ~
t f f t -I

(2.6)

&(s) = P
-n++ n + no=n

W{n„n,n, ) n„(s),

(2.V)

which gives the total inelastic cross section by
dividing by the flux. Similar formulas relate the
inclusive differential rates

g~ d gp

to the exclusive differential rates

where n~=2-n, +n and n„=n+ -n . For some
final states these weights are tabulated by Bartke."

Once the phase-space integrals O„are specified,
we calculate the total inelastic rate,

and g„ is the Laplace transform of f„in (2.4). It
is easily verified that these integrals are

rp„(n, n)=ef d(q„')exp( R'q ')1-(n q„)d;(ne ),
(2.14)

q„(n, () =xfd(P ) exp( P'P„')r (n,q-, )dq ((x„)
(2.15)

where 2, =(t12+qr2) ' and )(„=(m'+Pr2) ' are the
transverse masses of the pion and nucleon, re-
spectively. The I,(x) and K,(x) are modified Bessel
functions. ' These integrals can be evaluated to
determine 4„(nr, a) in (2.10). The rate 0„ is then
obtained using the inverse transform

d
(n & y) .

O„(P)e "'
d t, , 4 „(o(,—it„)

@',(n„) (»)' C'. (n„)

From these quantities, the inclusive densities
(2.16)

P2(q1e . e q2) =~

can be calculated.

gg

(dg (dp
(2.8)

where the equation is valid for all positive time-
like ep.

The LM approximation of (2.16) is an estimate
by the method of steepest descents. Expanding

B. The Approximation of the

Phase-Space Integrals

(2.9)

for c(, &0 and o.,2 —nL2 —nr2 &0. Using (2.5), we
can write

Vfe evaluate the phase-space integrals Q„by a
simple generalization2' of the method proposed by
Lurgat and Mazur. '4 The nucleus of the approxi-
mation is the Laplace transform of 0„,

P„(n") Jd Pe " D=„(P')e '

ln "( " ") = isn't --'B-~'t t + ~ ~ ~ (2.17)
( )

— 1 n )( 2 2 ))
p+'''e ~

the condition -A& =I'" guarantees that the inte-
grand in (2.16) is approximately Gaussian. In

analogy with the proof of the central-limit theorem
in mathematical statistics, "this method gives an
estimate for the integral valid when the number of
particles is large. In a frame where I'~ =0 and

~ Pr ~
small, the conditions on c( and o.r are

(2.18)

(2.10)

8P, = — In4 „(nr, n) (2.19)

where

$ = [(o-'—2q/s~')'- (~ —», /s~')']~'

t n) 2 ~ 2]1/2

~r = I:~r']~'.

(2.11)

(2.12)

(2.13)
ooB'„=,In4) „(n,P)ft gp2 ng =0

(2.20)

By analogy with statistical mechanics, we call
4„(o,) the partition function, and the solution, p,
to (2.19) is called the inverse temPerature In.
this frame, B"„" contains only diagonal components

The Laplace transform of f„given by (2.3) is q)„, BLL S1/2/p (2.21)
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B„= ln4„(nr, P)
Ap 9Az ~ 0

(2.22)

The evaluation of (2.16) in this approximation is
now straightforward; the result is

2

(2.23)

where detB„=B'„'B~~(B~)'and g„(P,P~) contains
corrections from higher-order terms in the ex-
pansion (2.17). The LM analysis guarantees that,
at a given energy, this correction term is O(n ~')
for large n. We refer the reader to Lurgat and
Mazur' and to Krzywicki" for a more thorough
discussion. In this paper, we will not use the cor-
rection term $.„(P,Pr) in (2.23) even though we
have reason to believe that it is large for small n.
In the Appendix we argue that this is justifiable.

In evaluating the exclusive rates

III. ANALYSIS OF THE HIGH-ENERGY LIMIT

A particular advantage of the LM approximation
over a Monte Carlo calculation of the phase-space
integrals is that it is possible to obtain analytically
the asymptotic behavior of certain inclusive quanti-
ties. These asymptotic limits will be discussed in
this section, while numerical calculations where
asymptotic approximations have not been made
will be presented separately in Sec. IV.

We note that the high-energy limit of the phase-
space integral Q„(s}in (2.5) depends nonuniformly
on the number n+ 2 of final-state particles. Hence,
in evaluating the total inelastic rate 0 in (2.7) and
the inclusive densities p~ in (2.8), it is not appro-
priate to interchange the order of the high-energy
limit with the summation over n. Instead, it is
convenient to introduce directly the subsidiary
function:

d Q ~

we are confronted with integrals in which the
frame P~ =0 in (2.16) is not the same as the over-
all c.m. frame. Since the incorporation of the
leading particle effect enforces, when some par-
ticles are removed, nontrivial constraints on how
the remaining energy is shared among the other
particles, special care must be exercised in eval-
uating these integr als.

Notice that with X = 0 in (2.5}, there is a recur-
sion relation of the form"

Q (P) fe " '=„—, ))„,(P —q), (2.24)

where M =[(P —q)'] ' is the missing mass, making
it trivial to extract exclusive rates. When A.c 0
we notice that the Laplace transform (4 depends
on the length ( as shown in (2.15). Defining u as
the boost variable which transforms from the c.m.
frame to the frame where the longitudinal momen-
tum of the unobserved particles vanishes, we have

t1 p+ fl + ff p
= ff

(3.1)

n 8 "+g "-g "o
W(n„n, n,)-

n !n )no! g" (3 2)

We compensate for the lack of strict isospin con-
servation by introducing different z's for the dif-
ferent charge states of the pions. We also assume
that we can allow the sum in (3.1) to run only over
n, =n so that there are exactly two protons in the
final state."' With these approximations

In terms of our statistical-mechanics nomencla-
ture, we will refer to this as the grand partition
function although it is associated with a mixed
system in which the number of nucleons is fixed
at two, while the number of pions is undetermined.

For simplicity, we assume that the general fea-
tures of charge and isospin conservation are re-
tained if we approximate the isospin weight func-
tions in (3.1) by their large-n form"

( = (a —2xs- ' e"} '(n —2xs-~' e ")' ' (2.25)

and the temperature equation, (2.19), assumes
the form (3 3)

-2 ——1ng (g) -n in') (n) =M8$ 8 8
sn s( 7}'

where M~ is the (longitudinal) missing mass,

(2.26)

(2.27)

where, again, I,(x) is a modified Bessel function,
and (=n —2rivs .

The inverse Laplace transformation analogous
to (2.16) can now be performed with Q instead of
4„ in the integrand. The temperature equation
analogous to (2.19) is
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I

0
To leading order in powers of logarithms, the
proton contribution to Q(P) is

2( )g2 I,(2(z, z )~'q, )
I (2(z g )I/2y ) P1r n= 8 7 („(g(o))= , (~—,+ lure) . (3.11)

(3.4)

where the primes denote differentiation with re-
spect to n. The solution to this equation gives,
for large Ws, a small value of P. We, therefore,
utilize an asymptotic approximation for y, (n, o.r)
and („,($, nr) by taking o. , nr -0 in the integrands
(2.14) and (2.15) and using the small-x forms of
the associated Bessel functions:

where

E( , 2Gr, )'

2RE ~——,
' y+ ln

(3.12)

A zeroth-order solution to the pion equation (3.8)
is given by

cp, (o)-—,[-—,') —in(n/2R)+O(n inn)+O(i), 'in', ')], The next-order correction in a Newton-Ralphson
approximation is given by

and

(3.5)
P( &) P(0) (4GE y 3) -& (3.13)

g„($)-—,f [-) —-', e" " I'(O, m' R') —in(-,'m$)]
The pion contribution to Q(P) is then given approxi-
mately by

x[1+O(~')]}, (3.6) q, (P'")=R [)'.—+(2«,) ']. (3.14)

where y = 0.577 215 ~ ~ ~ is Euler's constant and

F(a, x) is an incomplete gamma function. " ln ob-
taining (3.5), we have taken advantage of the fact
that p.

' is small and used a small-x approximation
for r(0, g'R').

2

~[D —in(~ g)]

G l
n

+
2m[-,'y+ ln(o. /2R)]

ln (3.7),

(3.7)

(3.8)

and D = —[y+ —,
' e" I'(0, R'm')],

and in (3.8),

G =)(R-'[z, + 2(z, z ) I'].

A. Solution of Temperature Equation

Since the proton and pion systems are treated
asymmetrically in the temperature equation, it is
convenient to break (3.4) into two coupled equations
which are, in the high-energy limit,

To obtain the subsidiary quantities necessary
for computing 0, we first equate the pion solution

P
' —2X/v s from (3.12) with the proton solution

g(') from (3.9), obtaining

r~ -=D+ ln[(1 —G/2X)v s /m],

r = ——,
'

y + ln(R v s /X)

(3.i6)

(3.16)

for G/(2A) &1. The high-energy behavior of the
inelasticity is then given by

(2x)( (21—Gb'~ 2Gr, )' (3.17)

while from (3.11) and (3.14), the grand partition
function is

Q(p) =
2 ( )«&, [( 7(R/')(r~ +1 rn~)]'e xp(Gr, )

1 R l

x 1+ —,'+, , r + ~ ~ ~ . (3.18)
16m z,z )'"

Using the equations analogous to (2.20)-(2.22) in
this limit, the det B correction terms are

To obtain (3.8), we have used the asymptotic ex-
pansion of I,(x)/I, (x). A zeroth-order solution to
the proton equation (3.7) is

B„=—,
' s(1 —G/2X)'(x~ + lnr~), (3.19)

(3.20)

((o) 2

E~(x~+1nrp) ' (3.9) Brr = (1/2R')[Gr, + (3 —G)/2] .

B. Total Rate and Inclusive Moments

(3.21)

$(') —$(')-=-2(lnr~ )/(E~ r~ '). (3.10)

where r~ =D l+n(E~ m/). The next-order correc-
tion in a Newton-Ralphson approximation is" We get the total inelastic rate using an equation

analogous to (2.23). To leading powers in loga-
rithms of the energy the result is
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n&'&- 5 ~+~ ~ ~go ~ g~ G exp(2y — G/2)
2vG(z, z )~'(I - G/2I)

x P+"P y+O "P +0

'She flux factor which relates the total inelastic
rate to the total inelastic cross section behaves
asymptotically as s ' so that the condition that
the total inelastic cross section be asymptotically
constant within logarithms is

C. Inclusive Spectra

]2 + y2 x2/M 2 1/2

$
2

2ng- G$D —ln +-
a=a'

=ML .

As discussed in Sec. II, the leading-particle
effect is responsible for the differences in shapes
of the nucleon and pion inclusive spectra. To il-
lustrate the problem of extracting an inclusive
distribution from the model analytically, consider
the high-energy-limit analog of Eq. (2.26) in the
grand partition function

5= 2 —G/2. (3.23) (3.30)

Taking this value for 5 satisfies our assumption
(4) in Sec. II.

Given the asymptotic expression (3.22) for the
total inelastic rate, there are several average
quantities which can be calculated directly from
this rate by differentiation. For example, the
multiplicity moments for producing z are defined
by

sinh'u =q~/M~ =x s~'/2M&, . (3.31)

It is clear that the value of P' depends upon the
relative size of $ and

Here f andM~ are given by (2.25) and (2.27), re-
spectively. The boost u which relates the c.m.
frame to the frame where the unobserved particles
have no longitudinal momentum is given by

f2= z 2 lnQ.
8 r8

(3.24) 2A.
I—sinhu =

YS L

From (3.18)-(3.21), we get

f„=A, Ins B+20+(1/lns),

A, =(-)"'(~/2R')(z, z )2 'r02- -,')/I (-,') . (3.26)

Of particular interest for our later discussion is
the behavior of f, and f, . From (3.25) we see that
asymptotically

~f (n (n —1)) -(n )2

f, (n)
g ~@0 2 (3.27)

The presence of weak negative correlations of
this type due to charge conservation has been de-
rived before in the context of a multiperipheral
model ""

In addition to the f, and the average inelasticity
[Eq. (3.17)], it is of interest to compute the aver-
age transverse momentum of a pion. For con-
venience in obtaining an analytic solution, we cal-
culate

1
1

1+2/6 (3.29)

We give the results of the numerical calculations
for (q), f„f„and (qr) in Sec. IV.

(qr'} =—,lnQ.1 8 (3.28)

In order to obtain this result by differentiation,
we have distinguished between the cutoff parameter
R' for pions and protons. The average is, using
(3.18)-(3.21),

When $»A.
~ x~ /M~ we have a solution to (3.30),

P' = (2Z/M~)(I —(u/s~') + O(1/M~ In M~)

= 2y/@~~2 (3.32)

We term this the isothermal solution and the re-
gion in x in which it holds the isothermal xegv, on.
In this region, the one-particle distribution has
the behavior

1p'(x, qr')=exp —ff'+ q„' ~x ', (3.33—)2Brr

M 2 V2

so that the condition

(3.34)

L
(3.35)

cannot hold for a given x independent of energy.
We see that the form (3.33) does not scale in x.
However, the shrinkage of the isothermal region
is quite slow, and extends for

/x/~-.'

at CERN Intersecting Storage Ring (ISR) energies
(4s = 100 GeV) with the parameter A. chosen to be

using (3.22) to calculate Q and dQ/(d'q/&u).
The size of the isothermal region where (3.33) is

approximately valid shrinks logarithmically with

increasing energy. This is because for fixed x and
s-~, the solution for $ given by (3.30) is
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For x near 1, the condition that $ be greater
than zero gives another limiting solution to (3.30),

2A,

M~
(3.36)

In this limit,

p, (x, q ')=—(1 —lxl)exp —R'+ q
'1

TT

(3.37)

where the condition (3.23), which gives a constant
total inelastic cross section, ensures that the ex-
ponent of (1 —

l xl) is unity. Without this condition,
we would have a different x behavior for the in-
clusive distributions.

The one-proton distribution can be extracted in
an analogous way. Because of (2.4), which guaran-
tees that each proton emerges on the average with
a large fraction of the energy, there is no iso-
thermal region for a proton distribution. Thus,
relative to the exponential x behavior of the pion
distribution, the proton distribution is flat for x
~ 0.2-0.4.

Two-particle inclusive distributions involve one
new feature, the dependence on transverse angle,
which can be handled analytically in our model.
This is because the nr - 0 limit in (2.14) and (2.15)
leaves only a simple Gaussian dependence on the
transverse momentum of the missing particles in
(2.23). For a two-particle distribution, we then
have

so that the transverse angle dependence of p, van-
ishes for fixed lx, l

and
l x, l

near 1 as vs -~.

(3.38)

where Brr, as given by (2.22), is an implicit func-
tion of x„x, through the temperature equation.
For x„x,both near 1, Eq. (3.21) gives1, R&s, Mz 3 G

BTT= ~2 G -~y+ln + ~ln +22R A. s 2 2

(3.39)

where

M a 1 —
l x, l

—lx, l
for x,x, &0

(3.40)
(I —lxil)(l —

lxml ) «»,x. &0

A. Determination of the Parameters

In order to make numerical calculations with
Eq. (2.7), we must specify the values of the four
parameters it contains. The quantity 5 is fixed
according to assumption (4) in Sec. II. The pa-
rameter 8' determines the range of cutoff of the
transverse momenta. From analytic considera-
tions based on the high-energy limit of the model,
this parameter determines the large-qT' behavior
of the single-pion inclusive spectrum in the cen-
tral region. For qr' large compared with (qr'),
x = (2w, /Ws) sinhy is near unity and solution (3.37)
applies. For y fixed,

p" (y, q&') (4.1)

where y is the pion rapidity, y = sinh '(q~/x, ).
our initial choice, we take

R'=-4 (GeV/c) '. (4.2)

For simplicity, we choose the cutoff in the nucleon
transverse momentum to be the same as that for
the pions.

In the high-energy limit, as shown in (3.33), the
parameter A. which ensures the small inelasticity
of the final nucleons is approximately the slope
of the one-pion distribution plotted against the
Feynman scaling parameter x,

(4.3)

Our initial choice of A. = 5 is taken to match the
experimental value of this slope. "

The final parameter, z, the coupling constant
for producing a pion, determines the relative
normalization of the phase-space integrals for
producing n and n+1 pions. Since our primary
purpose is to discuss inclusive spectra at P» =21
GeV/c, z is adjusted to fit the experimental value
of the average number of g- per inelastic Pp col-
llslon

our expectations based on the analytic solution to
the high-energy limit and, where appropriate,
with available data. The goal is to present the two-
particle inclusive spectrum for PP- z-p-X at P] b
= 21 GeV/c. In addition, since we are employing
in the numerical calculat'ions a microscopic mod-
el, we present several'other quantities which test
the reasonableness of our input and give some in-
sight into the exclusive processes from which the
inclusive quantities are constructed.

IV. NUMERICAL RESULTS AND
COMPARISON YAH DATA

(n ),„=1.08+0.04. (4.4)

This section presents specific numerical calcu-
lations based on the model described in Sec. II.
These numerical results are compared both with

This guarantees that the normalization of the one-
particle distribution is correct at one energy. Vfith
R' and X fixed as above, (4.4) requires that z be
3.70 GeV '. Computing (n ) with these parame-
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FIG. 1. The IEM predictions for average number of
negative pions per inelastic pp collision as a function of
laboratory momentum, using the parameters R2'=4

(GeV/c), A, =5, and z =3.70 GeV . The energy param-
eter 6 is —0.3. The data are from Refs. 2 and 39-43.
Unless otherwise specified, the curves in all figures are
calculated from the IEM with the same choice of param-
eters as here.

FIG. 3. Behavior of f2 ——(n (n —1))—(n ) as a
function of energy, compared with data (Refs. 2, 41,
and 42).

ters at other lab momenta40 4' (Fig. 1), we note
some disagreement. We shall return to this point
later, noting here that the difficulty may be related
to underestimating the low-prong-number cross
sections due to the lack of diffraction components
in the model.

10

7
5

10-1

2I GeV/c
B. Inclusive and Exclusive Moments

The functions g($) and y(o.} [given by (2.14) and

(2.15)j and their derivatives are calculated by
Gaussian integration for n~ =0. The solution to
the temperature Eci. (2.19) for each value of the
number of pions is obtained numerically using the
Newton-Ralphson method. " The approximation
to the phase-space integrations given by (2.23) is
used, ignoring the higher-order corrections terms
$(P, Pr) Then, us. ing the Cerulus isospin weights
given by (2.6), the prong-number cross sections
are calculated.

Figure 2 shows the comparison of the model
with the prong-number cross sections at 21 GeVjc.
The mean value is used as input, but the higher
moments are predictions. For example, the sec-
ond moment,

(n, (n„—1)}=0.'I9, (4.5)

10 2

2 10
I

12

NUMBER OF CHARGED PRONGS

FIG. 2. Inelastic charged prong cross sections at
P&b =21 GeV/c, compared with data (Ref. 39).

can be compared with the experimental value 0.92
+0.04. This reflects a general tendency of many
statistical models to predict multiplicity distribu-
tions narrower than the data. " The quantitative
measure of this is f, =(n (n —1})—(n )', which
is also the value of the integrated p g correlation
function. Experimentally f, = -0.24+ 0.08, whereas
(4.5} gives f,=-0.38. At higher energies, the dis-
crepancy becomes significant (Fig. 3) suggesting
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that important dynamic features are missing in
this description. For example, diffractive disso-
ciation components in the production cross sec-
tions would imply that asymptotically f, &0.44

There is no diffraction in the independent emission
model either in the elastic or the production cross
sections. One of the reasons we normalize inclu-
sive quantities to the total inelastic cross section
instead of the total cross section in the model is
that the rapid falloff of our elastic cross section
(see Appendix) is in drastic disagreement with
experiment. At low energies, the error in omit-
ting diffractive mechanisms in production might
be small, but at higher energies they are bound
to be important. '

It is important for comparison with inclusive
data that our treatment of isospin be reasonable.
With the number of w 's fixed by (4.4), we predict
the average number of m"s and v"s at 21 GeV/c
to be

(n, ) = 1.8'I,

(n, ) =1.42.
(4.6)

The average number of g+'s and p"s per charged

00 i i i I

IO

CHARGED PRONGS

FIG. 4. (a) The surplus of m+ over 7t as a function of
prong number at 21 GeV/c, compared with data (Ref. 39).
(b) The number of ~ as a function of prong number.
Curve is prediction of model at 21 GeV/c; data are at
19 GeV/c (Ref. 40).

( 1 —q„) = ( Ep)„s
~' = -2s ~' —in(».8 (4.7)

Summing over the produced pions, the average in-

(o)

~ ~~ ~~
p

g ~

~ g,
~ p'

(b)

FIG. 6. (a) Fragmentation or excitation picture.
(b) Pionization picture.

prong (Fig. 4) is in reasonable agreement with

experiment, but we note that such agreement does
not guarantee that our assumptions concerning the
treatment of isospin are correct. Controversy in
the literature concerning Fermi's isospin weights
involves detailed comparison of specific final
states4' while we are only assuming that the ap-
proximations are adequate for treating inclusive
and semi-inclusive measurements.

Two quantities which directly test our dynamic
input are the average inelasticity of the protons
and the average transverse momenta of the pions.
The average energy of the protons for each num-
ber of pions (Fig. 5) is calculated by solving (2.19)
and evaluating
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elasticity is

+no))( EP)))s 0
&n

n

(4.8)

0.35

We note that, for n small, the average inelasticity
per pion is approximately constant, "

0.30—
9--=n =-

1 .
n (n) A. lns

' (4.9)

This consequence of the way in which we have in-
corporated the leading particle effect is roughly
what one would expect from a picture [Fig. 6(a)]
where the pions compete with at least one of the
final-state nucleons for the available energy. In
contrast, Fig. 6(b) depicts a situation in which
the momentum transfer between an initial and final
nucleon is roughly independent of the number of
pions. The pions then compete only with each other
for the available energy. This would be the case
if all the pions were emitted from the center of a
multiperipheral chain. Previous calculations in-
volving statistical models have relied heavily on
Fig. 6(b).'~ "4'4' At least at currently available
energies, it seems that this situation conflicts
with data.

The average value of transverse momentum of
a pion in an n-pion final state (Fig. 7) is approxi-
mately

J" dq ' e ""r' K,(P (p-, '+ q ')~')

CP

C9,
0.25—

0.20

FIG. 7. Average pion transverse momentum as a func-
tion of number of m 's in the final state at 21 GeV/c, corn-
pared with data (Ref. 39).

where P„ is given by (2.16). The average pion
transverse momentum predicted by the model at
21 GeV/c is 0.316 GeV/c compared to the experi-
mental value 0.809+0.005. The fact that (4.10)
gives a much smaller value for (qr) than what
one would expect asymptotically from the form
e "& (=0.45 GeV/c; see Sec. III) indicates to us
the importance of nonasymptotic contributions at
21 GeV/c. Notice that, using the 5 function in
(2.5), the factors involving A. in the integrand can
be rewritten using pion energies,

2
n

1Isxp(xsx;s ')XWs —Z, —E, —P tss)
g -1

n n=s" II sxp(-Xxtss-s')s Ws -x, —x, —r ts I.g-1 g =1

(4.11)

At P„b = 21 GeV/c, 2A.s ' '—= 1.56 and the damping
in pion energies provides a substantial extra damp-
ing in transverse momentum. The s dependence
of ( q„) in Fig. 8 indicates that the predicted
shape of the transverse-momentum distribution
will change substantially by ISR energies. ~' From
these considerations it seems that experimental
evidence on the value (qr) at ISR indicate impor-
tant dynamic effects not present in our model.

C. Them Inclusive Spectra

To calculate the inclusive v- distributions (2.8),
we proceed as in the calculation of the rate. The
n distribution is given by

&n
p-(s ~ q 2) g-1 e-B2ar2

n=1 n++ n + no= n

n W(n„n, n, ) dA„
cf

GO

(4.12)

Here, the phase-space integral d0„/(d'q/&u) is
evaluated at a total four-momentum P —q, which
will have a zero longitudinal component in a frame

other than the c.m. frame. The discussion of how
to calculate such integrals is given in Sec. II. The
p- x distribution is given in Fig. 9; for compari-
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son, the proton x distribution is also given. We
note that the results agree with our expectations
based upon the asymptotic solution. In Fig. 1'0,

we show the g transverse-momentum distribution.
Here, we see a nonasymptotic behavior contribut-
ing a sharp forward peak, due to the way we have
introduced small inelasticity. At present, we
would not like to associate this peak with the ob-
served sharp peak in the data, since the latter
scales in the range 20 «P„» K 1000 GeV/c, whereas
the one in our model does not. 4'

Now that we have checked that the model correct-
ly reproduces the features expected from the as-

FIG. 10. Transverse-momentum distribution for a
at 21 GeV/c in the model.

ymptotic calculation, we next check the model
against experimental distributions. In Fig. 11,
we compare the z- rapidity distribution with the
21-GeV/c data, and note that the agreement is
quite good. This agreement indicates that we have
correctly implemented our starting assumptions.

The w v distributions p, ( y„y, ) are given in
Fig. 12. Comparing our description with the nova-
model predictions for the same data, we find
similar results. One discrepancy is the over-all
normalization, equal to (n (n —1)), which, as
discussed above, is underestimated due to possi-
ble neglect of diffractive contributions. Another
discrepancy is a noticeable trend of the IEM to
predict an excess of events for y, & 0 when y, ~0.8.
Also, our curves have roughly the same width for
different values of y„whereas the data become
broader for y, &1.2. We conclude that there may
be interesting dynamic effects here which have
not been included in the model, although the gross
features of the data are certainly explained.

From p, (y„y2) and p (y) we can go on to calcu-
late the correlation function

~2( y11 ym) Pm ( y1% y2) P (yl)p (y2) t

as shown in Fig. 13. This is chiefly interesting in
the IEM in that the asymmetry in p, (y„y,) shows
up as a ridge along y, = y, in the correlation func-
tion. The data also show a ridge but 'with a posi-
tive correlation. The failure of the IEM to give a
positive correlation can be understood by noting
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in the model, compared with data (Ref. 2). The vertical
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once again that we underestimate the normaliza-
tion of p,-(y„y,).

FIG. 12. Two-particle inclusive distribution pP -7tx X
as a function of rapidity y2 at 21 GeV/c. Curves (1), (2),
(3), and (4) are at rapidity y~=0.2, 0.6, 1.2, and 2.0, re-
spectively. Data are from Ref. 2.

V. CONCLUSIONS

W'ith the aid of the independent emission model,
we have examined the implications for inclusive
spectra of the following.

(1) conservation laws.
(2) small transverse momenta.
(3) small average inelasticity.
(4) constant total inelastic cross section.

We find these assumptions adequate to reproduce
a large portion of the available data, but there are
indications for the necessity of additional dynamic
input.

The behavior of fa =(n (n —1)) -(n )' as a func-
tion of s predicted by the model is in conflict with
available experimental data. The simplest way of
reconciling this discrepancy is to hypothesize the
presence of diffractive components' for at least
some production cross sections although other
ways of introducing extra dynamic correlations
must be considered as well.

The observed experimental energy independence
from Zero-Gradient Synchrotron (ZGS) to ISR en-
ergies of (qr) and the shape of the pion transverse-
momentum spectrum are not simple consequences
of the way in which implications (1)-(4) are im-

0.0

—04—
I

—2.0
I

0.0
I

2.0

FIG. 13. Predicted two-particle correlation function
at 21 GeV/c.

plemented in the model. Even though the predicted
(n, ) is approximately a linear function of lns for
P„„~20 GeV/c, it is not true that all quantities
in the model rapidly assume their asymptotic be-
havior. 4' There seems to be some important in-
formation in the early achievement of scaling
which indicates the presence of complicated rath-
er than simple dynamics.

We have shown, in contrast to other claims, 2' that
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scaling in x is not a direct consequence of (1)-(4).
We do have scaling in y and a quasiscaling in x
where the scaling region shrinks very slow'ly with
s. This quasiscaling may be experimentally in-
distinguishable from actual scaling.

Details in the shape of 7t rapidity spectra are
sensitive to the way in which (3) is enforced. The
statistically unbiased way to introduce a small
"average" inelasticity is to have a proton distribu-
tion which is flat in x. A flat proton distribution
emerges naturally from a "fragmentation" rather
than a "pionization" picture, and our p distribu-
tions are similar to those found in models which
can be pictured as in Fig. 6(a)'" "rather than in
models pictured as in Fig. 6(b).""4' " We em-
phasize here that the data at low energies definite-
ly are better reproduced in a fragmentation pic-
ture.

Finally, we conclude that the observed experi-
mental shape of the two-particle inclusive spectra
indicates the possibility of additional dynamic fea-
tures not contained in assumptions (1)-(4).
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APPENDIX: THE ERRORS IN THE APPROXIMATION

METHOD AND THE ELASTIC SCATTERING

CONTRIBUTION

It is important to understand the kind of errors
that the approximation of steepest descents intro-
duces into the inverse Laplace transform. Lurgat
and Mazur'4 show that, at a given energy, the
method produces an asymptotic expansion valid
when the number of particles is large. They also
discussed in great detail the magnitude of the
errors both with and without correction terms
when the method is applied to pure phase-space
integrals and concluded that the method provides
a good approximation for n ~ 5 independent of en-
ergy.

The usefulness of the method of steepest descents
obviously depends on the type of matrix element,
so we cannot accept the LM conclusions in our
case without further examination. Although it is
not appropriate to go into a detailed error analysis,
it is instructive to consider the integral for elastic
scattering with our matrix element. The integral
can be evaluated exactly and compared directly
with the approximate result. The integral to be
evaluated is

d p& d p2 R2(i 2+i 2)
3 3

2E~ 2E2

«(~s -&1-&2)6'"(Pl+ P2)

+1
(cose)8 2R2P2sin26

2 Q2 (Al)

The remaining integral is expressible in terms
of an error function3:

3/2 2R P

0, =
2

s ~' . erf(iv2RP).
zR

(A2)

In order to compare this exact result with our
approximate solution, we use the asymptotic form

erf(ia) ~ i' ~'a 'exp(a')

2t 4t
1f 2g 2f 2g

so that

1 3
4R'pWs 4R'p 16R p ) (A4)

B» = 2s(r +ln—r),
B« = ,'s(r+ ln—r),

Brr ——1/R

where r = D+ln(vs/ m)(see Sec. HI). To zeroth
order [ignoring 6t(P, Pr =0) in (2.23)], the LM
approximation is

0 "-=(1/2R's)(r+ lnr) (A6)

in the high-energy limit.
Thus, we find that the ratio between the approxi-

mation and the exact solution,

n~ 1= —(r + lnr),
02

(A7)

increases logarithmically as s- ~. In contrast,
for pure phase space (R'=0), the ratio varies be-
tween 2.4 and 2.2 between threshold and s-~.

In calculating inclusive quantities with our model,
we normalized to the inelastic cross section and
not the total cross section so the error in the elas-
tic cross section is not, by itself, important. It
does, however, provide a strong clue that we may

We now compare this with the estimate obtained
from the high-energy solution to the LM approxi-
mation. In the usual way, we first solve the temp-
erature equation, and then evaluate 4,(P) = iIi»' and
detB. To leading order as s- ~, the results are

2 1

vs r+lnr '

2

4, = —, r+lny
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be making the same type of errors in evaluating
other cross sections for low numbers of pions.
Of course, for sufficiently large numbers of pions,
we expect the errors to be of order i/Wn, at a
fixed energy. However, since we do not know at
which n the errors in fact start to decrease, it
remains an interesting and open problem to esti-
mate the errors in calculating the inelastic total
rate as well as other inclusive quantities. . A clue
to this problem may be -obtained by evaluating the
next higher term, $(P, Pr), in (2.23). A complete
error analysis for production cross sections in
this scheme, utilizing comparisons with Monte
Carlo techniques, is in progress.

The justification for truncating the asymptotic
expansion at the first term in our calculations is
that it seems probable that these errors essentially
produce an uncertainty in the parameters z and 5

in (2.'7). The value of z determines the relative
normalization of cross sections producing differ-
ent numbers of pions and this value is chosen to
fit the observed number of pions. An n-dependent
bias in evaluating the integrals then, to a good
approximation, just changes the value of z we use.
Similarly, logarithmic energy dependence of the
cross sections is unimportant compared to the
energy dependence produced by a numerical in-
determinacy in 5.
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The deuteron photo- and electrodisintegration processes yd Ab, and ed- e~ are shoi ..
to be probes of the electromagnetic properties of 6(1236), on the basis of a 4-exchange-
reaction mechanism. The presence of the dA configuration in the deuteron, with an estimated
probability of 1%, yields a photon cross section of the order of 1 pb at 1-2 GeV photon energy.

I. INTRODUCTION

Until recently, theoretical treatments of the
deuteron ignored the excited states of the nucleon.
Indeed, in the low-energy regime, the deuteron is
adequately described by means of a nonrelativistic
wave function with pointlike nucleons of essentially
static properties as its constituents. In reactions
involving high momentum transfer, the mutual ex-
citation of nucleons is no longer expected to be
negligible. If the low-lying excited states of the
nucleon are treated as elementary particles on an
equal basis with the nucleon ground state, then
such isobars would, in a nonrelativistic descrip-
tion, give rise to isobar configurations in the
deuteron wave function.

Kisslinger and Kerman' were the first to intro-
duce a D-state (N(938), N'(1688)) configuration in
the ground-state wave function of the deuteron
via an isobar exchange mechanism for proton-deu-
teron elastic scattering which was designed to
support the backward peak at a proton energy of
-1 GeV. They picked E»(1688) as a suitable ex-
change mechanism, rather than any other low-ly-
ing T = —,

' isobar on an analogy with the Regge-pole
model of zp scattering. Subsequently, isobar con-
figurations have been used' for the magnetic mo-
ments of the deuteron and 'He in order to account
for the small discrepancies between the experi-
mental values and those provided by conventional
nuclear theory. In the context of weak interac-
tions, ' isobar wave functions give rise to similar
corrections. Relying on isospin invariance, for-
ward proton production in m d collisions has been

e+d- e+a+++a (2)

as shown in Fig. 1. In order to extract the electro-
magnetic moments of b, "(1236)our analysis per-
tains mainly to the neighborhood of the maximum
accessible mass (t )'"=m, —m~-0. 6. 4 GeV of the

proposed in Ref. 4 as a direct test of the hA con-
figuration in the deuteron assuming a 6-exchange
mechanism at high incident energy.

Here our objective is different: Assuming the
hA configuration to be present in the deuteron with
a probability of 1'//q, we propose the virtual decay
process d- AA as a means to study electromag-
netic properties of L(1236). For example, by
high-energy electron scattering from deuterium
one may observe eh scattering through e+(d- b,h)- e+A+A(spectator). This method is similar to
that used to determine the form factors of the neu-
tron. It seems promising in view of the lack of any
experimental information on electromagnetic ver-
tices (PPPPy) of excited hadron states Apar. tic-
ularly interesting parameter is the static magnet-
ic moment of A(1236) which is predicted by the
quark model' to be e~p~. RadiatiVe m'p scattering
has been suggested earlier' as a means to deter-
mine the magnetic moment of b."(1236), but no
results have been reported to date.

If we consider 6" production, nucleon exchange
is forbidden by charge conservation. For outgoing
6'6, isospin conservation at the deuteron vertex
leads to the same result. Hence, we restrict our
attention to the reactions

y+d b++ +6


