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We investigate the effects of adding the 1 gauge fields to an SU(3) 0. model of the 0 fields.
Particular attention is given to the requirements of broken scale invariance on the simple
model where the "(3,3*)"-chiral- and scale-symmetry-breaking terms coincide. We also
calculate the mass spectrum and the scalar-meson trilinear decay widths.

I. INTRODUCTION

Phenomenological Lagrangians have been useful
in studying SW(3) symmetry and its breaking in the
low-energy region. One particular model of 18 0'
mesons interacting via the most general SW(3)-
invariant interaction and the simplest "(3,3*)"-
symmetry-breaking term has given a surprisingly
accurate description of the low-mass region. '

We extend that Lagrangian by adding 1' gauge
mesons to it. Of course, this extension allows the
introduction of various combinations of symmetry-
breaking (SB) terms which can result in an ex-
tremely complicated Lagrangian. ' We have added
the gauge fieMs in a simple chiral- cad scale-
invariant manner in order to test a model where
the "(3,3*)"-chiral- and scale-symmetry-breaking
terms coincide. We calculate the mass spectrum
and scalar-meson trilinear decay widths to check
that the model is in reasonable agreement with ex-
periment. We point out that the (broken) scale
symmetry of our model yields a very interesting
relation between the two isoscalar scalar-meson
masses. This relation gives an upper limit for
the mass of one isoscalar scalar particle which
may actually be violated by the most favored ex-
perimental candidate.

II. THE MODEL

The model of Ref. 1 is described by

g = ——,
' Tr(eqM8„Mt) —V, —Vss,

where

Pf, ),=(S,), = n,5, . (3)

M =S, i&])+

VSB
——-2 (A,S,' +EBS~2+ASS~3),

and Uo is the most general, nonderivative chiral
SW(3)-invariant interaction of the nine scalar (S)
and nine pseudoscalar (P) fields. As in Ref. 1, we
will define the "equilibrium point" (or "ground
state" ) by

We ignore electromagnetic effects, giving the
isotopic-spin symmetry limit, where A, =A, and
e, = n, =- n. For convenience we define a quantity
W = n, /e.

Modification of (1) to include the vector and
axial-vector gauge fields consists of the usual re-
placement of the derivative &„by the gauge de-
rivative D„, the addition of the spin-I Yang-Mills
term and the addition of a term responsible for
the gauge field masses. Our Lagrangian then be-
comes

g = ——Tr(D„MD„Mt) —V —
V~

--,' Tr(E'„„E'„,+ E"„E"„„)+2,+2„ (4)

and, after proper renormalization, the appropriate
coefficients of terms of second order in the fields
are identified with the 0' masses. Coefficients of
third order (and above) are identified as contribu-
tions to the trilinear (and above) couplings.

Note that the terms 2, and Z, are both chiral
SW(3) and scale-invariant so that only Vs~ breaks

where

,'a Tr (f-„f-„MMt +~„r„MtM),

2, =-CTr(l„Mr„Mt),

U~ = l~+x~,

A„= l„-y'„,
E„',= B„l,—8,l„-ig [l„,l, ],

E"„„=&„r, a„r„—ig [r„,r„], -
D„M = „M -igl„M+igMy'„.

Here, U„and A„are the vector and axial-vector
fields, respectively, andg, J3, and C are constants
which we will determine later.

As in Ref. I, we expand U, in a Taylor series in
the "normal coordinates, "

S =S+(S)0,
(6)
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these two symmetries if t/', is chosen to be scale
invariant. g, and 2, yield expressions for the
gauge field masses when we substitute the normal
coordinates (6). The gauge field masses are con-
ventionally included in the Lagrangian via (a scale-
breaking) term of the form'

and

to get

F„=2 nZ, = 1.01m,

(12)

V b «(&. &b),-Sb
Pa Pa 2m 2X P a &

ab ab

A" =Ab+ g( b)e~b
2~ 2g P~a &

ab ab
(8)

mo' Tr(V„V„+A A„).

Our 2, and 2, terms actually yield a more accu-
rate spin-1 meson mass spectrum than does (7).

When we make the substitutions (5) and (6) in (4),
we find that the gauge fields must be redefined to
eliminate terms of the form V„s„S and APP and
that the scalar and pseudoscalar fields S and Q
must be "renormalized" to give the "physical"
fields (denoted by the tilde),

Z '= —+ (m ' —g'E ')'"1 1
2 2m Al

(13)

Of the two solutions to (13) for each value of g
chosen, we found that the solution with Z, '&-,'

gives a mass spectrum more in line with experi-
ment.

The chiral constraints on the scalar and pseudo-
scalar masses as calculated in Ref. 1 are now al-
tered by the renormalization of the spin-0 mesons.
This does not present any serious complication,
however, since a renormalization factor is all
that is needed in, for example, the pion and kaon
mass expressions:

where

ab ab

1 A, +A,
Z~ &~+&2

(14)

b 1
g' (o', +~b)

ab 4M 2
ab

2 1 g (ua
ab 4m 2

ab

Here m„and M„, after the usual isoscalar vector
mixing formalism is applied to both spin-1 gauge
fields, give the vector and axial-vector particle
masses, respectively.

We also determine the pion and kaon weak decay
constants from the Noether currents as

g'/4m =3.6,

which corresponds to F = 100 MeV, and

g'/4m =4.5,

(11a)

(11b)

which corresponds to F =150 MeV. We may now
determine Z„and n from the two equations

F„=2nZ, ,

E»= a(1+W)Z».

Then if we determine g [see Eqs. (5) and (8)] from
the p decay width, 4 we may consider the two pos-
sibilities:

We have listed input values, mass and F»/F,
predictions for the model in Table I where we have
chosen 8"=1.33 since it gives a reasonable mass
fit. We have three comments on the predictions
in Table I:

(1) The quantities m and m „are predicted to
be degenerate with m and m~ =—m~, respec
since from the model, m 2 = 2 (5& +p ~ W2) m
but p '=0, 5 '=-

(2) The prediction for m„, is higher here than
the prediction given in Ref. 1 principally because
we have chosen a smaller value of W. The pre-
diction for m„would have been much higher here
than in Ref. 1 had it not be moderated by a factor
Zm

(3) The prediction for E»/F„ is reduced from
the value given in Ref. 1 principally because of
our choice of a smaller value of W.

III. SCALE INVARIANCE

As in Ref. 1, we have found that the constraints
from the chiral invariance of V, are not sufficient
to relate all the scalar masses to one another.
We, therefore, investigate the consequences of
implementing an approximate scale symmetry on
our model in the same manner as in Ref. 1, i.e.,
in exact analogy to classical physics.

Exact scale invariance of the Lagrangian den-
sity (4) would require that V = V, + Vs~ be a homo-
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TABLE I. Input values and mass predictions for the choices g /4m =4.5 and g =1.33. All masses are given in MeV
with experimental values in square brackets (Ref. 5).

Quantity
Prediction =

m [134.9] mg [497 7] m„[548 8] mp [765]
Input data

mp [1070] E~[136.32] r, [150]

Quantity
Prediction

mE g[892.6]
908.5

m~ [783.9]
765

m @[1019.5]
1017.5

m~ [1242?] m [1286?]
1252.9 1070

m g [1422?]
1423,1

m„,[957.5]
1095.4

Quantity
Prediction

m, [11pp?]
1036.9

E~/E~ [1.28?]
1.168

z.'
0.643

E
0.647

V A
-35.26'

ep
-3.69'

geneous function of order four in the fields Q, S,
V„and A„. The particular choice of V» given in (2)
obviously violates this criterion. However, since
this choice of Us~ seems reasonable, ' we require
only U, to be scale-invariant. This allows us to
test one simple model where V» is a "(3,3*)"-
chiral- and scale-symmetry-breaking term. Re-
call that we are considering Vp to be a function of
S and Q only. Then using Euler's theorem for ho-
mogeneous functions of order 4, we require

Tr P '+S ' =4V, .~UO ~UD

We may obtain the consequences of the scale in-
variance of V, on the masses and couplings by the
appropriate differentiation of (15) with respect to
Q and S.

We obtain a relation between the o and o' masses
and the o-o' mixing angle 8, by differentiating (15)
with respect to the scalar field, evaluating the re-
sult at the equilibrium point and using an extre-
mum condition on V (see Ref. 1) to get

m. (MeV)

0

425

633.71

m, i (MeV)

882.9

1043.4

127.8'

116.6'

82.1'

It becomes c1ear now that the primary result of
our requirement of scale invariance is the mass
relation (18). Comparing the chart above with the
results of Ref. 1, we see that the effect of the
gauge fields on (17) is to lower the values of the
asymptotes of (17) for each value of W chosen.
We list a few asymptotes for different choices of
g ' at 8' =1.33 below:

z.' Asymptotes (MeV)

1 (-Ref. 1)

0.758

0.643 (present model)

788

687

634

than 883 MeV and the other is below 633 MeV. We
may also solve Eqs. (16) for the scalar mixing
angle. A few representative values are given in
the following chart:

We now use expression (2) for V» and the scalar
analog of the pseudoscalar g-g' mixing formalism
and eliminate 8, from the resulting expressions to
arrive at Eq. (6.5) of Ref. 1,

0.5 557

(W'+ 2)(m, m, .)' = ——,[2 (A, )'+ (A,)']

+ —(2A, + WA~)(mg'+ m~i').

(17)

We determine the quantities A,/e and A j'o. fr'om

(14) (which introduces renormalization constants
into the relation) and use the values W = 1.33 and

g, '=0.643 to get

' 800-

(882.97)~ —m, ~

1 -m '/(633. 71) (18)
soa' 1600

A graph of Eq. (18) is provided in Fig. 1 where we
see that at least one of the o-o' masses is greater

FIG. 1. Graph of the scale relation [Eq. (18)] between
the o and o' masses in MeV.
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TABLE II. Some scalar-meson on-shell coupling constants. The last term in each coupling constant is the contribu-
tion to that particular coupling from g

&
and g 2. 0 is the 0 -o' mixing angle, 0& is the g-q' mixing angle.

g =—m (1 —2Z )+Z ~m +—(m 2 —2m )(1-Z ) =—(m -m )

PI I 0I
g =~ m (1 —2Z )+Z m I + (m —2m )(1-Z ) = (m —m )

g =— (m -m ) +(1-Z )(m +m -m ) +—(1-Z )(m -m -m ) =—(m —m )

g, ~&i = (m, -m„F)+ (1-Z~ ) (m&i2+m~~-m, 2) + (1 —Z„~)(m,2 -m&i2 —m~2) = (m,2 —m&P)

g«g= ZE m~ +m& (1 —2Z&) +
2 2

(O'-W2p')m& Z (1++1)+(6'+~2p')m (1 -gf)

ga'EE (1 ZE™a™E' (1 —2ZE ) + -

& 2
(p'+v 26')m&& Z~ (1+ + (p W26 )mp (1

p'+v 25'
2 2 2 2 (m —2mE )(1-Z&) I I 2

e (1+W) m& Z& 0.

cos 0& -v 2 sing& sin0~+v 2 cos 0&'
~6

'-
~6

cos0, -~2sin0, sing, +~2cos0,
~6

' ' r6

Since the most likely experimental ' candidate
for the c is around 700 MeV (but very broad), it is
seen that it violates the upper bound of 634 MeV.
Considering the g„' dependence of our upper bound
it is perhaps too early to rule out the simple and
esthetic theory in which the same symmetry-break-
ing object is responsible for chiral- and scale-sym-
metry violation. However, if a definitive set of
low-energy m-7t s-wave phase shifts is determined
and if no low-energy 0-type resonance is seen it
may be possible to do this.

IV. SCALAR-MESON TRILINEAR COUPLINGS

To calculate the Sgg coupling constants, we
must account for contributions from Vo, from the
gauge-invariant kinetic term, and from 2, and 2,
in Eq. (4). We list the more tractable on-shell
coupling constants for those vertices related by
the chiral symmetry of V, in Table II. We point
out that the last term in each coupling constant is
the contribution to that particular coupling from
g, and 2,. The first term in each case is identical
in form to the resyective couylings derived from
the model where the gauge field masses are added
via (7) rather than Z, and 2,.' lt is interesting
that, for the couplings involving no strange me-
sons, the couylings in Table II are identical to
those derived in Ref. I before the constant o. is
eliminated via the pion decay constant (10).

TABLE IG. Scalar-meson decay (at rest) widths using
the trilinear couplings given in Table II. Where possi-
ble, the values of masses in the various formulas were
taken from Table I. Values for m, m, and 0 were
taken from Sec. III, the value 0&

-—-3.69' was predicted
from the model, and values for m, were chosen freely.
All masses and widths are given in MeV.

ma
F(fJ- ~~)

425
77.9

600 630 633.71 882.97
190.16 192.1 192.3 3.6

m&~ 1043.4
F(o' 7('m) 102.2
I'(o' KK) 522.5

ma
r{~-KK)
m f
r{~-KK)
F(c my)

F(e n g')

m
F(K Kn.)
F(z Kg)

1000
159

962
not possible
140
not possible

1036.9
567.8
not possible

1100
773.7

996 1016 1240
65.6 456.24 ~ ~ ~

172.5 193.4 527.7
— 6

1320

46.1

The numerical results for the at rest decay
widths of the scalar mesons are presented in Table
III. Data from Table I and Sec. III have been used
wherever possible. Although not listed in Table III,
the broadening of the widths due to 2, and Z, is
typically 50-60% if no strange particles are in-
volved and 20-30% if strange particles are in-



BREAKING CHIRAL AND SCALE SYMME TRY OF. 1957

volved. The width calculations are all first-order
SPP vertex estimations and no attempt is made to
include contributions from higher-order graphs.

We note that many of the widths in the Table III
are smaller than those given in Ref. 1. To see how
this comes about, we examine, for example, g „:

gt

paragraph in Sec. IV). Although some of the widths
quoted in Table III are close to some of the ex-
perimental evaluations in the literature ' they are
still slightly too broad. The models of the type
described in Ref. 3, while giving much smaller
widths as noted above, do not produce as reason-
able a mass spectrum.

25Z
(m, ' -m„').

Then the reduction of the o -m~ width in this model
is due to the factor O'Z, . In the models of Ref. 3,
however, the width reduction is greater, due to a
factor O'Z, ' in g„„where Z, '=-,' (see the first
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svrm '
S~ P
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D
& g Cgn2 m 2 g&n'

Z & -1~2 V2m 2Z 2 —,~2m 4Z 2
sg mAi m

&& (mp -4m~ ),
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Pais and Yreiman have shown that in neutrino-scattering processes lepton-pair locality im-
plies explicit dependence of the cross section on two-lepton-system variables. We suggest
here that violation of their theorem occurring to the first order in the weak-interaction cou-
pling constant in the scalar-boson-mediated theories may serve as an unambiguous test at en-
ergies much smaller than those required for production and subsequent tests on the weak
bosons. In a typical model we find substantial violations of the lepton-energy-dependence
theorem. Qn the contrary, violation of the angle-dependence theorem is small.

I. INTRODUCTION

The structure of the weak-interaction Lagran-
gian has recently become a topic of renewed inter-
est with the expectation of new possibilities im-
plied by the proposed neutrino-scattering experi-

ments at high energies. The familiar current-cur-
rent effective Lagrangian has well-known troubles
at high energies. A first step towards a complete
Lagrangian would be to look for deviations from
the implications of the local current-current La--
grangian. Important results in this regard are the


