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The dual-resonance model entails an exponentially growing resonance spectrum for the

hadrons. It is well known that not all the states which achieve the factorization are physical

' ones; there are spurious and ghost states among them. We give a general formula for count-
ing the ghost states at any given mass value and also an asymptotic expression for the ghost
spectrum. The Virasoro model, in which the leading trajectory intercept is unity, is not con-
sidered here. A method for constructing the subspace of real states, which is orthogonal to
the space of spurious states, is also given. After removing the ghost states from the real
states, the remaining ones are taken as physical states, which then constitute the resonance
spectrum. Implications of this resonance spectrum in the statistical approach are briefly

discussed.

I. INTRODUCTION

After the n-point dual-resonance amplitudes
were shown to be factorizable in terms of har-
monic-oscillator states,!’2 there was brought to
light the unexpectedly rich level structure of res-
onances making up the amplitudes. It has been
shown!~2 that the multiplicity of independent states’
at a certain mass value increases exponentially

with the mass. However, it is immediately ap-
parent from the method employed that many of the
states included in the factorization cannot be in-
terpreted as physical or resonance states since
they have negative norms (ghost states), and would
give rise to negative-pole residues. Moreover,
there are spurious states* due to linear dependence
which do not couple to the external-particle states
at all. In order to reach some understanding of



o

the spectrum of the physical resonance states im-
plied by the dual-resonance amplitudes, it is nec-
essary to be able to enumerate precisely the num-
ber of ghost and spurious states. For the special
case in which the leading trajectory has intercept
a,=1, Brower® has shown recently that the ghost
states can be completely eliminated. In this paper
we shall only consider cases with a,#1. We ob-
tain a general formula through a generating func-
tion to count the ghost states at any mass value.
We also work out the asymptotic expression for
the ghost spectrum. The result is actually quite
surprising. We find that nearly all of the factor-
ized states are spurious and ghost states. How-
ever, the number of the remaining physical states,
like the number of the total factorized states, still
grows exponentially with increasing mass.

The exponential rate of growth of resonance de-
generacy, interpreted as the growth of the density
of states in a statistical ensemble of strongly in-
teracting system, can lead to far-reaching con-
sequences. In fact, in 1965 Hagedorn® obtained
precisely an exponentially increasing density of
states within a statistical-bootstrap model by re-
quiring that the hadronic resonance spectrum be
identified with the density of states of the ensem-
ble. An ultimate temperature of hadron matter in
thermal equilibrium is predicted leading to inter-
esting cosmological speculations.””® If this iden-
tification could indeed by justified, the level struc-
ture of the dual-resonance model would provide
added support to these results. Some properties
of hadron matter at high temperatures and high
densities have been derived on this basis.*®

What we have attempted to do here is to obtain
for each propagator pole position a count of the
number of “real” states (states orthogonal to the
spurious states) that will contribute effectively to
the pole residues. Further, we try to distinguish
among the real states those which contribute posi-
tive-pole residues to the propagator from those
which contribute negative-pole residues. The real
states giving rise to positive-pole residues are
called the physical states. The spectrum of physi-
cal states are given in Eq. (46) and in a slightly
different form by Eq. (48).

II. FACTORIZATION

The factorization of the dual-resonance ampli-
tude for » spinless particles has been proposed by
several authors.!'2 Most of the early works deal
with trajectories which are degenerate with each
other and hence can all be specified by a single
intercept ¢, and a slope a’. Subsequently, the
same method of factorization has been extended to
n-point amplitudes involving parallel trajectories

but with unequal intercepts, and several interesting
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features have been pointed out,!! '3

For simplicity we shall carry out our analysis
for the degenerate-trajectories case as an illustra-
tion of the general method of approach. The anal-
ysis can be easily generalized to the unequal-in-
tercepts case. As is well known for the degener-
ate-trajectories case factorization can be achieved
by introducing harmonic oscillators of tensor di-
mension, D=4, whereas in the general unequal-
intercepts case harmonic oscillators of higher
tensor dimension are needed and the momentum
4-vectors are similarly extended to a higher di-
mension. We shall postpone the discussion of the
choice of D till later (see Sec. IV), although it has
direct bearing on the numerics of the level de-
generacy of the model.

As we have mentioned before, we are only inter-
ested in the cases where o, #1. The Virasoro'*
model will not be considered here.

We shall follow mainly the work (and notations)
of Ref. 3.'®> These authors have shown that the
process described in Fig. 1 can be written as

APy Dr; o+ 45) =P |D(R, m)|q
=§<P PO [DR, M)A
(1)
where D(R, 7) is the propagator
D(R, n>=f el i o, @)
with »
R= Y, nala, 3)

n=1

and the states |g) are the “tree” states of (s+1)
external scalar particles

|@) = V(g)D(m, ) V(ge_y)* " V(g)|O, (4)
with

V(Q)=exp(i\@7f’q f} aI/G)

xexp(ix/ﬁ? q "i:)l a,,/\/’ﬁ) . (5)

. qS-Z'

$=-1

s

FIG. 1. Momentum labels for a scattering amplitude

involving (v + s + 2) scalar particles.
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a(m?) denotes the linear Regge trajectory, a(7?)
=a, - a'r? on which the intermediate states lie,
and a, , and a,’:,“ (the u indices are suppressed in
the above equations) are multidimensional tensor
operators satisfying harmonic-oscillator commu-
tation relations:

[an,w a;.u] = 6nmghu ’ (6)
lan, s @pl=lal,,, a7 ,1=0,
where g,,=-1, g;;=+1, ¢=1,2,...,D~1, and the
dimension D is still to be specified. The states
[A) are a complete set of eigenstates of the opera-
tor R:

W = TI[(a] )™ /(x,, , D 2]10), (7)
n, 1
with
RN = 25w, ). (8)
nu

At a given mass position, say my, with
N=a,+a'my?, 9)

the “on-shell” harmonic oscillator states are
those eigenstates of R with eigenvalues equal to
0,1,2,...,N (N an integer), since the propagator
D(=m%=m,?) develops poles at these values. That
is to say, the A, , of (8) become integers and sat-
isfy the condition

2 X, =7, with =0,1,2,...,N. (10)
n,p

The number of independent ways that (10) can be
satisfied is given by the partition P,(7).'® The
manifold of “on-shell” states at position N has
therefore J 7, Pp(7) linearly independent mem-
bers. However, due to the fact that g,,=~-1,

many of the eigenstates of R have negative norms,
and further it has been shown by several authors?*
that many are spurious states, i.e., states which
do not couple to the tree states. None of these
can be categorized as physical states.

III. THE REAL STATES

We shall first discuss the problem concerning
the spurious states in the factorization. As we
shall see there are many more spurious states
than there are ghost states. Let us introduce a
“Ward” operator, defined by*'!7

where
Lo(p) = _alp2 -R

and

L_(p)=—i(2a'/2%p a, - f} [+ 1)]"2dl a,., .
" (12)

L,, L. together with L, = (L_)T, where the super-
script T denotes Hermitian adjoint, define a simple
algebra SO(2, 1) satisfying the commutation rela-
tions

(L, Li]=%L,,

[L,, L-]=2L,. (13)

Since the “on-shell” oscillator states are eigen-
states of R,

RN =7\ . (14)

By the commutation relations (13), L, can be iden-
tified as raising and lowering operators:

RL, N =(r« l)LiP\> . (15)

W(p) has the property that it annihilates an arbi-
trary tree state of an arbitrary number of scalar
particles:

w(p)|p=0. (16)

This can be shown by commuting W(p) past the V
and D operators in (4) until it acts on |0) which it
annihilates, using the relations

W)V (k) = V(R W(p = k) + )
and
W(p)D(R, p) = D(R+1,p)W(p) = 0, D(R, p) . (m
Consequently, '
A ID(R+ 1, p)W(D)| D= M [[W(D) + ] D(R, )| =0,

(18)
where (| is an arbitrary oscillator state. Thus
all states

1S) =W (p) +a,l]n) (19)

will not contribute to the summation over inter-
mediate states in (1), and they will be called
spurious states. So far no other Ward operators'®
with this property have been found, and for the
time being we shall concentrate on spurious states
defined by (19).

At each position N corresponding to the reso-
nance mass #my by (9), we shall be mainly inter-
ested in the states which are needed to effect fac-
torization but are at the same time orthogonal to
the manifold of spurious states. We shall call
these the real states. The question of ghost states
will be discussed later.

The real states |¥) are defined by*®

(S|w =0, (20)
or by the condition®
(W(p)+a,l[® =0, (1)

and, in addition, |¥) should not be zero-norm



6 SPECTRUM OF PHYSICAL STATES IN A DUAL-RESONANCE... 1689

states. The on-shell real states can be explicitly
constructed. At position N, |¥) will be formed
from linear combinations of the |A) states of (7).
Let us write

N
I‘II> = Z; E ar,ir|/r’ Zr> y (22)
7=0 iy
where |7, i,) denote the [A) states, with
R‘V, i7>:7(7f’ i’r>, (23)

and each ¢, labels one of the Py(7) components in
the » level. From (21) we have

[Lo(p) + o, ]| ®) = L_(p)[®) . (24)
Using the fact that
(Ly+ a)|7, 4,0 = (N =)\, i,), (25)

and L_ is a lowering operator, (24) implies that
not all of the coefficients ay, ; of ¥ can be zero.
With
L2|®) = L_(Ly+ o) [¥
=(L,L_ - L_+a,L)|®
=[(Lo+ @) = (Ly+ ap) [, (26)
we have in general,
L") = QL+ o) | W), (27)

where’ @Q,(x) is a polynomial of order n, and is
given by

n-1

Qx)=II (x=m). (28)

m=0
In this manner, a real state |¥) can be generated
from any one of the Pj(N) oscillator states of the
7 =N level. Take one |N, iy) state given by (7) at
a time and choose ay,;, =1; then,

N

where

Also, (29) can be rewritten as
L) =e*E-|N, i) . (30)

The real states given by (29) or (30) are not ortho-
gonal to each other. For example,

(B %) = 35 a,a,AN, iy[(L.)"(L-)|N, iy

=3 @, XN, iy [(L)(L)TIN, iy) @31

do not vanish, even though
(N, i4N, iy) =0. (32)

In order to obtain a set of orthogonal real states,
each |¥) is formed from a proper mixture of |N, i)
states, and to facilitate counting, which we would
have to do eventually, the mixing problem has to
be carried out systematically. We shall demon-
strate below a particular way of achieving this. -
Let us define

N
|1V> i}l>m: Z} bn(LJrL—)"iN) iN>; (33)
n=0

where b,=1; we claim that the states defined by
[%) =e* [N, i)y, (34)

can be made to be orthogonal to any other |¥,) by
a proper choice of the b,,. The reason is that in
the product (¥, [F;) there will be operators like

(L L,L_**+ L.L_L_) sandwiched between
(N,iy|**+|N, iy). By means of the commutation
relations (13) and the condition (24) they ¢an be
reduced to a form with all the L_ to the right and
all the L, to the left. For example, the residue of

) = a,(L.)|N, iy), (29) the propagator D(R, 7) can be written as follows:
=0
3N
Res{(T, | D(R, 7)|T)} =Res«{<N, iy D(R, )N, iy) + 33 €k, if|(L)™D(R = m, 7)(L_)™|N, iN>}, (35)
r
where the sum in (35) stops effectively at m=N. Now,
Res = lim (N = ay+ a'?) (36) we shall take the b, to be such that all ¢,,=0 for

(og-c'm2) >N

and c,, are some functions of o, b,, and a,. In
(35) we also make use of the relations

D(R,m)L,=L,D(R-1,17),

L_D(R 1)=D(R-1, L. . 37
Since
(L)™|N, iy) =0, whenever m>N, (38)

m=1,2,.... This can in principle be done since
there are N adjustable b,, and hence

Res{(%:|D(R, m)| %)} =Res{(N, i};|D(R, m)|N, i,)}
~+8; (39)

iy
Thus, |[¥) have basically the orthogonality prop-
erties of [N, iy) as constructed in (7). Since there
are Pp(N) members of |N, iy) states, there are,
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therefore, also P,(N) members of real states at
the N level.

IV. THE PHYSICAL STATES

The real states |¥) constructed in (34) are
orthogonal to the manifold of spurious states, and
according to (39), none of them would cause the
propagator to vanish although some of them may
make the propagator take on the wrong sign. The
latter correspond to states giving rise to negative
pole residues in (39). These are real states gen-
erated from oscillator states |N, 7,) having odd
numbers of creation operators af,,o with Lorentz
indices =0 in (7). We shall first give an enumer-
ation of the number of ghost oscillator states,
which possess odd numbers of the zeroth-compo-
nent Lorentz indices, for each level 7 (i.e., the
level with eigenvalue of R equal to 7), since this
number will be useful later. )

In the same way that the on-shell oscillator
states at each level » is found to be given by Py(7),
the number of ghost oscillator states G,(7) at the
same level can easily be shown to be

GD(V)=$[PD(7’)-pD(7’)], (40)
where

o -D

> Pp(r)x'{ml—x’*)] , (41)

r=0 k

i) FD(’V)X’=|:];;I(1 —xk)]_ 1[I.I(l-e-xj)]—l. (42)

The expression for P, differs from that for P, by
altering the sign in one of the sequences of infinite
products. Some properties of P, are given in the
Appendix. In P, therefore, every ghost compo-
nent is canceled by a positive-norm component.

Hence, (40) gives the number of ghost components.‘

The remaining positive-norm components are just
%[PD(V) +pp(7)] . (43)

Asyrﬁptotically, we have the following approximate
expressions for Pp(7) and Py(7), valid for 7 large:

PD(y) - \/“2‘ (D/24)(D+1)/4(,,)—(D+3)/4
xexp[27(D7/6)/2], (44)
FD(y) - [(D _ 3/2)/24]0/4(7)-@&)/4

xexp{2n(D-3/2)v/6]'/2}  (D=2). (45)

Since P,(7) in Eq. (45) has a smaller exponential
than Pp(7), it can be ignored for large #, and Gp(7)
= (1/2)P,(7). Hence, the elimination of all ghost
states from the manifold of on-shell states will re-
duce the total number of such states by at most a
factor of two but would not change the asymptotic
form of the level degeneracy, which is the domi-

o

nant feature of the model.

According to (39), the allowed states generated
from the ghost oscillator states would give the
wrong sign to the pole residues of the propagator,
and therefore would not be acceptable as physical
states. However, an arbitrary removal of these
states may destroy the Lorentz invariance of the
amplitude. We do not yet have a completely satis-
factory way to overcome the ghost problem.

A possible way to rid the amplitude of ghosts and
at the same time not destroy Lorentz invariance
can be accomplished as follows. First, stay in the
rest frame and decompose the Lorentz indices of
the allowed states in terms of spin states. This
decomposition can be achieved without the ghost
states (i.e., the ghost states will belong to separate
irreducible representations). Thus, the explicit
particle contents of the factorization are exhibited.
Then by allowing every spin-j state to transform
according to the (j, 0) or (0,7) representations of
the Lorentz group, full Lorentz invariance of the
amplitude'is restored. In other words, the origi-
nal allowed states transforming under the direct
products (3, )% (3, 3) X+ *X(3, 3), which have re-
ductions into representations of the (m, ) type,
are replaced entirely by states transforming under
representations of the (4, 0) and (0,7) types. In
terms of the latter the ghost states may be re-
moved without causing obvious injury to the factor-
ized amplitude.

Due to the high degree of degeneracy at every
resonance position, the spin quantum numbers
alone are insufficient to distinguish the different
particle states. Hence, the Lorentz quantum num-
bers (m, n) are also needed to classify the states,
and these additional quantum numbers will not be
available if the (4, 0) and (0,7) representations are
used. However, since the Lorentz quantum num-
bers are still insufficient to classify all states any-
way and other quantum numbers are needed to aid
in the classification, this argument should not be
used to reject the (7, 0) scheme. The higher sym-
metry which gives rise to the new quantum num-
bers must be so broken that the particles are dis-
tinguishable by their differences in mass.

Therefore with the justifications given above, we
take now the maximal set of physical states to be
those real states which give the right sign to the
propagator residues. The number of physical
states at level N corresponding to resonance mass
m, is given by [see (39) and (43)]

p%) = 3[Pp(D) + Py(N)], (46)
with N = @, + a’m,*®. This presumably is the num-
ber of states needed to effect a factorization of the
dual amplitude without redundant components. This
would also be the spectrum of resonances pre-
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dicted by the model, and in the framework of sta-
tistical bootstrap, p,,, is related to the density of
states of an ensemble of hadrons.

The final question relates to the tensor dimen-
sion D. In one of the pioneer works on the factor-
ization problem, Nambu' has already suggested
that in order to account for the fact that not all of
the boson trajectories have identical intercepts,
the tensor dimension D should be at least five.
Several authors'" '* have subsequently given de-
tailed investigations into the choice of dimension
D within the framework of hadron dynamics. They
find that if the dual-resonance amplitude is re-
quired to be factorizable in every multiperipheral
configuration, a tensor dimension D=5 is in gen-
eral insufficient to accommodate all arbitrary Reg-
ge trajectories (i.e., trajectories of the same
slope but different intercepts). Instead, there are
mass relations among the mesons. Since most of
these relations seem to be satisfied, there appears
to be no need to go beyond D=5.

The choice of D is quite important in view of its
implication on the statistical ensemble, since it
appears in the exponential of (44) which is directly
related to py,,. In the statistical-bootstrap frame-
work®™? it essentially determines the ultimate
temperature 7, of hadron matter in thermal equi-
librium, 7,=(1/27k)(6/Da’)*/2, where k is the
Boltzmann constant. Taking D=5 and @’=1.0
BeV 2, the ultimate temperature is T,=2x10'? °K,
which is very close to that suggested by Hagedorn.®
(T,=174 MeV in units where k=1.)

Instead of p,,(N) of Eq. (46) it is common to
write py(7); these are related to each other by

dmpphy (m) = dephy(N) ’ (47)

with N =M?, For D=5, py,(m) takes on the follow-
ing asymptotic form:.

(2)—1/2(2_5;)5/4,%'3 exp(m/T,). (48)

pphy(m) m targe

This spectrum is similar to but not identical to the
one derived by Hagedorn,® who employs a statisti-
cal bootstrap model to fix the power of m in Eq.
(48) at —3 instead of —3 as we have here. However,
in a recent study Frautschi®® employing a some-
what different statistical-bootstrap model favors
the situation where the power of m in Eq. (48) is
less than —3 instead of being identically equal to
it as in Hagedorn’s case. Also, if m< -7, it has
been shown by Huang and Weinberg® and by
Frautschi® that even local thermal equilibrium
cannot be attained. p,,, () given by (48) is basi-
cally the so-called “Case II” in Ref. 10.

From all of these considerations it seems that
the choice of D=5 is not without merit, and ap~
parently receives a great deal of theoretical justi-

fication.

Before we end our discussion we should perhaps’
mention the results of a recent paper by Gliozzi
et al.®® who describe the “allowed states” |x, ») of
the factorized amplitudes. These states, unlike
the real states, satisfy a more restrictive condi-
tion that :

L_|x, 7v)=(R=7)|x, » =0, (49)

which comes from the fact that very often a full
dual-resonance amplitude is obtained by summing
over all noncyclic permutations of the external
lines and therefore the amplitude possesses a
higher symmetry: invariance under an arbitrary
permutation of the external lines.

The manifold of allowed states is smaller than
that of the real states. At the resonance position
N the number of allowed states is given by [Py(N)
- P,(N =1)]. Hence, if the spectrum of physical
states were based on the allowed states the new
density of states pgny(m) will be down by a factor
of m™ compared with p,,(m) of (48),

d -
Pohy(m) — Eﬁpphy(m) ~m ™ *exp(m/T,). (50)
mlarge

peny(m) given by (50) corresponds to the “Case III”
of Ref. 10.

It is, however, not clear at the moment whether
or not the higher symmetry injected by condition
(49) is realistic and whether all dual amplitudes
should be invariant under permutations of the ex-
ternal lines. We shall leave the answer to this
question open for the time being.
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TABLE I. The numerical values of g (), Pp(n), and Pp(n).

n q(n) P(n) Py(n) ﬁs(”)
0 1 1 1 1
1 1 4 5 3
2 1 14 20 10
3 2 40 65 25
4 2 105 190 62
5 3 252 506 136
6 4 574 1265 293
7 5 1240 2990 590
8 6 2580 6765 1165
9 8 5180 14725 2205
10 10 10108 31027 4097




1692 H. LEE AND Y. C. LEUNG

|o»

TABLE II. Generators for harmonic-oscillator states.

p, =No. of
positive-norm

States generated by

p-=No, of
negative-norm

Levels (u, v, 0 =0, 1, 2, 3, 4) states (D =5) states (D =5) p,/p-
r=1 af 4 1 4
r=2 af s af yaf , A2 4+11=15 1+4=5 3
r=3 a;’”, a;'uaf,y s

af af ,af ;N3 4+17+24=45 1+8+11=20 2.25
=4 az’“, a;,uaf’y,

a;r,“ag'y N2, a;'“af'o/ﬁ,

af yaf ,af jaf \NE 4+17+11+48+47=126 1+8+4+27+24=64 1.97

APPENDIX X(m) =0 (m) - 20(m/2), meven.

In the Appendix of Ref. 10, the recursion rela-
tion for P,(n) is given as

Py(n)=(D/n) "Z:)l Ppy(m)o(n —m),

where the divisor function o(#»2) can be computed
by the recursion relation®

o(m) = E

(—l)ko'(m _3k%: k)
1=(3k2 tk)/2 =m 2

g'(m=x)=0(m—-x) ifm=x,

with

o'm=-x)=m ifm+x.

We give here the recursion relation for the com-
putation of Pp(n):

nPp(n) = nz:;l Py(m)[(D =1)o(n = m) =An-m)],

where

AX(m)=0(m), modd

Since the divisor functions satisfy the factorization
property o(ab)=0(a)o(b) if a and b are relatively
prime, A(m) can be expressed as A(m)=0(d,,),
where d,, is the largest odd divisor of m. Alterna-
tively,

n
Z; q(m)PD(n - m) =PD—1(n);
m=0
where ¢(m) is the number of ways to write m

as distinct sums of integers without regard to
order®, i.e.,

L

S alm)x™= 3 (1+x%).

m=0 k=1
Some numerical values of g(r), Py,(x), and P,(n)
are given in Table I. Equation (40) can be verified
by comparing the numbers given in Table I with
some explicit evaluations of the number of posi-
tive-norm and negative-norm states given in Table
II. Notice that the ratio p,/p_ approaches 2 rapid-
ly as 7 increases.

*Work supported in part by an NSF grant.

ly. Nambu, in Symmetries and Quark Models, edited
by R. Chand (Gordon and Breach, New York, 1970).

%S, Fubini and G. Veneziano, Nuovo Cimento 64A, 811
(1969); K. Bardakci and S. Mandelstam, Phys. Rev. 184,
1640 (1969).

3S. Fubini, D. Gordon, and G. Veneziano, Phys. Letters
29B, 679 (1969).

{F. Gliozzi, Lett. Nuovo Cimento 2, 846 (1969);

C. B. Chiu, S. Matsuda, and C. Rebbi, Phys. Rev. Let-
ters 23, 1526 (1969); C. B. Thorn, Phys. Rev. D1, 1963
(1970).

R. Brower, this issue, Phys. Rev. D 6, 1655 (1972).

®R. Hagedorn, Suppl. Nuovo Cimento 3, 147 (1965);

6, 311 (1968).

'R. Hagedorn, Astron. Astrophys. 5, 184 (1970).

8C. Mollenhoff, Astron. Astrophys. 7, 488 (1970).

’K. Huang and S. Weinberg, Phys. Rev. Letters 25, 895
(1970).
104, Lee, Y. C. Leung, and C. G. Wang, Astrophys. J.
166, 387 (1971).

P. Olesen, Nucl. Phys. B19, 589 (1970); B18, 459
(1970).

12¢, Lovelace, CERN Report No. CERN-TH-1123
(unpublished).
3¢. 8. Lam, Nucl. Phys. 29B, 445 (1971).
14\, A, Virasoro, Phys. Rev. D 1, 2933 (1970).
5See also, S. Mandelstam, in Efementary Particle Phys-
ics, edited by M. Chrétien and S. S. Schweber (Gordon
and Breach, New York, 1970).



o

165ee Eq. (41).

1A generalized form of the Ward operator applicable to
the unequal-Regge-intercept case is given in Ref. 13.

18We are considering explicitly the case where ay*1;
for the special case a (=1 there exist more than one
Ward operator of this kind.

19This characterization of the real states is similar to
that of Gliozzi. [See Eq. (14) of Ref. 20.]

20F. Gliozzi, Nuovo Cimento 70A, 90 (1970).

SPECTRUM OF PHYSICAL STATES IN A DUAL-RESONANCE... 1693

13, Frautschi, Phys. Rev. D 3, 2821 (1971); see also,
C. Hamer and S. Frautschi, Phys. Rev. D 4, 2125 (1971).
22F. Gliozzi, E. Galzemati, R. Musto, and F. Nicodemi,
Lett. Nuovo Cimento 4, 991 (1970).

23See Handbook of Mathematical Functions, edited by
M. Abramowitz and I. A. Stegun, National Bureau of
Standards Applied Mathematics Series, No. 55 (U. S.
Government Printing Office, Washington, D. C., 1964).

PHYSICAL REVIEW D

VOLUME 6, NUMBER 6

15 SEPTEMBER 1972

High-Energy Scattering in ¢’ Theory and the Breakdown of Eikonal Approximation. II*

Hung Chengti
Department of Mathematics, Massachusetts Institute of Technology, Cambvidge, Massachusetts 02139

Tai Tsun Wui
Gordon McKay Laboratory, Havvard University, Cambridge, Massachusetts 02138%
and Deutsches Elektvonen-Synchvotvon (DESY), Hamburg, Germany
(Received 4 June 1971)

In this paper we study, in ¢° theory, the high-energy amplitudes for the exchange of two
or more ladders. We obtain these amplitudes in closed forms to all orders of the coupling
constant. The conclusions are as follows: (i) All of the scattering amplitudes satisfy the
impact-factor representation. (ii) Except for the leading term (in the coupling constant) the
scattering amplitude of two-ladder exchange is not in the form dictated by the eikonal approx-
imation. (iii) The scattering amplitudes for the exchange of N ladders, N = 3, are never in
the form dictated by the eikonal approximation —even for the leading term. (When the cou-

pling constant approaches zero, allof them are of the order of s73 instead of s

“2NH | ag dic-

tated by the eikonal approximation.) Thus the eikonal approximation is not valid in ¢® theo-
ry. The amplitude for the exchange of #» scalar mesons, » >4, is also given. Contrary to

. the popular notion, it is not of the order of s™"*! whenn >4. Summing over such amplitudes
does not lead to the exponentiation form commonly conceded in the past.

1. INTRODUCTION

In the preceding paper,’ henceforth referred to
as I, we discussed the high-energy behavior of (i)
the one-ladder amplitude and (ii) the amplitude for
the exchange of a ladder plus a scalar particle.
The method we used to treat these problems is
the one we had developed in treating high-energy
amplitudes of quantum electrodynamics. This
powerful method enabled us to obtain the asymptot-
ic form of the above-mentioned amplitudes, with-
out any assumption on the magnitude of the cou-
pling constant. We were then able to verify the
validity of the impact picture as well as the break-
down of the eikonal approximation in ¢* theory.

In this paper, we shall continue our study of ¢2
theory by treating the amplitude for the exchange
of two or more ladders. As before, our purpose
is to extract general physical principles which
are independent of perturbation. We shall show in

various examples that, just as in I, the impact
picture is correct while the eikonal approximation
fails.

Before we go into the details of the calculations,
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FIG. 1. A diagram of two-ladder exchange. The s
channel is from left to right and the ¢ channel is from
bottom to top. A ladder with dots represents the sum of
ladder diagrams over all rungs.



