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We give a simple derivation of the large-momentum-transfer behavior of the electromag-
netic vertex in quantum electrodynamics by means of functional methods. Jackiw's result
exp [- (e /lsd ) in {q /p )] is obtained by using an eikonal approximation for the electron
propagator in an external field.

INTRODUCTION AND DISCUSSION

It has been known for some time that the rele-
vant graphs contributing to the high-energy behav-
ior of scattering amplitudes are the ladders and
crossed ladders. " It is again this same set of
graphs which apparently determines the asymptotic
behavior of the vertex function in quantum electro-
dynamics, ' and which has been used by Appelquist.
and Primack to study hadronic form factors in sev-
eral model field theories. ' Abarbanel and Itzyk-
son' were the first to realize that the relativistic
eikonal expansion for the scattering amplitude in
quantum field theory could easily be derived by
functional methods.

In the present paper, we will show how function-
al techniques can be used to determine the asymp-
totic behavior of the on-mass-shell electromagnet-
ic vertex, determined by Jackiw' to be

It is hoped that this alternative derivation, besides
illustrating the elegance and economy of the func-
tional approach, will prove useful in analyzing
more complicated processes. '

Our starting point is the equation'

i1 g „, 1
2 i Oat' s 5B'

where Ss(x, x') is the exact electron propagator
without vacuum-polarization graphs, Sos(x, x') is
the electron propagator in an external field B„(x)
with the quantum field interaction switched off,
D~„(zz') is the zeroth-order photon propagator in
an arbitrary gauge (which we will take for simplic-
ity to be the Feynman gauge), and where we are
using the functional notation

i1 5 p 1
2 i OB~ i OB"

exp —
i6 ln'(q'/y, ')

and previously studied by others. '
—=—

)i
dzdz' —. „( -)D""(zz') —. „(,).
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The correctness of the statement following Eq. (2)
will become clear to the reader upon examination
of a few low-order graphs. However, since we
will need the generalization of (2) to the case in
which an external current is present in order to
calculate the vertex function, and since in any
case it is instructive to see how one obtains (2)
from the exact expression for the propagator, we

give in Sec. I a derivation based on path integrals.
The removal of the vacuum-polarization graphs

to all orders simplified the high-energy behavior
of quantum electrodynamics a great deal, as has
been emphasized by Baker and Johnson, ' and thus
one holds the hope that at least for the leading
terms, Eq. (2) can be used to give an exPlicit
solution to all orders in perturbation theory. We
show in Sec. III that this is indeed the case.

Section II is devoted to the calculation of the
propagator in an external field. A closed-form
expression for this propagator has been obtained
before. '' In particular, the authors of Ref. 2 have
given an iterative solution for the propagator which
in the eikonal limit, and by suitable averaging over

the field coordinates, canbe recombined into closed
form. Their technique yields an "eikonal factor"
of the form

ex 1

X

where y is a functional of the potential B„(x) to be
defined in Sec. IG. If we use their propagator to
calculate the vertex via Eq. (35), we find that the
asymptotic behavior of the vertex comes out wrong.
If, however, we directly differentiate the iterative
solution for So and only then go to the eikonal lim-
it, we find that the averaging procedure of Levy
and Sucher is bypassed, and one obtains instead
the eikonal factor exp(X) which in turn gives the
correct large-momentum-transfer dependence for
the vertex. This form of the eikonal factor could
also be obtained for the propagator by summing
over the field coordinates rather than averaging and
has been advocated by other authors. " We refer
the reader to the second paper of Ref. 2 for a dis-
cussion of this point.

I. PATH-INTEGRAL FORMULATION FOR ELECTRON PROPAGATOR

In this section we will give a derivation of Eq. (2) based on Feynman's path-integral approach. We will
not be concerned with any of the subtleties involved in defining these integrals, and only use them as a
formal device to handle the combinatorics of the perturbation expansion. There are many works on path
integrals to which the reader is referred for details. "

The Lagrange function for quantum electrodynamics in the presence of external sources J'„(x), B„(x),
q(x), and q(x) is given by

Qx) = La(g) + I,o(A)+j "Aq+ J"Aq+j "Bq+qg+ fry,

where

(5)

F~„=8 pA„B,Aq, -jq = eP yq (.
The vacuum-vacuum amplitude in the presence of the sources can be written as

(Q+ca ~0-~l) ""—=g

=X~~dAdgdgexp[i(-p S, 'g —2A& D '„„A."—+j" A„+J".A„+j" B„+q p+g q)],

where So is the Dirac operator, and we are using the functional notation

-).S, ' g—= — ld'xg(x) y~ —.s +m P(x),i

f 4j" A„—= d'xj "(x)A„(x), etc.
(8)

X is. a constant determined by the boundary condition

X '=~I dAdpdpexp[i( gS, 'p —' —,'A-. D ' A+j A)].

From Z~ ""one can obtain all the Green's functions of the theory by functional differentiation. It will be
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sufficient for our purposes to restrict ogr attention to.ithe two-point function

(Oozy(x)y(x')iO) =-. , —. Z""'6 1 5
i bq(x') i bj(x)

dAd x x.'. exp i — S0
' —~AD 'A+jA+jB+JA+g + (10)

and for the remainder of this work we set the fermion sources g and g to zero. Using the operator identity

e'"f(b)e ' =f(b+ma '),
where a and b are any twio operators such that [a, b] = 1, and f is an arbitrary function, we can rewrite
gJB

Z~s =Xexp —.——()dAdg)I)exp[i( (S, 'g ——,'AD '—A+JA+jB)].
i 5J 5B (12)

Equation (12) expresses the well-known fact that the generating functional for the interacting theory can be
written in terms of the classical actions of the fields in the presence of external sources. The electron
propagator S is defined by

S"(x, x') =i(Z")-'(O
i Ty(x) y(x') i O)

which becomes upon substitution of (16)',

exp( —,
—~

) f dz(dljdilip(z)t)(z ')exp/((('i-PS '2 --' d() 'd edz) jP)]e
1

exp —. — dAdpdT])exp[i ( it)SO -'p —,'AD 'A +PA—+jB)]i 5J 5B

(14)

The integral over the electromagnetic potential A„.can easily be done by a field translation, "and (14) be-
comes

i
exp —. —~ —exp —J D ~ J dgdpi(1)(x)p(x') exp[i(-]7)S 'y+jB)]~s(,)

i 5J 5B 2
1 5 g 1

exp —. —~ -- exp —. J D J. d exp i —S, ' +jB
(15)

and where, according to our convention,

(i/2)d P d=(i/2)fdzdz dz(z)Pz, (zz')d "('z').

The remaining path integrals are now recognized as those appropriate for the electron propagator in an
external field; thus writing

dPdgi P(x)g(x') exp[i( T])S, 'P+-j B))
gB

~ ~ ~

0

dgdT))exp[i(-(So 'P+j B)]~ ~

(17)

and

dPdg exp[i(-(So 'P+j B)]
ZB

~ ~

0

de]ij exp[i( T()So 'P)]-
(18)

Eq. (15) takes the form

1 5 i5 -i
exp —. —~ exp —(J D' J) (ZO~Soe)

dj)( 2)
x M 5B 2
1 5 6 fi

exp —. —~ exp
i

—J ~ D ~ Z (Zo~)i 5J 5B

(19)



ASYMPTOTIC BEHAVIOR OF THE ELECTROMAGNETIC. . . 1759

Finally, using again the operator relation of Eq. (11), we transform (19) into its final form:

S (xx') =

$i 1 5 1 5
exp — J'+ —. —D J' + —. (Z~S~)

2 i 5B . i 5B

exp — J +-. 'D J +——pp
(20)

Equation (20) for S~~ has a very simple diagrammatic interpretation. Sg contains only graphs of the form
shown in Fig. 1, while Zo supplies us with the vacuum loops shown in Fig. 2. The differential operator

~ D ~

(we are setting J= 0 for the moment) then joins the photon lines in all possible ways with the appropriate
weights. The numerator in Eq. (20) gives us then the correct perturbation expansion for the electron prop-
agator plus the disconnected vacuum loops which are in turn canceled by the graphs in the denominator.

Equation (20) is therefore equivalent to the series expansion of the propagator, and thus correct indepen-
dently of the method used to derive it. It gives us, however, new insight into the structure of the perturba-
tion series, and provides us with a means of separating the contribution due to the polarization of the vac-
uum to all orders in the charge. For, if in Eq. (20) we simply neglect the factor Z, in both numerator and
denominator, the resulting approximation

i 1 1 5
exp — J+-. —'D ' J+-. — S (21)

2 i 6B i 5B

contains all the diagrams except the vacuum loops. Setting J=O obtains the result quoted in the Introduc-
tion, Eq. (2).

II. PROPAGATOR IN AN EXTERNAL FIELD T (Px') fdxe " 'T ('x=x'')* * (26)

S, (x, x') (xS)+xfS(xx )=exeS„(x, )S", (x"x')d"x",

where

(22)

We will limit ourselves in this section to writing
down the iterative solution for the propagator in an
external field in order to:establish our notation.
S, satisfies the equation

Eq. (25) becomes

T~(p, x') =V(x')+jt(dk) V(k)S, (p —k)T~(p-k, x, ')e"" .

An iterative solution of (27) can be immediately
written down:

S.(*x') f(dp) =. e'"* *'
f+tPP —SE (23)

T (p x')= f ( d) p(dp„)T(S, )S,(p —S,)
n-

(dp) = '
d/p( m2)'.

It will prove convenient to solve instead for the
",T matrix" defined by the equation

&& V(k„)S,(p-k, -" -k„)V(x')

X i(k)+ ~ ~ ~ + yg X'e (28)

Finally, taking the transform with respect to both
coordinates,

So = So+ SoT So

and which satisfies (ey)'B„=—V)

T = V+ VSoT.

Taking the partial Fourier transform

(24)

(25)

Ts(p, p') =
JI dx'e '&p p""'T (p, «'), (29)

FIG. 1. Diagrams contributing to So . FIG. 2. Expansi. on of Zo .
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we write

T (kk ') =g f (dk ) ' ' ' (dk ) y(k )S (k —k )' ' S (k —k, —' —k„,) y(k)(ke) e (q —k, — —k ),
n=]

where q=P -P'. One could now go to the eikonal limit in (30) to obtain a generalization to spin —, of the
Levy-Sucher equation, which for the on-mass-shell case reads

eX (B)
T(PP ') = e y "fde e "'B„(e) XB

where

2'
y(eP, P'; B)=eJ (dk)e' 'B„(k)(— +, ),

(3o)

(31)

(32)

We will refer again to (31) in the next section, and the reader is referred to the work of 1.ivy and Sucher
for the details of its derivation.

HI. VERTEX FUNCTION

We finally come to the central theme of this paper, the calculation of the vertex function. The vertex
function of quantum electrodynamics is defined by"

u(
Sea„(z)

where

&o
I ~„(z)I

o)

(oI 0)

F" is easily related to the improper vertex

(33)

&oI T4(~)g(&')&"(z) I o& = —. &oI T((&)V(x') IO&i ~(z) I

by a simple application of the chain rule:

ggdB
eSI'"SD,

q
=

q
= -&0

I T+AqI0),
J=B=O

(34)

(35)

where the function D,&-= 5a„/5P is the full unrenormalized photon propagator. In the large-momentum-
transfer limit, we will assume that this propagator is asymptotic to Iin Feynman gauge] 5„„/(q —ie). This
is of course consistent with neglecting vacuum loops and is suggested by canonical field theory.

The right-hand side of Eq. (35) can now be calculated, neglecting vacuum polarization, by making use of
(21); thus

5S(xx') 5 z 1

i 1 5 1
2 s 6B s 6B 5B"z) '

Now using the iterative solution for SBs, Eq. (30), and the fact that

5B)'(k)/5B" (z) = e-'"'5)',

we have

p(PSP )
( )

~(pyp ) S ( I)
6S"(z) ' 5B"(z)

ce n
= So(p)pe" (dk, ) ' ' ' (dk„)Q y B(k,)SO(p —kk) ' ' 'y 'B(k& ~)SO(p —kk — ' - k, ~)

n=1 E=l

(35)

xy„e "&' S,(p- k, — —kq)y 'B(ks+, ) ' ' S,(p- k, —' ' ' —k„,)y ' B(k) S,(p')(2s)454(q —Zk)
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B,=(p) p z g"f(dk ) ~ ~ ~ (dk, )(,dk „) , ~ (dk )

&&y' B(kk)So(P —k, ) y B(k, ,)SO(p —k, — —k, ,)y„e ~'B+'Q k&z
ice l

XSO(P'+ k&+L
~ ~ ~ + k„)y ~ B(k&+L) ' So(P'+ k„)y 'B(k„)S (P') .

We will now pass to the eikonal limit making the replacement

y S P-k — ~ -k)= 2
P'+m'+a, + ~ ~ +a) '

Pp(P+k+ +k
1 j

where a; = k,' —2P k, and b, = k, '+2P'k, . It is not the purpose of this paper to enter into the assumptions
which go into (38), and the reader is referred to the literature'+" for a discussion of this point. Using
(38}, Eq. (3V} can be cast into the form

5S()(P,P ) S (p) p t'(dk ) (dk )(dk ) ~ ~ (dk )
2p B(k,)e+' L' 2P.B(k,)e' " 2P B(ki L)e' L-L'

5+a, +a, 5+a, + ~ ~ ~ +a, ,

(39)

where q=P-P ', 0 =P'+ m', and O'=P" + m'. Since we are calculating the on-mass-shell vertex we will
set 5=5'=0, and the off-mass-shell case will be treated in an appendix. We next symmetrize among the
(/-1) variables k, k, , and the (n- l) variables k„, k„separately. Then using the relation'~

1 1 1 1
~ ~ ~

~(~) Q 0+0 C +6 +'''++&
~ Cl~Q '''Qg

~
(40)

where P,&, &
is a sum over all permutations of the (l -1) indices, a,'= a,«&, and the corresponding equa-

tion for the 5's, we recast (39) into the form

II I (pp'), .„gj I
( f(dk)

kp B(k)e' )' '
( f'(dk) kp' B(k)e'"')" '

= ey.e "' exp[X(z;P, P'; B)], (41)

where }((z;P,P '; B) is the functional defined by Eq. (32}.
The important point is that )( is a linear functional of the field B&(x):

X(z;P,P", B)=fde Lz(ze;PP )B'„(z '),;, ''
the explicit form of IP can be easily deduced from (32) and is given in Appendix A; as a result,

(42)

i 1 5 1
exp ——. D —. —exp[}((B)]=exp }( B—iD-2i 5B i I 5B

=exp I B-ir..D ~-
5B

=exp(L B)exp(-II. 'D' exp —'L B,ID,5B 2 ' 5B

where we have used the operator identity

(43)

~~+b ~~~b~- [~,b]/2

which applies since

[a, f)] = c number (44)

S
B„(z), „, ,}

=-5„„t)(z—z'). (45}
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Substituting (45) into (43) we obtain, after setting B„=O,

i 1 5 1
exp ——. —D —. —exp[)[(B)] = exp[(P(z) J,2 i 0B i 5B

where

d(z) = —Sf dz dz S'z(z"z )Dz„'( z z )'D("z z

As we show in Appendix B, (P is in fact independent of z, and can be written, Eq. (Bl),

0 = 0"'(0') 0"(p) 0"(p')

Let us now rewrite the vertex function using (37) and (41) as

zS(p)p"(p, p')S(p'), z(e)=zS (p)y"S, (p )fdz'D„„(pz)e "'exp —— D — exp[X(B)j,
i

which becomes, upon using Eqs. (46) and (47),

s(p)I'„(p, p')s(p') =s,(p)e"'"y„s,(p')e""' e""'".
As is shown in Appendix C, in the eikonal approximation

s(p) = s.(p)e'

S(p')=S.(p')e' "'.
Therefore, (49) yields the final result

2
I'„""(P,P ') =y„exp —,ln'(q'/p, ')

(46)

(47)

(46)

(49)

(51)

where Eq. (B5) has been used for the leading behavior of p['&((I2) .
To bring this section to a conclusion, let us briefly discuss the effect of using the eikonal approximation

to the propagator, Eq. (31), to calculate the vertex instead of proceeding as described above. Instead of
Eq. (41), we obtain

6B„(z) 6B„(z)
= ey" dA. dz'e "" (B (z') exp[A. ~ )[(z'; B)]],

where we have used the identity

eX
e dA, .

0

Since

(52)

(53)

LB„(z')exp[d[y(z'; B)] j= [P„6(z -z')+KB„(z')L"(z'z)] exp[d[. y(z'; B)],6B„z
we can write Eq. (36) in the form

(54)

=SD(P)ey"SD(P') I
dX dzdz'e 'B D„(0z)exp ——. 'D ~ —.

2 i 5B i 5B

xexp[Ay(z'; B)][6"„6(z-z')+KB„(z')L"(z'z)]. (55)

Now, using Eq. (46), we can rewrite (54) as

6S PP' 1
=S,(p)ey"S,(p') dz dzdz'e '" D „(Oz)e p( x)eX p( iXxpID) [e"„e(z ——) X. z()+l."z(B' )]zz

0

1
=S,(p)ey S,(p') dA, dzdz'e "' D„„(Oz)exp(d(. '(p')

0

x 6"6(z —z') —iA. L'(z'z)jl dz" Ls(z'z")Ds (z "z') (56)

It is now straightforward, albeit tedious, to show that, using the definition of L given in Appendix A,
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one can write

5S(p, p'}
S (P'}[I,„„+ (57)

where

and

Since

1

—ZE 0

i e' 2p)( 2p„' (dk) 2p 2p'„', q2~
q' —ie a(q} b(q) k' —ie a(k) b(k)

(58)

(59)

and

J
1

dyes'.

$ [ yj-k/2
0

f1
~2dr e"~- [-y] -"'

0

(60)

it is obviously I, „which contributes to the leading term in the vertex. However, by comparison with the
graphical analysis, order by order, of Refs. 3 and 4, we are led to the conclusion that the asymptotic be-
havior predicted by Eq. (57}, as a, result of using the eikonal factor (4), is incorrect. Exponentiation of
the second-order graph takes place only if we use the iterative solution of Eq. (30).
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APPENDIX A

The generalization to the off-shell case is straightforward, and follows from an application of the iden-
tity"

1 1 1 . ",.~, 1 —e-"&
~ ~ ~ , =ib dpe ' 2;+a/ Q +af + ~ ~ +al a&

Thus, as before

»(, ')
ba, (~)

=ey'e "'ibib' dPdP'e 's 's s exp',

where now

(A1)

(A2)

e-&8(k) 2P)2 1 e-&s'b}
X(ilk P'iP, P'ik) &f(dk)e' P, (k=) '+

where

(As)

a =k' —2p b =k +2p' ~ k. (A4)

Comparing (A3) with (42) we see that

2p)' 1 —e 's') 2p'"(1 —e ks'b}-
&"(zz'PP'PP )=ef(dk)e")'

a 5

For the on-mass-shell case 5 = 5' =0, which implies

(A5)

=ey"e "' lim dPdP' —,e ' 's exp',5&.(&} s, s -() 2 ep sp'

and since

(A6)
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and

2p~ 2p'~
&e(S =2' )==ef(dk)e"' " '~

a b

I "(P =P'=0) =0,

(A7)

(A8)

it follows that

=e)"e '"expl. X(z ' p p" p = p' =" &)1
)e

which is the result used in Sec. III.

(A9)

APPENDIX B
Using Eq. (Av), the function (p can be written as

(P
-=——L D L= ——

2 2 . dz'dz"L"(zz')L (zz")e"('Z (dk) I

2 2 k +p —iE P

ie' (dk) 2P " 2P'" 2P„2P'&
2 k' + i1' -i e a(k) b(k) a(-k) b( -k)

~

p (1)( 2) ~ y (2)(p) ~ y (2)(pe)

where

(B1)

J k'+ '-ie a(k)b( k) '-
(')( ) = —2' ' ' (dk)

k'+ p,
' —ie a(k)a(-k} '

(,), , „(dk)
k'+ —'

b(k) b( k)-

(B2)

(B4)

Equation (B2) contains the relevant q' dependence, and its leading term can easily be obtained by para-
metric techniques":

q )) P }+O(l (q /i1 }) (B5)

APPENDIX C

Here we endeavor to demonstrate that in the eikonal limit, the unrenormalized electron propagator
becomes

k'+ '-' k' —22 k-i k'+2(e k-i )
'|)t(e begin by rewriting Eq. (2) for the case of zero external field:

i 1 5 1Ss='(x, x') -=S(x —x') =exp ——. D. —. S, (x, x'),
2 i 5B i 5B

(C1)

(C2)

which when Fourier transformed gives

S(k) =fd xe "' "S(x'x')* *-
1 ~ 1

=exp ———.D ~— S,'(p, x') .
2 i 5B i 5B

(C4}

In the same fashion in which we obtained (30), we can construct an iterative solution for Sos(p, x'); thus

S22(p, x') =So(p) 1+g (dk, ) ~ ~ (dk„) V(k, )S2(p —k,) V(k„)S,(p —k, —.. —k„)e'("1'"' ") "
n=l
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which becomes upon making the replacement of Eq. (88), and using the combinatorial formula (40),

,
) ( )

(dk)2p"B„(k)e""'S» x' =8, p exp e (C5)

It is now straightforward, and completely analogous to the argument presented in Sec. III, to show thai
oper ating with

z 1 ol6
2 i 6B i 58

on (C5) we obtain (Cl).
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