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The dynamical successes of the relativistic quark model are separated from those due to
symmetry arguments. Particular attention is paid to the example of the qq, L = 1 meson
decays. A relativistically invariant coplanar form of U(3) U(3) is found to explain all pre-
dictions of the relativistic quark model for decays within a given multiplet except (a) the ab-
sence of spin-orbit effects and (b) relations between different partial waves, e.g. , in B
The coplanar symmetry is expected to be as good as the quark-model classification scheme
itself. It preserves most of the better predictions of SU(6)+, while avoiding some that are
questionable. Some of the "good" predictions preserved are F (A2 p71)/I'(A2 KE) = 6,
(f/d) g(5 2-) g(gy2+) g(0-) ——-3, and (f/d)&&&~2+) g(f/2+) g(p ) 3 Questionable predictions of
SU(6)~ avoided by the coplanar symmetry include the selection rules A&+ p{A, = 0)~, B
+ cu(A. = 1)7r. A model of hadron decays which assumes them to occur via production of a Pp
qq pair is consistent with (but more specific than) the coplanar symmetry.

I. INTRODUCTION

The quark model has had considerable success
in classifying mesons and baryons, and also de-
scribes certain features of their interactions with
one another fairly well. Many of the predictions
of the quark model can be stated more abstractly
in terms of various forms of SU(6). '

More recently it has been found that certain
quark models which violate SU(6)„describe had-
ronic interactions quite a bit more accurately. '
The relativistic quark model, "for example, has
specific SU(6) ~-violating interactions which cor-
respond to quark recoil during meson emission.
Another picture views hadron decays as proceed-
ing via the creation of a 'I', qq pair. ' ' ' Matrix
elements in this picture, which we shall call the
+p picture, bear striking similarity to those in

the relativistic quark model.
One is thus led to ask whether there is a symme-

try intermediate between SU(6)~ and SU(3) which
is characteristic of the relativistic quark model
and the 'P, picture. Such a symmetry in fact ex-
ists. It is a coplanar form of U(3) 8 U(3), ' origi-
nally proposed as a possible description of any
process involving two directions. Its specific ap-
plicability to hadron decays has been suggested
previously. '

The model presented in Ref. 2 is sufficiently
general that it serves primarily as a parametriz-
ation of this symmetry. Our purpose here is
mainly an expository one. We wish to present the
rules for calculating directly using this symmetry
(without the reference to additional parameters of
Ref. 2) and to show its relation to other schemes.
This will be done with particular reference to de-

cays of the qq, L = 1 mesons. We find, in order
of increasing predictive power, the sets of predic-
tions given in Eq. (1):

(SU(3}j C (coplanar U(3) 8U(3)f

PP, pictrue" ' 'j

(relativistic quark model' or SU(6)~j .

(As mentioned, the last two are inconsistent with
one another. ) We shall give the physical assump-
tions that allow one to move to successively more
predictive schemes in Eq. (1).

The symmetry SU(6}~ is generated by those gen-
erators of [U(6) 8 U(6)] 8 (Refs. 1, 8, 10) which com-
mute with the generator n, of Lorentz boosts in a
given direction. " The coplanar U(3) 8 U(3) sym-
metry is generated by the subset which commutes
with Lorentz boosts in a Plane. The motivation
for applying such a symmetry to hadron decays is
discussed in Sec. II. Section III deals with the
specific example of the decays of the lowest 2',
1', and 0' mesons, classified as qq, L=1 states.
The predictions of the coplanar symmetry are
compared there with those of other approaches.
A brief discussion of more general predictions
and of the physical differences between the vari-
ous schemes is presented in Sec. IV. Appendix A
gives rules for classifying states under coplanar
U(3) 8 U(3), while Appendix B deals with transfor-
mations between spin quantization axes. Appendix
C shows how angular momentum conservation con-
strains various amplitudes.
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SU(6): commute with n, .X;o,
1 xA;per~.

(3).

A quark moving along the z axis is then to be
classified according to the 6-dimensional repre-
sentation of SU(6)~. Its "W spin" (generated by
o'„Pe„,Pu, } is the same as its quark spin. An anti-
quark moving along the z axis belongs to 6, and
its x, y components of W spin are opposite to those

II. SU(6)~ VERSUS COPLANAR SYMMETRY

Consider, to begin, quarks and antiquarks at
rest. The projection operator for a quark is
(1+P)/2, that for an antiquark is (1 —P)/2. These
projections times the spin operators (1, o) times
the nine A., matrices" of U(3) then generate an
algebra of [U(6) 8 U(6)] 8. Particles may be classi-
fied according to this symmetry by building them

up from quarks q and antiquarks q:

qC(6, 1),
(2)

qg(1, 6),
so that (for example) w and p g (6, 6), N and
& E (56, 1), N and Z6(1, 56), etc. One can imag-
ine the quarks to have some relative orbital angu-
lar momentum L, or introduce an abstract quanti-
ty with properties of L." The resulting scheme,
[U(6) 8 U(6)]88 0(3), then describes the low-lying
hadrons fairly well. "

Note at this point that a meson need not be Pure-
ly qq, L nor a baryon qqq, L for the classification
just mentioned to work. The same results will
hold if the wave functions have admixtures of
SU(3) singlet qq pairs, for example a 'S, pair re-
placing a unit of L. Experiments on deep-inelas-
tic scattering of electrons indicate that the quark
structure (if any) of protons and neutrons is more
complicated" than the naive picture. " Hence we
must be wary of any attempt to ascribe the suc-
cess of [U(6)8 U(6)] z8 O(3) to any too-realistic
quark model. We proceed further bearing such
caution in mind.

The symmetry [U(6) 8 U(6)]88 O(3) must be vio-
lated if hadrons are to decay, as one can easily
see by taking the example of ~- Nw. The initial
state belongs to (56, 1}. The final state would be-
long to (568 6, 6) if all the quarks were at rest.
This is not the case, of course, since the N and
m must be in a relative P wave. Fortunately, a
moving quark is not a member of a pure represen-
tation of [U(6) 8U(6)]z. Of the generators of this
"rest symmetry, " only a subset commute with the
"boost" operator expfo.',+2) [where coshx = (1 —v'/
c') '"]. This latter set" forms the algebra of
SU(6), :

of its quark spin. Because of Eq. (3), these clas-
sifications are invariant under change of frame
along the z axis.

What has happened to the moving quark under
the "boost"? The quark number is the eigenvalue
of (1+P)/2, and the antiquark number is the eigen-
value of (1 —P)/2. Then, for a quark at rest,
"boosted" by e"z~ ',

e- zyt2 e z)E'./21+ A

q lest rest

1 + p &y2 1 + p a &r'2

while

= cosh'(-,' X}, (4)

N, = sinh'(-,'y) . (5)

The quark has thus acquired a "cloud" of quark-
antiquark pairs [in an SU(3) singlet state] as we

move past it. Hence the decay of a hadron into
two moving ones is under no obligation to con-
serve the number of quarks plus antiquarks.

Under SU(6)~, since W= S for quarks, the N and
b, belong to a 56, the negative-parity baryons be-
low -1800 MeV belong to a 70, and so on. For me-
sons, the fact that W„,= -S„,for antiquarks
makes the classification less straightforward.
The p and m have quark spin 1 and 0, respectively.
However, the helicity-zero p has W=0 while the
m has W= 1. This phenomenon is known as 8'-S
flip. ""The longitudinal p, with W=0, can de-
cay without trouble to two pions, each with S'= 1.
Similarly the 6 (W= —,') can decay to a m (W= 1) and

a nucleon (W=-,'). lf quark spin conservation had
been demanded instead, neither of these two de-
cays could occur.

Let us now take L of the initial hadron to be not
necessarily zero, while the final hadrons will still
be taken to have L =0. This situation describes
most of the well-studied decays; the exceptions
are few enough that a systematic treatment of
them would be premature at present. SU(6)~ can
still be applied, if one assumption is made. Since
the z component of quark spin, S„ is equal to S;
(which is conserved}, and since J,=S,+I., is con-
served, L, must also be conserved. Since the
final state has L,=O, so must the initial state.
The resulting symmetry" has sometimes been
called SU(6)~8 0(2)~, '8 since it entails L, conser-
vation as well as W-spin conservation. These are
not independent, of course,

The symmetry SU(6)~8 O(2)~ and models equiv-
alent to it 'have been applied to the decays of me-
sons, ' to the decays of baryons, ' and to photo-
production of baryon resonances. " Some of the
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results indeed agree with experiment fairly well.
Typical predictions of this scheme which work
qualitatively include the following:

(1) Predictions for decays of L =0 hadrons F.or
L = 0, the question of what to do with L, never
arises. One then obtains relations such as"

I (~-N~) =—12 gNN7f P
25 4n m~' ' (6)

Symmetry-breaking corrections due to masses"
have been neglected here. Equation (6) then pre-
dicts a partial width of about 60 MeV, low by a
factor of 2." We will take this as an index of the
quality of the "good" predictions of SU(6)~. The
"bad" ones turn out to be considerably worse. ''

A prediction analogous to Eq. (6) for mesons,
which makes use of vector dominance, is based
on an SU(6)~ relation between g~„and g ~„." It
reads

I"((u- yv') 2e'

(
—— , -—8 10 ', (7)

whereas the present experimental ratio is about"
(1 MeV)/(150 MeV) = (7 x10 '). Here I' denotes
the partial width corrected for phase-space and
centrifugal-barrier factors.

(2) Itatios I'(2'-1 0 )/I'(2'-0 0 ) for mesons
A typical prediction is

r(A,*(Z)- px) @+1
I'(A,*(J).-KK) (8b)

(3) Baryon f/d ratios The SU.(6)~ predictions
for baryons,

(f/d), t, - = -k,
(f/d), t, =(f/d), t. =4, (10)

seem to be fairly consistent with the data. "" An

example of this is the extreme inelasticity of the
A(1830} —,

' resonance. The NK branching ratio
x„x of this resonance is not quoted consistently
from experiment to experiment, but most analyses
agree that x„x is no more than -10%. On the other
hand (x„xxz,)"' is significantly larger than this.
For f/d = ——'„ the A(1830) would decouple alto-
gether from NK.

(4) Various PhotoProduction selection rules
These include the fact that the transition yN- 4
seems to be Ml, the failure of N'( ,' ) to be photo-—
produced from protons, and the failure of the

r(A, - p~) r(A, - p~)
I'(A. ,-KK) I'(A, -KK)

which agrees very well with experiment. ""Such
a relation can be generalized to arbitrary even J
along the A., Regge trajectory, and reads"

N'( —,") to be photoproduced in the X = —, state from
neutrons. "

On the other hand, there are predictions of
SU(6)~ which are poorer than those just mentioned.
As an example, we consider the decays of 35,
L = 1 mesons into 1 0 and 0 0 . Since the 35,
L =1 mesons have J = 2', 1', and 0', the allowed
partial waves in the final state are l =0 (S) and
l =2 (D). SU(6)~ relates these two. This effect is
most strongly felt in the decays 1'-1 0 where
both partial waves can occur. SU(6)~ predicts that
they will interfere in such a way as to produce
vector mesons of a given helicity. For example,
SU(6)~ predicts A, gp(A. =O)m and Bgcu(X=1)w. Ex-
perimentally these decays are very much present
and the latter indeed appears to be dominant. " In
this case, the admixture of D wave seems to have
the opposite sign, relative to the S wave, from the
SU(6) ~ p rediction. '

Similar shortcomings are apparent in baryon
decays into —,

' 0 . For example, SU(6)~ predicts
that the —,

"F» N(1690) resonance should decay in-
to b, w only in the A. = —,

' state. (This follows trivially
from S, conservation. ) The suppression of A. = —,

'
decays requires the P-wave and I'-wave amplitudes
to interfere in a very definite way. No evidence
for such interference is seen. "

If one treats photoproduction using vector dom-
inance, so that the photon is equivalent to a trans-
versely polarized 'S, qq pair, S, conservation
means that upon absorbing a photon a quark must
flip its spin. Put another way, the quark cannot
be given any L, by the photon. This is very far
from true. Such a rule would forbid all X = —,

' ex-
citations of S,=-,' resonances, whereas these seem
to dominate in many instances. "

These problems with SU(6)I, are not characteris-
tic of various recent quark models. ' ' We shall
show that such models possess a well-defined sym-
metry, weaker than SU(6}~ O(2)~ but stronger
than SU(3). The symmetry may be motivated on
rather general grounds independent of the models.
.As the reader may have suspected, the weak as-

sumption in applying SU(6)~ to decays of L excited
hadrons is the restriction L, = 0. Physically this
corresponds to saying the quarks in the initial had-
ron have no transverse momentum relative to the
eventual decay axis. In our opinion, there is no
a priori reason for this assumption. We shall now
see what happens when it is relaxed.

Consider a hadron with L &0. Its quarks with
spin S are coupled with L to total angular. momen-
tum J:

I«.&= 2 (ss,LL.I«.) I«.&Iss.&.
Lg Sg

In SU(6)~, matrix elements from states with I., w0
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are assumed to vanish, as mentioned, so that S,
= W, may be conserved. Even when the matrix ele-
ments for L, &0 do not vanish, we shall continue
to apply SU(6)~ to the case I.,=O, projecting out
the appropriate piece of the initial-state wave func-
tion using Eq. (11).

The decay helicity amplitude for A(L, =O, X)- B(A')C may then be written

K [A (L, = 0; X) - B(A.')C]

~(a, a p, s ~, c);(~ ac);
x X[A(L.=O, ~) - B(~')C], (12}

where

x[A(L„=o, ~) -B(~')c]

=(w'x w'~-~ ~w"~)

x (S"XLO
~

JX)a' [A(L) BC-] . (13)

IL = n, ) =i(l L—=1, L, =-I&+ IL = 1, L, =I&}/W2,

~i, =n, &=-~L=I, L„=O&.

(15)

(16)

Together these span the states of L =1; they cor-
respond to "linear polarization" states. Now take
a hadron with I =n„. The orbital part of the quark
wave function is proportional to Y, '(8, P}—Y', (8, P}
—sin8cosg, corresponding to quarks which tend
to move in the x-z plane. When a hadron contain-
ing such quarks decays to two L = 0 hadrons, these
quarks must end up traveling essentially along the
z axis. The decay Hamiltonian must then give them
a "kick" in the x-z plane. We seek a symmetry in-
variant under such a "kick, " i.e., under boosts in
the x-z plane, as compared with SU(6)~ which is
defined by invariance under boosts in z alone.

A subset of the generators (3) commutes with

both a, and o, It forms an algebra of U(3) S U(3)
defined by the y component of W spin, W,:

The z axis is taken to be the direction of B. A and

A.
' are the respective projections of J" and J along

this axis. The first term on the right-hand side of
Eq. (12) is an SU(6}~ Clebsch-Gordan coefficient,
with the Clebsch-Gordan coefficients of SU(3} and

SU(2)~ factored out "A,. B, and C denote SU(6)~
multiplets and o., a; P, b; and y, c label the dimen-
sionality of SU(3) S SU(2)~ multiplets. The second
term is an isoscalar factor" with A, B, and C

labeling specific isomultiplets. The sum over i
corresponds to d and f couplings when n, P, y are
all octets. In the case of mixed SU(3) representa-
tions (such as decays involving &u, P, f, and f')
two or more expressions (12) must be summed

with appropriate mixing coefficients. For decays
into specific charge states, SR in Eq. (12) is to be
multiplied by an appropriate isospin Clebsch-
Gordan coefficient. In Eq. (13) the first factor ex-
presses the coupling of 8' spin, while the second
is the term coming from Eq. (11) that projects out

L, =O. The reduced matrix element a' [A(I.)- BC]
depends only on the initial and final multiplets.
For example, the decays of the 2', I', and 0' me-
sons [35, L=1] into 1 0 or 0 0 pairs [35, I.=o
8 35, L = 0] are described by a single reduced ma-
trix element of SU(6)~xO(2}~,.

As mentioned previously, decays from L, &0 sub-
states into two L =0 hadrons cannot conserve
SU(6)~. In certain circumstances they can, how-

ever, conserve a "coplanar" symmetry defined by
a subset of the generators in Eq. (3). To see this,
consider the combinations

~
L = n„& =—( ~

L = 1, L, = -1)—
( L = 1, L, = 1))/v 2,

(14)

A.;[U(3) 3 U(3)] 8, . ' commute with n„n„.
X; t}o,

one needs both of the above coplanar groups, but
matrix elements associated with the two will turn
out to be related by angular momentum conserva-
tion. One must transform states of definite S, to
those of definite S, and S, in order to apply the
symmetry to- physical processes. This involve s
matrices M:

~Sm&, =M 'P ~Sm'&,

=M"'"'ISm )„,

(2Oa)

(2ob)

which are derived in Appendix B. [In Eq. (20) the
subscript denotes the quantization axis, while S
denotes the total spin. ] Appendix C deals with con-

This is a coP/anar' ' U(3) 8 U(3) whose applicability
to decays of L excited hadrons has been noted pre-
viously. ' Our purpose is to carry out such applica-
tions, and to show that the relativistic quark mod-
el and 'I', picture possess this symmetry.

In Appendix A we shall classify hadrons accord-
ing to multiplets of [U(3) U(3)] s, .'for example,

6 (W, = —,') C (10, 1) . (18}

The first and second numbers here denote the di-
mension of the representation dealing with W, up
and down, respectively. These classifications of
course, are relevant also for [U(3)S U(3)] z, when

W is quantized along the x axis. Since

) I. = 1, L, = + 1& = [+
~
I = n„& —i

~
I = n„)]/V 2,
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straints due to angular momentum conservation.

ccKsp ccK77 (21}

where the particle symbols in quotes denote the
appropriate octet member. One can then obtain
any matrix element involving pure octets in terms
of those in Eq. (21}. Some of the more useful are
summarized in Table 1(a). With the additional as-
sumptions f'+ wm, B+ Pw one can obtain as well
decay amplitudes involving octet-singlet mixtures,
some of which are compared to those of Eq. (21)

III. DECAYS OF qq, I =1 MESONS

To begin with, we present the matrix elements
for decays of the 2', 1', and 0' mesons (A) into
1 0 and 0 0 (B, C) pairs based on SU(6)~ invari-
ance. These matrix elements are taken to de-
scribe the decays of the L =1 mesons from the
L,=O state.

Most of the transitions of interest describe the
coupling 35- 35(3 35. In order that the constraints
of charge-conjugation invariance be obeyed, this
coupling must be symmetric. This will ensure"
that the SU(3) couplings of octets b'e pure I when
the product of charge parities of A, 8, and C is
—,and pure D when it is +.

Since particle C is always taken to be a member
of the pseudoscalar octet, it will always belong to
the 35 of SU(6)~. On the other hand, both A and B
can involve SU(6)~ singlet states, e.g. , in f—mw

and B-~(X=O)w. Hence, one would expect —a
Priori —three independent amplitudes, correspond-
ing to 35-3535, 1-35(335, and 35-1835.
The second and third are related to the first if we
make the quark-model assumptions f'+ ww and
B+ Qm, rules which are certainly well in agree-
ment with present data. As our main concern in
what follows is the spin structure of decay ampli-
tudes, we shall concentrate on a decay which is
pure 8-888 in SU(3). The most convenient such
decay is

in Table 1(b).
The helicity amplitudes for 'X"- 'X"w are now

taken from Eqs. (12) and (13), and summarized in
the a column of Table II. The 8"-spin assign-(0)

ments used are based on using W = W, + S'~ = S,
—S,:to construct multip1ets, so that

111&,= 111&„

I lo&, = —
I oo&, and

I oo&, = —
I lo&„ (22)

The partial widths are related to the values of
SRg by

r(w- Bc)=,+13g„l',
w+

(23)

I«, & =g (ss,lL.I«.)l ss, &11L.& (24)

or, using Eqs. (14)-(16), as

where P is the magnitude of the final c.m. 3-mo-
mentum.

At this point we remind the reader that the only
experimental reason for doubting the predictions
of SU(6)„comes from helicity distributions in 1"
—1 0 decays (notably B- &uw).

' These data would
not justify in themselves an attempt to "repair"
SU(6)~ at their present level of accuracy. Reliable
studies of the contamination due to nonresonant
effects in m'P - n'~P would be very helpful in clear-
ing up this question.

Our prime interest here is a theoretical one:
We have no conzPelling season to restrict L, to be
zero. Hence, we should be surprised if all the
predictions of SU(6}~ held true. As we shall see,
some of them are preserved even when L, &0 de-
cays are admitted.

The initial (L = 1) state of definite Z, J, may be
written as

I «.&
= 11 = n„&{(SJ,+11-11«.) I S&.+ 1& —(S~.—1111«.) I S&.—1&kf ~2

+
I L =n, &{(SJ,+11-11«)I S~.+ 1&+ (S~.—1111«)I S~,—1&7/'f~2

+ IL =n.&(S~.1o1«.) IS~.&. (25)

We have already calculated the decay from the
I L = n, ) (L,=0) substate. Now it remains to treat,
the decays from I L =n„,& using I

U(3i)I8t U(3)]8,
respectively, adding the resulting matrix elements
in such a way as to ensure conservation of total
angular momentum. Rather than presenting all re-
sults at every intermediate stage, we prefer to
limit the discussion to some examples of how con-

straints on various amplitudes arise. This dis-
cussion is presented in Appendix C. The net re-
sult is that there are two independent amplitudes
describing L, +0 decays into K*m and Km, which
we shall call a' and a", for reasons stated in
Appendix C. Table II gives the amplitudes for
''K"- "K"m in terms of these, as well as the
SU(6)~-invariant amplitude ao . The reader is re-
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TABLE I. patios of isoscalar factors and amplitudes for some meson decays.

Decay ~A BC

"7t."7t(Ai 2 Pm)

"n "-KK(e.g. A2-KK)
"n."—gz(e.g. A2 —qx)

F orD

(a) Hatios of isoscalar factors
Isosca1.ar factor

(":)
(g) i/2

1/v 5

patio to

[F:-', D:3/2']
2 (Q) 1/2

(2)i/2

Decay' A-BC

(b) Ratios of amplitudes to those for "K" "K"n for some
mixtures b

Ratio to M(K Km)

decays involving octet-singlet

f m'm'

f KK

f' XK

B ~@b

—v'2/3

2/v 3

2/v 3

For specific charge states, multiply by the appropriate isospin Clebsch-Gordan coefficient.
b We take f = (3 )t ~t

I 1)+ (&&)
t~t

I
8 ); f' = ($)t~t

I
1 ) —(1 )

t ~t
I 8 ), etc., and have assumed f'+ n s, B+g 7t . Octet coup lings in

this subtable are all D type.

minded that other physical amplitudes are to be
constructed using Table I with isospin Clebsch-
Gordan coefficients for specific charge states.

As Table II gives seven amplitudes in terms of
three parameters, it involves four relations
among these amplitudes, Three of these allow
direct comparison of partial widths. They are,
for 'X"- 'X"7t,

K,(2"-1 0 ) =(FS/2)K, (2"-0 0 ),
K,(1"-10 ) = v 2 K,(1' - 1 0 ),

(26a)

(26b)

—,'IK,(2"-0-0-) I'+2IKi(1"-1 o ) I'

= IK,(o"-o-o ) I'+ IK.(1' -1 0 ) I'. (26c)

A fourth relation can be tested via a triangle in-
equality: It can be written, for example,

K,(2" 1 0 ) K,(1" 1 0 )=&2Kc(1' -1 0 ).
(26d)

when one takes account of Table II. The quantities
F are partial widths uncorrected for any symme-
try breaking due to masses, and without any phase-
space factors. As the amplitudes K,(1"-1 0 )
and K,(1' -1 0 ) contain both S- and D wave-
contributions, an unambiguous prescription for
dealing with centrifugal-barrier effects is hard to
find. Similar objections apply to the direct com-
pa, rison of Eqs. (26c) and (26d) with experiment.
On the other hand, there is a parametrization of
the symmetry presented here for which compari-
son with experiment becomes notably easier. Let
us decompose the final 1 0 states in 1' decays
into partial-wave amplitudes a ':

TABLE Il. Amplitudes for "E"—"K"n decays. Co-
efficients ofa, a, a shown. Other amplitudes may
be obtained using Table I. For specific charge states,
multiply by the appropriate Clebsch-Qordan coefficient.

Let us discuss these relations briefly.
Relation (26a) is one of the better SU(6)s, predic-

tions that we see continues to hold when coplanar
symmetry is involved. It relates all the pure D-
wave decays to one another, and has been shown
to agree with experiment when a D-wave centrifu-
gal barrier is used. "

Relation (26b) involves SU(6)„-violating decays.
It predicts, for example,

JPc (A) gPcg C)

1 0

0 0

1 0

1 0

a(3) a 1)

16

-v 3/8

i6

0 -1/2v 2

0 —1/W6

0 1/2W2

1/v 2 0

0

i
2

0 -3/8v 2 0

(27) 0++ 0 0 0 —1/W3
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3R„=+N,(l01 X~ 1A}a',
where N, are normalization factors chosen for con-
venience. Specifically,

II,(I"-1-0-)=S„+D„/2,

SRO(1
"- 1 0 ) = S„—D„,

II,(1' -1 0 ) = (Ss —Ds)/V 2,
5R,(1' -1 0 ) = (Ss+2Ds)/v 2 .

(28)

(29)

(These represent S-wave and D-wave contribu-
tions. ) Equations (28) and (29) are completely
general. We have chosen the normalizations in
such a way that in the SU(6)~ limit, S„=D„=Ss
= D~.

Now, Eq. (26b) implies that

S~ —D„=S~ —D

Eq. (26d) implies that

II,(2"-I 0 ) =Ss+2Ds —(S„+D~/2) .
Together Eqs. (30) and (31) imply that

3R,(2"-I 0 ) =3(Ds —D„/2),

(31)

(32)

3R,(0"-0 0 ) =(3/2)"'(Ss —2S„). (34)

Equations (28)-(34) are equivalent to Table II.
One may then describe the symmetry breaking in
a phenomenological way by setting

Sa = a„+b„(P/P, )',
SB aB+ bB(p/Po)

D~ = d~(p/Po)'

Ds= ds(p/p, )',

(35)

where P, is a suitably chosen scale factor which
we find convenient to take equal to 0.5 GeV. Equa-
tion (30) then implies

and

Qg = Qgy =Q

b~- ba=d~-da

(36)

so that four free parameters are involved. In
SU(6)~ a„=as=0 and b„=bs=d„=ds.

Present data are inadequate for fixing the pa-
rameters of Eq. (35) satisfactorily. A particular

whereby this amplitude is expressed (as it should
be) in terms of purely D wave ampl-itudes. Simi-
larly one can write an expression for
5R,(2"-0 0 ) expressed in terms of D waves:

5RO(2" -0 0 }= 2v 3 (Ds —D„/2) (33)

and an expression for 3R,(0"-0 0 ) expressed in
terms of S waves:

4~2 a)
W(cos8) - cos'8 —

3 &, ~
sin'8 (38)

For a"~/a" = 0, this would give an angular distri-
bution vanishing at 0 =90', in accord with observa-
tion. " To determine if the nonet structure of the

case seems to fit what data are available adequate-
ly. This is the case b„= b~ = 0, for which the qual-
ity of the resulting fit has already been discussed
in Ref. 2.

It is worth noting the types of improvement in
data that would enable one to check the full range
of possibilities suggested by Eqs. (35)-(37).

(a) 0"-0 0 decays [Eq (34.)]. One must ask
whether the 0' mesons form a true nonet. This re-
quires, in particular, determination of the ww/KK

coupling ratios of the I= Y=0 members. Other-
wise, one can deal only with the m-like member
("5"?} and the K-like member (seen at various
masses in different Kw phase shift analyses).
Then, assuming SU(3) to hold in relating these two,
one could solve for both the constant and the mo-
mentum-dependent term given sufficiently accurate
partial widths. This is not yet possible,

(b) 1' -1 0 decays [Eq. (29)]. At present, the

decay B- rom is the only candidate. The mass and
width of the B vary somewhat from experiment to
experiment. " The other nonet members are either
missing (I= Y'= 0 ones) or mix with the 1"nonet

(~ S~ &0 ones). Agreement on the exact values of
~II~(B- &uw)

~
(and their relative phase, if possible)

then becomes of prime importance.
(c) 1"-10 decays [Eq. (28)]. Here the situa-

tion is similar to that just mentioned, with the de-
cay A, - pm the only candidate. The added prob-
lems of a large nonresonant Deck effect in mP

-A, P and a possibly substantial Om mode make
the A, parameters difficult to determine. It is
hoped that experiments on backward production of
A, will clarify the situation. A Dalitz-plot analy-
sis to determine 3R,/3R, is of particular importance
in such cases.

(d) 2" decays [Eqs. (32), (33)]. Improvements
possible here include such partial widths as
K**-pK, f'-K*K+K*K, and f'-KK. By and
large, however, properties of these mesons are
much better known than those of the 1' and 0' me-
sons at present.

(e) Interference betureen 2' and 0' amPlitudes.
It has been suggested" that the phase of any S-
wave vw resonance under the f, would provide a
test of the 4L, =O assumption. Let us assume,
with Ref. 36, that there existed an S wave nw reso-
nance exactly under the f, and with identical nonet
properties. Then, in the narrow-width approxima-
tion, the expected wm angular distribution would
take the form
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8-wave resonance claimed in Ref. 37 is really the
same as that of the f„one should perform similar
analyses on K'K and KyKy final states, with truly
adequate statistics.

It is interesting to see how Table II relates to
other approaches intermediate between SU(6)((, and
SU(3). To do this, we may consider a relation de-
rived in Ref. 2, which is also true in the relativis-
tic quark model':

(a)

(d)

(b) (c)

2(K,/Xo)„,„=(3Ro/3)I, )e, + I . (39a)

This expression relates the helicity distribution in
A, - p)( to that in B- (ov. Instead of (36), Table II
implies

2(, /NI, )g, o, = (3)I/3)I,),„„+a(o)/a(') . (39b)

The ratio a '/a" is thus an extra degree of free-
dom as compared with the model giving Eq. (39a)'
(the '"P, model"' ' '). In the 'P, model there is
only one amplitude describing decays from the
I.,0 substate. It corresponds to the additional
+p qq pair being produced with L, &0.

To interpret the extra degree of freedom of the
coplanar symmetry we return to the graphical lan-
guage of Ref. 2. There, the L, =1 mesons were de-
scribed by 4 &4 Dirac matrices with a Lorentz in-
dex g for orbital angular momentum. This Lorentz
index could be saturated in th~ee distinct ways to
form a Lorentz-invariant coupling as described in
Fig. 1:

(a) Contraction with a final momentum: coupling
Co.

(b) Contraction with y" on the final qq pair:
coupling cy.

(c) Contraction with y" one of the initial quark

+ ~ OTHERS

FIG. 1. Graphs describing independent decay ampli-
tudes in the model of Ref. 2. (a)-(c): L= 1 mesons;
(d) -(f) L = 1 baryons. (a) coupling constant cp' (b)
coupling constant c~, (c) coupling constant c2.

lines (spin-orbit effect): coupling c,.
Table III contains helicity amplitudes calculated
in terms of c„c„and c,. By comparing it with

Table II, one finds the two descriptions are equiv-
alent to one another with

(40)

a(3) g(3) Q Q

&(» &(8)
(o) A(o) A(o) A(o)

2 3 0

(The exact values of the A&~' do not matter here. )

Thus, a' and c; are related so that when c, =Q,
a' = a"), and conversely. The results of the ~Po

model then follou from coPlanar symmetry u)hen

sPin orbit effect-s are neglected. When both c, and

c, vanish, a(') and a ' vanish, leaving the SU(6)-
conserving term a" .

TABLE III. Parametrization of qq, L =1 decays in terms of the quark graphs of Fig. 1. This formalism is equiv-
alent to coplanar symmetry. Here m&, p are the mean masses of the qg, I. =1 and 0 multiplets, respectively, andp4
=m& /4-p, . These are amplitudes for "E:" "E"m decays. Other amplitudes may be obtained using Table. I. For
specific charge states, multiply by the appropriate isospin Clebsch-Gordan coefficient.

Decay

2++ 1 0-(A, =1)

0-0-P.=O)

1+'-1 0 (a=1)

(~ =0)

cp E Fig. 1(a)]

2W2(P /p, ) (1+2@/m()

4&2/3 (P /p)2(1+2@/m&)

2v 2 (p /p)2(1+2@/m&)

Coefficient of
c& [Fig. 1(b)]

-4v 2(p/p)2

-8(~p)"'(P /P)'

4v 2(1+m&/2p)2

2v 2 m&(m&+2@)/p2

c2 [ Fig. 1(c)]

1%2 (p/p)~

1+ 1 0 (A, =l)

(~=0)

0++ 0 0

4 (p /u)2(1+2p, /m&)

(4/~2) (p /P) (1 +2) /m()

2m&(m& +2@,) /p,
2

4(m, +2p)/I

—(4/r3) 2+ 1+

16(P/u)'

—1&!3(P/p)2
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IV. DISCUSSION

Our experience with the mesons points to certain
SU(6)~ predictions that will continue to hold in the
'P, model and under (even less restrictive) coplan-
ar symmetry. Consider hadrons with a certain L,
S such that J=L+S, and let them decay to states
for which. only one partial wave is allowed. Exam-
ples are

8(2') - 1 0, 0 0 (L = S = 1;D wave),

8(—,
' )- —,

' 0 (L=1, S=-2;D wave),

8(~ )--', 0 (I.=2, S=-'„F wave),

(41}

(42)

(43)

and the Regge recurrences of these. SU(6)~ pre-
dicts Eqs. (8)-(10) and relations (9), (10) for Regge
recurrences as well. First, we relax SU(6)~ to
the 'P, model, allowing for L, 40 decays. Since
the final state contains only one t (t =L+1 here),
it turns out that this relaxation does not affect any-
thing. This is because it has been shown' that the
~P0 model preserves SU(6)~ relations among pro
cesses with the same fina/ l.

Next, we relax the 'P, model to allow for spin-
orbit effects. A unit of L gets "absorbed" by a
quark as in Fig. 1(c). We can see that this is im-
possible for the sequences A, (Z= 2}, A,*(J=4), . . . ,
and 8(—', , z, . . . ), since all the quark spins and
units of L are coupled up to the maximum possible
J. The absorption of a unit of L by a quark is im-
possible since each unit of L and each quark form
a state of J= &. Hence, we expect the predictions
(8},(9}, as well as

(f&d) 9/2-, L=3 (f/d}l3/2-, L=5 3 (44)

to remain valid when spin orbit effect-s of the type
shown in Fig. 1(c) are admitted. This has already
been shown for Eq. (8a). Furthermore, explicit
calculation using results of the appendices allows
one to conclude that coplanaz symmetry implies
Rq. (9) as well. This happens for a rather pretty
reason. By virtue of angular momentum Clebsch-
Gordan coefficients, one finds that an octet rnem-
ber with L = 1, J = &, helicity +-,' belongs only to
(8, 1) or (1, 8). The decay of such a particle to a
—,", L=O baryon and a 0, L=O meson, belonging
respectively to (6, 3) or (3, 6) and (3, 3) or (3, 3),
is thus characterized by a single independent am-
plitude and hence by a unique f/d. This, of course,
must be the f/d of SU(6)~, and we have verified
that such is indeed the case.

On the other hand, for L «3, we cannot justify
the use of coplanar symmetry at present, and
hence, have no way of proving Eqs. (8b) or (44) ex-
cept by direct reference to the absence of graphs
such as Fig. 1(c), as mentioned above. When
L & 2, a fortunate circumstance allows one to

prove Eq. (10). Since the decay of a quark-spin--',
resonance with L, =2 to &' 0 is forbidden (remem-
ber the z axis is the decay axis, so the final J,
must be +-,'), decays such as N( —,";1688)- Nw in-
volve initial L, ~1. As usual, one can treat the
L, =O substate via SU(6)~. The states with L, =+1
can be written

[ ~L =1, L, =+ » ~L =1,L, =o&
1

f/d = v5 for 8 (S, = ~)- 8 I3 8,
f/d=-& for 8(S,= v)-SS8.

(47)

(48)

The reason unique f/d values do not result in
coplanar symmetry is that —except for the states
with J =-,', mentioned above-all the J,=+-,' states
are mixtures of (8, 1), (6, 3), (3, 3)+(W, --W'„}.
There are thus, in principle, three independent
jL, ~

=1 amplitudes describing decays of such res-
onances: 3K", ,'q, 3R", ,3&, and 3g,'',z. (See Appendix C
for notation. } There is another ~L, ~

=1 amplitude
describing decays to 10(98, namely %,' '„". This
means four amplitudes describe

~ L, ~

= 1 decays
and one [the SU(6)~-invariant one] describes L, =0
decays of the 70, L = 1 into 56(3 35. This total of
five amplitudes makes for trouble in comparison
with experiment. "

Experimentally there does seem to be some
evidence for the existence of a J = —,

' baryon octet,
containing the N(1520), with f/d close to the value
of ~ that would be predicted by SU(6)~, the 'P,
model, or the relativistic quark model for a Pure
S, =-,' state. "" Speaking optimistically, this may
mean one or more of these more specialized
schemes is correct. Speaking pessimistically,
one is disturbed by the lack of clear separation of
the Z(1660) states, two of which seem to be —,',
the arbitrariness of mixing of the A state with the
unitary singlet, and the uncertain status of the

+ IL=1,L.=0» IL=1,.L.=~1&],

(45)

or, symbolically, recalling Eqs. (14)-(16), as

~
I, = 2, I.,=+1&=-,'[(+n„- in, )n, +n, (+n„- in„)] .

(46)

Hence these states are linear superpositions of
ones involving only one direction besides the z di-
rection. We then expect coplanar symmetry to be
applicable. Since only the transition [(6, 3) or
(3, 6)]- [(6, 3) or (3, 6)]8 [(3, 3) or (3, 3)] is in-
volved, a unique f/d [that of Eq. (10)] results.

There are predictions of f/d ratios made by
SU(6)~ and the 'P, model but not by coplanar sym-
metry: notably, that all 70, L = 1- 56 35 decays
should have
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- (1820) as a —,
' resonance.

It is amusing that the prediction f/d= ——', for the
octet, which is stronger than the other SU(6)v

predictions of f/d ratios as just mentioned, is also
the most reliable such prediction in various stud-
ies based on duality. "

At present, coplanar symmetry does not seem
to say very much regarding photoproduction. It
forbids

yP- K '(1670, —' X=+-') (49)

but does not seem to say anything regarding ex-
citation of the X=+ —, state. Other selection rules
of the relativistic quark model' do not seem to
follow readily. This suggests that —especially for
photoproduction —the relativistic quark model may
embody some very desirable dynamical features
which our weak symmetry arguments are unable
to provide.

We have steered clear of SU(6)~ (Ref. 40) and

coplanar U(3) 3 U(3) (Ref. 41}for 2- 2 reactions,
in view of their more questionable applicability in
such cases." Nonetheless, if one applied coplanar
symmetry only to R'N and zN reactions, one might
expect relations of roughly the same quality as the
Johnson- Treiman relations. We should note,
moreover, that the apparent violation of SU(6) v
in comparing (6) with experiment is probably as
bad as that of the Johnson- Treiman relations.
Thus, without a more sophisticated. understanding
of "kinematic" symmetry-breaking effects, SU(6) v
for L = 0 decays and consequently coplanar sym-
metry for L =1 decays may be no more accurate
than +50%, and their violation may indeed spring
from the same unknown mechanism as the viola-
tion of the Johnson- Treiman relations. The viola-
tion of (6} enhances the contribution of the b pole
over the Npole in wN-m¹ This turns out, by
duality, to push the D/F ratio of the crossed-chan-
nel nonf lip coupling of the tensor and vector tra-
jectories to octet baryons from 0 to a negative val-
ue." This is indeed the direction required by ex-
perimental data. '"" It is notable that some sat-
uration schemes for superconvergence relations"
indeed violate SU(6)~ in places where &L, must be
zero, e.g., in relations such as (7).

The physical circumstances under which the
various symmetries presented here are likely to
be valid are summarized in Fig. 2. We believe the
results of coplanar symmetry to be as valid as the
particle classification itself. The most likely
source of deviation from such relations as Eq. (6)
and Eqs. (28)—(34) would thus be mixing of multi-
plets: e.g., 56, L=O mixing with 56, L=2.4' At
present no evidence has appeared for spin-orbit
effects, ' ' ' so that even the 'P, model may be a

SU (5)
Su (6)

MULTIPL ET
CLASSIFICATION

COPLANAR
U (5) x U(5)

(L (
I DECAYS)

NO SPIN-ORBIT
EFFECTS

REL ATION

BETWEEN Lz

MODEL AND LZ & 0 DECAYS

(SEEMS RIGHT )

Po MODEL

FOR
2,6,7

DECAYS

$P

SU (6)MI

NO Lz AO

DECAYS

good approximation to decays. In decays of 2', 1',
and 0' mesons to 1 0 or 0 0, and in baryonic
decays to —,''0 and —,"0, the 'P, model involves
two independent partial-wave amplitudes. " These
in turn are related to one another in more restric-
tive symmetries: apparently incorrectly in SU(6)„
and correctly in the relativistic quark model. This
model thus seems to contain a couple of nontrivial
dynamical statements. We have shown that some
but by no means all of its relations follow from
symmetry arguments alone.
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APPENDIX A: CLASSIFICATION OF HADRONS IN

MULTIPLETS OF [U( 3)S U( 3)] Sfyy

1. Quarks

The projection operators

(A1)

have the following effect on quarks and antiquarks:

(S„=+~) =+ — (S, =+ —,')
q y ~

q
(A2)

(S„=s—,') =0. (A3)

(SEEMS WRONG)

FIG. 2. Hierarchy of symmetries expressed by Eq. (1).
The labels on the arrows denote sets of assumptions that
lead to successively more restrictive symmetries.
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Then

q, S, =-,' C(3, 1)

q, S, = —,'C (3, 1), ,

q, S, =-~6 (1, 3)

q, S =-2C (1, 3)

(A4}

S, =+ 1, for which

~(s, =1}= (k)'"(n, -), + (3)"'(-, -), ,

e(s, =1)= (-.')'"(n, -), - (-.')'"(-, -)„.

3. qq states

(A14)

Specifically, we shall denote (say) a u quark" with

S, = —,
'

by the symbol (u, -), where the dash indicates
a unitary singlet.

2. Mesons

In building the baryons it will be helpful to define
members of the 21 and 15 of SU(6), which are
formed by respective symmetric and antisymmet-
ric combinations of 6IN 6. Under SU(3)8 SU(2),
these multiglets reduce as follows:

The sta.tes of qq a.re 'S, (S, = 1, 0, -1)—= V and
'S, =—I'. In terms of quark spin, one may write

21=(6, 3)e (3, 1),

15=(6, 1)e,(3, 3).
(A15)

(A16)
v(s„= 1)= q(s, = l)q(s„= l),
v(s„=o) = [q(s, =-,')q(s, = --,')

+ q(S„=——,')q(S„=z')] /W2,

v(s, =-1)=q(s„=--.')q(s, =--.'),

(A5)

The SU(3) representations of nonzero triality in-
dicated on the right-hand side occur often enough
in our calculations that we find it helpful to define
them in Fig. 3.

The reduction of the multiplets under [U(3)
S U(3)] 8, is as follows:

P= [ q(S, =-,')q(S, = --,') —q(S„= --,')q(S„=-,')]/~2.
(A6)

(A7)

These then belong to the following multiplets of
[U(3) & U(3) J s.,

V(S, =1)e (8, 1),e(1, 1), ,

V(S, = 0) C [(3 3), + (3, 3)„]/~2

V(S, = -1)6 (1, 8)„$(1, 1), ,

(qq)„, S, =1& (6, 1)„,
(qq}», S, = 0 6 (3, 3), »,
(qq)„, S, =-16 (1, 6)„,

while

(qq)», S, = 1 6 (3, 1), ,

(qq)», S, =06 (3, 3), »,
(qq}», S„=-16 (1, 3)„.

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

PC [ (3, 3), - (3, 3), l/~2 . (A8)

The total multiplicity of V and P is that of (8, 1)
S (1, 1)B (3, 3)$ (3, 3)+ (1, 8)+ (1, 1), i.e., 36. The
corresponding qq multiplets in SU(6)~ are an
SU(6)1, containing the S, =0 vector-meson unitary
singlet and a 35, containing all the remaining par-
ticles.

The specific members of the multiplets (A7) and
(A8} are easily written down. We shall adopt no-
tation whereby an octet member is labeled by the
corresponding pseudoscalar meson: e.g.,

~ d ~ U

~ S

(b)

Assignments are unambiguous except for the S„=O
states. Here one has the following examples (see
Fig. 3 for the state labels):

p'(S, = 1)= (~', -)„,
p'(S, =O}=[(u, d)„+(~, u)„1/V 2,
p'(S„=-1)=(-, s+)„,

while

n+(S~ = 0) = [('u, d)~ —(d, u), ]/v 2 .

(A9)

(A10)

(A11)

(A12)

~ C ~ B ~ A

~ E ~ 0

~ F a

The multiplet assignments for octet-singlet mix-
tures are straightforward except in the case of

FIG. 3. (a) Quark states; (b) qq states belonging to 6
of SU(3); (c) qq states belonging-to 3 of SU(3).
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A(S = 1, S, = 0)(C21) = (P, P), „,
A(S=0, S, =0)(C15)=(P,P), „,

(A23)

(A24)

(A26)

to show the ambiguity that arises if the origin of
the (3, 3) representation is not labeled. Such a
(purely formal) labeling allows one to keep track
of the symmetry or antisymmetry of the SU(6) part
of the quark wave function. Qne could imagine this
to be important in a "realistic" quark calculation
for which such symmetry or antisymmetry would
determine permutation properties of the sjatial
part of the wave function.

4. Baryons as qqq states

The qqq baryons encompass the SU(6) represen-
tations 56 70 = 21 6 and 70 20 = 15S 6. Since
under [U(3)SU(3) ] z, one has

y(s= 1, S, =0)(615)=[(P, n), „-(n,P), „]/W2,

(A25)

y (S= 0, S, = 0)(621) = [ (P, n), „,—( n, P ), „]/W2,

Note, however, that the members of the (6, 3)
representation of [U(3)SU(3)]z we have just
constructed have nothing to label them as having
come from the 56 of SU(6)~. A similar (6, 3)
comes from the 70. For this (6, 3), however, the
decimet has S = —,

' and the octet is an (a Priori) ar-
bitrary mixture of S= ~ and S= &.

Qur practical problem is this: Given an assign-
ment of quark spin S to a member of the 70 (no
firm evidence for the 20 exists), what does this
say about the [U(3)S U(3)] 8, assignment'? For
example, suppose we take the D»(1520) —,

' nN
resonance to have S, = —,'. Does the S, = —,

' state of
this particle then fit into (6, 3)~o into (3, 3)„, or
into some mixture?

At present we suspect the answer to this ques-
tion is nontrivial and would involve assumptions
which are more model-dependent than those we
choose to make. " For the time being, therefore,
we can only write

(70: (8, 4); S„=—,'] 6 cos8 (6, 3), „+sin8 (3, 3)„„,

(70: (8, 2); S, = —,'] C —sin8(6, 3)„„+cos8 (3, 3), ,0.

21 = (6, 1), e (3, 3), ~, e (1, 6), ,

15 = (3, 1),e (3, 3), „e(1, 3), ,

6=(3, 1),e (1, 3), ,

(A27)

(A28)

(A29)

Some ambiguities arise in identifying multiplets of
definite quark spin. For this reason we shall be
more explicit in our construction.

The S =+& states are clearly identified in each2
=3of Eqs. (A30)-(A32) since the S= ~ members of the

56, 70, 20 are, respectively, 10, 8, and 1 of
SU(3). The S, =s—,

' states, however, pose more of
a problem.

Let us take (6++, S, = —,
' j = (A, u). Then acting

with I we have

the following decompositions can be extracted:

56= (10, 1), e (6, 3), ~e (3, 6), ~ e (1, 10)„,
(A30)

70 = (8, 1), e (6, 3), „e(3, 3), „e(3, 3), „
e(3, 6), „e(1,8), ,

20= (1, 1), e (3, 3), 2oe (3, 3),oe (1, 1), . (A32)

APPENDIX B: TRANSFORMATION BETWEEN

STATES OF DEFINITE Sg AND THOSE OF
DEFINITE S~, S»

The synibols I Sm). ..will denote spin eigen-
functions when x, y, and z are the respective quan-
tization axes. For definiteness in phases we shall
build spin eigenfunctions from those with S = —,'.
Define

(al)

(~2)

where 8; (8) is a rotation by 8 about the i axis.
In terms of Pauli spinors this means that with

2 2 s 0

one has

I2x&. =~2 [l] =~2[I2x&. +I x x&. ] (~5)
%'e shall then define

{a', S, = —,
' ] = (-')'" (B, u) + (-')"'(A d) .

The orthogonal state is a proton:

(P, S, =x] =(-')"'(A d)-(-')'"(&, n).

Then acting with I we construct the neutron:

(n, S„=l j = (-')'"(&, d) —(-')'"(&, n)

I z z&x, x =Sx,x I x x&x,x t

where

S~ =Sg -iS„
=s. --,'i(s++s.-) (&7)
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S„=S —iS,
=-,'2(s.- -s,') —is, .

Applying these to (84) and (85), one has

ll-l&, —
~2 [ll l&. -ill-l&. )

and

Ik-l&. =
~2 [-Ikey&. + I2-l&. 1.

(88)

(89)

(810)

(814}

Expressions for I sm), in terms of I sm')„„are
given in Tables IV and V for S = 0, —,', 1, and —,.
These tables are in the form of matrices (essen-
tially Wigner D functions, which we have thus cal-
culated for specific cases):

The states with spin 1 are defined by setting

(811)

and then applying S„,, successively. Similarly
we define

(812)

In proceeding from (811)or (812) we assume all
phases are positive:

I Sm). = Af(':; »
I
Sm'),

=M ' "'ls

These transformations are unitary, so that

lsm'&, =i(f*„(„')'»Ism), ,

I
Sm')„=Ate*i""il Sm&, .

(815)

(816)

(818)

S„,g ISm)„, g =+ [(S+m)(s —m+1)]'/2

x ISm —1)„,. (813)

We shall also define the spin-0 states in terms of
spin ~'.

APPENDIX C: CONSTRAINTS DUE TO ANGULAR

MOMENTUM CONSERVATION

Consider an amplitude for the decay (n, , n2)
-(p, , P2)S (y, , y, ). We shall label such an ampli-
tude by K "~'ssP,' (x or y), depending on whether

TABLE IV. Expressions for ISm) in terms of
lsm'&2 for S=0, i2, 1, and &2. Matrices M(~Pi.

s =o
I oo&, = iloo&,

TABLE V. Expressions for ISm), in terms of
lsm')„ for S =0, 22, 1, and &2. Matrices Mis'~).

s =o
I oo&, =-il oo&„

2

2

$=—1
2

(g)1/2
2

g (g)1/2
2

1
2

(g)1/2

i (f)t/2

1
2

S =p1

(g)1/2
2

(1 )1/2

g (g) 1/2

i($)1/2

$=1

2

i ($)2/2—

1

S=&
2

(g)1/2

0

(g)i/2
2

; (g)i/2

2

1
2

(g)1/2

1
2

$ -3

0

i($)2/2

(g)1/2
2

2

2

(j.)1/2
8

i(f)2/2

(g)1/2
8

i (f)2/2

(g)1/2
8

~ (1 )1/2
8

(1 )1/2
8

i ($)2/2

(gt/2

~ (g)1/2
8

(g)i/2
8

i (P)i/2—
I

(g)i/2
8

;(g)i/2
8

(g)1/2
8

g (g)1/2
8

(g)1/2
8

(g)1/2
8

(()2/2

(1)1/2
8

i(fI,)2/2

i($)2/2

i ($)1/2

i($)'"-

(3)i/2

(g)i/2
8

(1 )1/2

-(~8)' '

~ ($)2/2

i ($)1/2

~ (g)1/2
8

i ($)t/2
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the U(3) 8 U(3) generated by A. , and X, pv„or X;po,
is being considered.

We are treating the decays "K"-"K"m. In order
to do this most simply we shall consider a particu-
lar charge state, "K'"-"K"'TI', and then multi-
ply by -(3)' ', the inverse of the isospin Clebsch-
Gordan coefficient, to obtain an isoscalar factor.
The isoscalar factors for other decays may then
be gleaned from Table II.

In the decay "K'"-"K"'xr' from I., + 0 sub-
states the following amplitudes contribute:
Il'"-(x y) K' "(x y) SR'"(x y) and K' "-(x y)
By considering enough examples, we shall show
that in fact only two of these eight are independent.

Consider a 2' meson with J, =+1 (recall we are
taking the z axis to be the direction of the first
final particle, in this case the "K'"). Then it is in
the state

I

"Z'",J=2,J,=+1, L=n, )

I
n') = ~ (u, d), —~ (d, u), (C6)

= —~ (u, d)„+ ~ (d, u)„, (C9)

I
K') = ~ (d, s)„- ~2 (s, d), (C10)

=- ~ [(Ic', -)„+(-,z')„j, (c5)

I

"K"J=1,J =1)
= —,'(K', -), + —,

'
(d, s), + —,

' (s, d), + —,
' (,K'), (C6)

=-3(K', -)„+,'i-(d, S), + ,'i (s, d)-„--,'(-, K')„,
(C7)

I
s= 1, s. =o&ll-= 1, L.=~ »1 (d, s)„+ ~2 (s, d), . (C11)

+ Is= 1, s, =+1)II, = 1, L„=o)1
In calculating the overlap of such states we need
the following Clebsch-Gordan coefficients of SU(3):

=+ ~ [I ii&, -l i —i&, ] I
L"=n„&

[I iS). +
I
i -i)„]IL =n, )

(ci)

& dd
I

-& =1/&3,

&su IIc'&=i,

and elsewhere we will also need

&I~'dl s& =1/v3 .

(C12)

(c13)

(C14)

where the
I Sm)„, , on the right-hand side refer to

quark spin.
We have used Tables IV and V to quantize the

quark spin along the appropriate axes for each L
substate. Similarly a 1 meson with J,= 1 can be
represented as

To obtain constraints we simply calculate some
decays forbidden by J~ conservation and demand
that they be forbidden. For example,

X ["K'"(J= 2, J,=+1)-K'~+]

=0

IJ= l, J,=~1) = —,'I 11),+ ~ I lo), +-,'I 1 -1),

=-,'I ii)„+~ I io)„--,'ll-1)„
which requires

—[Sfi3 33(x)+SR'&,'(x) ] ), (C16)

and a 0 meson as

I oo&. = il oo&, =-i
I oo&„,

(c2)

(c3)

and

cg3I33 (y) cgL, 33 (y)

K"-'(x) = -Sg' "(x)

(C16)

again using Tables IV and V.
Equations (Cl}-(C3) may be translated into

[U(3) U(3)] 8, representations as follows, us-
ing Appendix A:

I
"K'",J'= 2, Z, =+1, L = n, )

~ [(Jf', -), —(-, fc')„], (c4)

Moreover with

SR[ "Z'"(J=2, J.=-i) -if *'(J.=1)~']
=0

~ ( -[SR',",';(y)+Sg", -,", (y) ]

—i[A' "(x}—K' I (x) ]) (C17)

we now have [using (C16)]
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3Rs,ss(~), 3(fs.ss (y)t (C18)

Hence, with (C16), this relates four amplitudes to
one another. Similar relations may be shown to
hold among four other amplitudes one of which is
Kss's»s(y). We shall define

a ~'~ —=K,",'—, (y},
a'" =3m'ss (y)3s

(C19)

All the L, 0 decays of "K" into "K"~ are then
described in terms of these two amplitudes, as
noted in Table II.

An alternative discussion, which helps to define
the group "coplanar U(3)SU(3)" more clearly,
may be of some use here. We regard this group
as an accidental symmetry of specific states and
not as a dynamical symmetry. These states, as
mentioned in the Introduction, are those with "lin-
ear polarization" states of L lying in a plane, and
may be constructed as superpositions of states of
definite J and J, . For example, referring to Eq.
(C1), the combination

[ I@=2,J,=1) —Iv=2, Z, =-1) ]/~2

=-;s [ I »&, —
I 1-», ] I

L =.-.&

+-,' [I11&,—I1-1&.] I
L =~,) (C20)

is such a state, with L lying in the x-z plane. The
group [U(3)8 U(3)) s, is then applicable to decays
of this state. We may form similar states for L
in the y-z plane and calculate their decays. For
a suitable choice of relations between reduced ma-
trix elements for the two schemes, we will find
that decays which violate conservation of J, are
forbidden. Hence the two calculation schemes are
not independent, and it suffices to use either. In
practice, this amounts to taking the L=n„pro-
jection of a state with definite J,J, : for example,
from Ec(. (Cl),

Z

& L =n„Iz =2, z, =l& = ~ [I11&,- I1-», ] .

(C21)

This is, in fact, how the calculations in the pr es-
ent paper were first performed.
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