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(1-x)g„(l-x")in Ref. 5, becomes [Q„(l-x")]2for
D =26.

2~C. Lovelace, Phys. Letters 34B, 500 (1971).
24Independently, C. Thorn has come to the same conclu-

sions regarding the special properties of the D =26 mod-
el (private communications) .

The asymptotic density p(m) Am e + given by
K. Huang and S. Weinberg, Phys. Rev. Letters 25, 895
(1970), in the ghost-free model has B =&(D+2), Po
=2x[(D —1)/61~~2 for D& 26 and B =2(D —1), P0
=2'[(D —2)/6] for D =26.

26M. B.Halpern and C. B.Thorn, Phys. Letters 85B,
441 (1971).

27Individual low-point functions of phenomenological. in-

terest may have no ghost even with 0.0 & 1. DDF (Ref. 6)
prove the beta function has no ghosts for @0=1by factor-
izing with spatial oscillators in the frame k2 ——(0, 0, 0,
v'-m2). Actually for m ~ 0, the proof is also valid since
(1-x)~0 has a positive power series. Almost the same
argument proves the Lovelace-Shapiro four-pion ampli-
tude has no ghosts for m„=0.

To establish covariance, one should enlarge the gen-
erating algebra (A„) to include the Lorentz generators

~~" = 9 ~e" -e»"),
where

U(A) =exp[i l""(A)Z„,],
U(A)V (z,p)U~(A) =V (z, AP) .
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The Marchenko approach to the inverse problem of scattering theory is transformed into
a procedure for the calculation of the (half-) off-shell partial-wave transition amplitude from
the on-shell amplitude and certain bound-state parameters.

I. INTRODUCTION

In many theories for multiparticle systems, like
the Faddeev equations for three-particle systems,
the input information is not the explicit interparti-
cle potentials but rather the two-particle transition
amplitudes t(p', p; E +ie) Howe. ver, two-particle
scattering experiments provide direct information
only on the on-the-energy-shell part of these am-
plitudes, corresponding to

~

p'
(
=

~ p (
= k, where

k'/2g =E is the energy; while in the multiparticle
theories the scattering amplitude is in general also
needed for off-shell values of the momenta, and
for negative energies.

The methods to extract information on the off-
shell parts of t from on-shell parts in one way or
another exploit the assumption that t corresponds
to a unitary S matrix or, more precisely, that the
solutions to the Schrodinger equation correspond-
ing to different energies form a complete set. The
best-known consequence of this so-called unitarity
condition on t is of course that the on-shell transi-
tion amplitude itself in every partial wave can be
parametrized in terms of a real function of ener-
gy, the phase shift 5, (k),

Imt, (k, k;E +ie) = — sin5, (k)e' &(" . (1.1)
~ = 1

Other well-known consequences, ' also applying

to partial-wave amplitudes, are that the amplitude
can be expressed in closed form in terms of half-
off-shell amplitudes, ' 4 e.g. , for the imaginary
part of t„
Imf, (p', p; E+ie)

vpkf, (p', k-;E+ie)tf(k, p;E+ie) (1.2)

and, moreover, that only the modulus of the half-
off-shell amplitude depends on the off-shell mo-
mentum, leaving it with the same phase factor as
the corresponding on-. shell amplitude,

t)(p) k;E+ie) =f, (p, k)t;(k)k;E+ie) )

where the half-off-shell factor f, (p, k) is real.
Thus, in every partial wave, the completely off-
shell amplitude can be parametrized in terms of
the two real functions (),(k) and f, (p, k).

The remaining general restrictions on t due to
the unitarity condition' are less transparent, since
they are expressed in the form of an integral rela-
tion which is quadratic in the half-off-shell ampli-
tude. However, in the important special case when

the transition amplitude corresponds to an interac-
tion potential which is diagonal in configuration
space (a, condition that excludes, for instance,
separable interactions) the situation is consider-
ably simplified. From the solutions to the inverse
problem of scattering theory, ' it is known that in
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this case the quadratic unitarity condition can be
reduced to a linear integral equation, through
which an in principle unique potential can be de-
duced using on-shell and bound-state properties
of the two-particle system. But once the potential
is known, the off-shell extension of the transition
amplitude is obtainable as the solution to the
Lippmann-Sehwinger equation. In this way also
the off-shell amplitude is uniquely determined by
the phase shift together with, in the ease of a
partial wave with bound states, the bound-state
energies and normalizations.

The procedure just outlined can obviously be
simplified if the potential itself is of less interest
and the main objective is to find the off-shell ex-
tension of a given on-shell amplitude. In the pres-
ent paper, such a simplified procedure is devel. —

oped, through which the half-off-shell factor
f, (t(k)) can be obtained from the phase shift and
the bound-state parameters, and in which the
intermediate step of actua11.y ea1.culating the po-
tential has been eliminated. The basic ingredient
is the Marchenko integral equation from the theory
of the inverse scattering problem, "but rather
than considering its solution in configuration space,
as in the conventional discussion of the equation,
it is shown that a certain momentum-space trans-
form of the solution is closely related to the half-
off-shell factor. After this observation, what re-
mains is essentially to develop methods to solve
the Marchenko equation that are suitable for the
subsequent calculation of the ha1X-off-shell factor.
In this paper, the iterative solution will be dis-
cussed in some detail, but a more general method
based on the Fredholm solution will also be out-
lined. Finally, it is known that for Bargmann S,(k)
matrices the Marehenko equation has a separable
kernel and hence a closed-form solution. Through
a calcut, ation closely, related to the Schmidt process
it will be indicated how this fact can be used to
transform the Marchenko equation into a similar
equation for which the above methods of solution
are expected to be more rapidly converging.

II. THE HALF-OFF-SHELL FACTOR

AND THE MARCHENKO THEORY

fI"(k; r)
„„h,'"(kr} (2.2)

h,' (kr) =n, (kr) aij, (kr) are spherical Bessel func-
tions in the notation of Messiah. ' The Marchenko
treatment of the inverse problem of scattering
theory is based on the observation that the solu-
tion f((' (k; r) is related to the free-particle solu-
tion h((" (kr) via a real Volterra kernel function

A, (r', r), '

f,'"(k;r'}=h", (k )| oo

+ —, r"dr "A,(r', r")h~,"(kr") .

(2.3)

In order to establish a relation between A, (r', r")
and the off-shell transition amplitude, it is con-
venient to introduce the outgoing-wave scattering
solution to the SchrMinger equation (2.1),

yI'(k; r) =(2/w)"'e' '"'1m[f, '(k; r)e' &'"'],

(2.4)

where the normalization is such that

~ ~

oo 1r'dr g,
' *(p'; r)(ij,"(p; r) = —,5(p' —p) . (2.6)

0

The momentum-space transform of (I),
' (k;r) is

related to the transition amplitude through

The syste~ under consideration is two nonrela-
tivistic particles interacting via the potential v, (r),
and the discussion will be restricted to an un-

coupled partial wave in which, for simplicity,
there is at most one bound state. I et f'(k;r) be
the solutions to the Schrodinger equation

——,—r' —+, +2Ijv, (r) U, (k;r) =k'U, (k;r)1 d, d I(l+ I)
r' dr dr r'

(2.1)
that satisfies the boundary condition at infinity

( r'dr j,(Pr) (,"(k; r) = —,5(P - k) —, , t, (P, k; 8 +is) .
0

Replacing f ((') (k; r) in (2.4) by the expression (2.3), and using the fact that

r dr j,(Pr)hr (kr) = „(+k 2 al (.)

it is straightforward to show that

I k eo eo

f (jkk) =(— +(k —k') . rkh r'dr'j, (kr)A, (r, r') tm[k('~(kr )e'ko~], '
k 0 0

where f, (P, k) is the half-off-'shell factor introduced in Sec. I.

(2.6)

(2. 1)

(2.8)
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For partial waves with l&0, the Marchenko theory as introduced above has some unsatisfactory features
related to the divergence of f~'(k; r) and h{{'~(kr) at the origin. For example, if f f'~ (k; r) from (2.3) is
used in (2.4), P, '(k; r) on the left-hand side is proportional to r' for small r, while the two terms on the
right-hand side individually diverge as r . The same difficulty shows up in (2.8) where the left-hand
side is finite for P- ~, while the two terms on the right-hand side diverge in this limit. In order to over-
come this problem, consider a solution k", ~'~(k; r) to the equation (2.1) with the boundary condition (2.2) and
a potential

u,(r)=-, e(R-r},I(l + 1)
(2.9)

where e(x) =1 for x&0 and e(x) =0 for x&0. The behavior of v, (r) for r&R is rather arbitrary One only
requires that the Schrodinger equation in this region is reducible to an effective s-wave equation for which
the irregular solution diverges no worse than r ' at the origin. Another, equally simple choice for the
potential would be to take

I(I + 1) 1 1v(r)=l 2@ g2 ~2
———e(R r)-

so that the potential is continuous at ~ =A.
Assuming now that kR{~'~(k; r) has a representation analogous to (2.3),

1
k ' (k; r') =k,"(kr') + —, r "dr"A, (r', r")k,"(kr"),

~t

this expression can be combined with (2.3) to give

] 00

f,' (k; r') =k", ' (k; r') + —, r"dr"B,(r', r")k, ' (k; r"),y'

(2 9')

(2.10)

where B is again a Volterra kernel. In operator notation, 1+B=(1+A)(1+As) ', but if AR is a Volterra
operator, so is B If th. is representation is introduced in (2.4), the two terms on the right-hand side only
diverge as r ' at the origin, as in the l=0 case, and this divergence is always compensated for by the
weight factor r' appearing in all integrals. The relation between B and the half-off-shell factor is obtained
in the same way as was Eq. (2.8}:

f {P,A{=(— +{{'—{.'{ .
~

r'drIm(jar{{h", ' {0;r)—h~, "{{r{je+'"')

00 00

s(+) . i g (a) ~
+ rdr r'dr'j, (Pr)B, (r, r')Imrh", ~"(k;r')e{ '~ ~j ~.

0 r
(2.12)

Here, the integral 1, r'dr( ~ ~ ~ ) can be evaluated exactly, and it is easy to verify that it contains a term
that exactly cancels the (p/k)' term in (2.12), as expected. By construction, the half-off-shell factor is
independent of the parameter R, and the expression (2.12) depends on R only to the extent that to different
R values correspond different kernels B,(r, r').

III. THE MARCHENKO EQUATION AND ITS ITERATIVE SOLUTION

Because of the relation (2.12) between the Marchenko function B,(r', r) and the half-off-shell factor, the
problem of computing the half-off-shell continuation of a given on-shell amplitude is equivalent to the de-
termination of B,(r, r), or rather its transform as given in (2.12), from the phase shifts and bound-state
parameters only. This is exactly what the Marchenko theory amounts to, and our goal is a reformulation
of this theory such that the calculation of the half-off-shell factor according to (2.12) becomes simple and

straightforward.
As was mentioned in the introduction, one main ingredient in the Marchenko theory is the completeness

relation for the regular solutions (2.4) to the Schrodinger equation,

t
OO 1k'dkg, +'(k;r')$, +*(k;r)+CP (r')g ~(r) =—,5(r' —r).

0
(3 I)

Here Ps{(r) is the bound-state wave function corresponding to a binding energy B&0, and C is a normaliza-
tion constant. ps{(r) is related to B,(r', r) through the formula (2.11) with k=i(2gB)"'=in,
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Oc

p, (x') =h", ~'(iz; r') +—, r"dr" B,(r', r")h s)'(iz;r") .r' (3.2)

Let B be the operator corresponding to the kernel r 'r' 'B,(r', ~) 6(r —r'). As an operator relation, the
completeness relation (3.1) reads

(3.3)

where the kernel of the operator F is

1
F, (r'8 r) = — k'dk Re[hs(+ (k; r')h" "(k;r)(e"")' —1)]-ChR +'(i)(:;r')hR +'*(iv; r) .

1

0

After multiplication with (1+B) '=1+B, Eq. (3.3) reads

B lr , r)8('r'—r)=F (r', r)+ f dr F(r'", 8")B,fr", 8)+B (r', r)8(r —r')

(3 4)

(3.5)

=F,(r', r) + dr"F, (x', r")B,(r",r), r') r.
r

(3 6)

Equation (3.6) can now for every fixed r be considered as a linear integral equation for B, (r, r) in terms
of F, (r', r), where F,(r', r) only depends on the phase shift 5, (k) and the bound-state parameters v and C
in (3.4). In the following, Eq. (3.6) will be referred to as the (slightly generalized) Marchenko equation.

When considering methods to solve Eq. (3.6) it should be kept in mind that it is not really B, (r, r) but
rather the expression (2.12) that is of primary interest. If the half-off-shell function were to be calculated
with the help of Eq. (3.6) as it stands, the first step would be to transform the momentum space data into
the configuration space function F,(r', r). The next step would be to solve the Eq. (3.6) for B,(r', r), and
the last step to transform the solution into the momentum space half-off-shell factor f, (P, k). Since in any
application of the theory, the on-shell data are known with limited accuracy and in a finite energy range,
transformations back and forth between momentum and configuration space should clearly be avoided. '
The straightforward way to achieve that is to try to convert Eq. (3.6) into a momentum-space Marchenko
equation. The result is unfortunately a rather complicated integral equation in two variables with a sin-
gular kernel. '

The approach to be followed here will be to introduce formal, configuration space solutions to the
Marchenko equation (3.6) in the expression (2.12) for the half-off-shell factor, and try to rewrite the re-
sult in such a way that all transformations to configuration space are eliminated. For the iterative solu-
tion to the Marchenko equation this approach amounts to interchanging order of integration in the expres-
sion

J rdr r'dr'Im[h, ~'~(k;r')e' ' ']B, (r', r)j, (Pr)
0 r

=PJ rdrf r'dr'J dr" dr" Im((e, '*'(8;r')e'"' 18', (r', 8").. F(r r)j (Fr)",
n= j.

(3.7)

so that all r integrations are carried out before the k integrations in the F,(r, r) factors. At least in the
l =0 case this is easily done, as will be shown in detail in the next section. In Sec. V the usefulness from
numerical point of the resulting expression is demonstrated for the test case of an s-wave spherical-well
interaction with no bound state. The results in Sec. VII indicate that this straightforward iterative series
for the half-off-shell factor might not converge if the interaction is strong enough to support bound states
in the partial wave of interest.

IV. THE s-WAVE ITERATIVE SOLUTION

de

F,(r', r) =— dk Re[e" "'"'[S {k)—1])
0

where $,(k) =e'~()" is the S matrix in the I =0 partial wave, and where it has been assumed that there is

(4.1)

For the lowest partial wave l =0, the change in'the order of integrations in (3.7) is particularly simple.
Consider the kernel F,(r', r),
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no bound state. Since S,(-k) =ST'(k), the region of integration can be extended to (-~, ~), so that
OO

Fo(r', r) =— dk e'" " '"' [So(k) —1] . (4.2)

The imaginary contributions from the integral cancel. All r integrations in (3.7) can now be carried out
with the result for the half-off-shell factor

So q" —1 l So q" —1 ~ S q' —1

1 1
X k+2q'+ ~ ~ ~ +2q" +P+ie k+2q'+- ~ ~ +2q" —P+ie

For the evaluation of the q' integral, v =1, 2, . . . , n, the modification of the integrand (q""—= k)

$ (qU) 1
'

$ (qv) e 2iBO(q~+ i)

does not change the value of the integral but eliminates the (q"'+ q'+ie) ' singularity, so that

(, , 1 1 ~ b.„(k, ,'(k+P))——b.„(k, ,'(k —P))—

4 sin5 (k) ~ P

where

&„(k,q) =- — dq" ' .' &. ,(q", q" + q),
1 " „sin[5,(k)+5,(q")]
7T QQ k+ q"

(4 3)

(4.4)

(4.5)

(4.6)

( )
1 "

, sin[5, (k) + 5,(q')]
Elk q dq

1
q+ q +zE' (4 7)

These expressions are particularly suited for the numerical calculation of f,(P, k) from 5, (k), as will be
discussed in the next section.

V. A NUMERICAL EXAMPLE: THE SPHERICAL WELL

As a first test of the usefulness of the off-shell
extension formula (4.5)-(4.7) from numerical
point of view, the s-wave off-shell factor cor-
responding to a spherical well of range a = 2 F
and depth Vo =20 MeV has been calculated. With
this choice of parameters, there is no bound state,
and the s-wave phase shift is similar to the s-wave
singlet n Pphase -shift at low momenta (Fig. 1).

The functions b,„(k, q) of (4.6) and (4.7) have been
computed successively on a 24 x 24 mesh [note that
b,„(k, q) =b,„(—k, -q)] using 24-point Gaussian
quadrature. The values of b,„,(q", q" +q) on the
right-hand side of (4.6) were obtained by means
of linear interpolation in the A„,(k, q) matrix,
and cnots/ qextrapolation outside this matrix.
a,(k, q) was computed in a more careful manner
in order to account properly both for the singular-
ity at q'+ q =0 and for the rapid variation of the
integrand in the neighborhood of q' =0. The sin-
gularity was first shifted to the origin, and the
5-function part of it was taken into account explicit-
ly. The f and f pieces of the remaining prin-
cipal-part integral were then computed individually

I,O-

0.8—

O.t-—

0 4—
N3

0.2—

0 2

(F-)
FIG. 1. The s-wave phase shift 5p(k) for a spherical

well with range 2 F and depth 20 MeV. 8 = c = 2p, = 1.

using identical 24-point Gaussian quadrature.
Figure 2 shows the exact half-off-shell factor
f, (P, k) for k =1.0 F ' together with the result ob-
tained from the formula (4.5)-(4.7) and interpola-
tion in the matrix Q„",b,„(k, q) for N=5. The dis-
crepancy at high momenta is mainly due to the
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1.4—

l.2—

I.O—

Y„(r',r";r) =
J dpY„,(r', p;r)F, (p, r")

+F,(r', r")h„(r), r' & r, r" & r
(6.4)

(6.5)

Yo(r', r",r) '=F, (r', r"), r' ~ r, r" ~ r (6.6}
0.8—

CL

O
~,(r) =1. (6.7)

0.6—

0.4—

The index l has been suppressed on all P's and
6's. For the calculation of the half-off-shell fac-
tor according to Eq. (2.12), it is suitable to re-
write Eq. (6.1) as

0.2— B, (r', r) =Y(r', r;r) —B, (r', r)b, '(r),

and introduce a notation for the transform of

B, (r', r) that appears in (2.12):

(6.8)

2 5 4
p (F-')

FIG. 2. The s-wave half-off-shell factor fo(P, k) for
a spherical well with range 2 F and depth 20 MeV, for
k = 1 F ~. The solid line is the exact value, and the
dashed line is obtained from formula (4.5) with n ~ 5.

B,(k, P) =Pk rdr r'dr'
0 r

xIm[h '(kr')e' ~ "]B,(r', r)g, (pr).

(6.9)

In terms of B,(k, P), the relation (6.8) is an inte-
gral equation

VI. THE FREDHOLM SOLUTION

In this section a more general method to find
the half-off-shell continuation of the on-shell am-
plitude will be outlined. It is based on the Fred-
holm solution to the Marchenko equation (3.6)'0:

B, (r', r}= Y(r', r;r)/4(r), (6.1)

where r is treated as a parameter, and where

Y(r', r;r) =g Y„(r',r;r),
n=o

(6.2)

fact that only 4 of 24 meshpoints are in the region
Ipl».» '.

With the numerical calculations organized as
outlined above, the computation of 6„from 6„,
is neither harder nor more time consuming than
the computation of 6, from b „and despite the
fact that 6,„ is in principle an n-dimensional in-
tegral, the computer time required to calculate
N terms in the series (4.5) is just proportional to
N. This means that the expansion (4.5)-(4.7) is
useful from a numerical point of view even when
the rate of convergence is rather low.

B,(k, p} =pk rdr r'dr'
0 r

xlm[hf ' (kr')e'"~'] Y(r', r;r)j, (pr)

dg 8) k~ g 6 tg~p (6.10)

with the kernel

VII. THE SCHMIDT PROCESS

1
b, '(q, P) —= qP — r drj, (qr)j, (P r)h'(r) . (6.11)

0

If in Eq. (6.10) the r integrations in the inhomo-
geneous term and in the kernel are carried out
before the k integrations in the F,(r', r) factors,
in the same manner as in the expression (3.7) for
the iterative method, all transforms back and forth
between momentum and configuration space are
eliminated. The final step of solving Eq. (6.10)
once the inhomogeneous term and the kernel have
been calculated should be straightforward.

The l =0 case is again particularly simple, and
the calculations can be carried through in almost
the same way as in Sec. 4. Here, however, the
procedure is expected to work also if bound states
are present.

a(r) -=1+a'(r) =g a„(r),
n=o

(6.3) As an introduction to the use of the Schmidt
process' when solving the Marchenko equation,
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the model problem of finding the half-off-shell
factor corresponding to a Bargmann-type s-wave
S matrix will be studied. In this case not only
can the half-off-shell factor be written down in
closed form but all the integrations in the expan-
sion (3.7) can also be carried out. It is then
possible to estimate the rate of convergence in
the expansion,

Let So(k) be a. Bargmann-type S matrix, "
S, (k) =R(-k)/R(k),

R(k) =(k —ll()/(k+25) ~

(7.1)

If I(. & 0, this S matrix corresponds to a bound-state
pole at k =i ~, an additional pole at k =i b, b & ~& 0
(to represent the dynamical cut), and no other

. singularities for Imk& 0. If tc& 0, there is no
bound state, and only the "dynamical-cut" pole
remains in Imk& 0.

If there is a bound state, it is further assumed
that the normalization constant C in F,(r', r),

F,(r', r) = 2bI'e-"e '". (7 3)

Moreover, Fo(r', ).) is separable in r' and r, so
that the Marchenko equation has a closed-form
solution

e-br e-br

1 +pe 2br &
(7.4)

1 Oo

F,(r', 2 ) =— dk e"'" '"'[S'(k) - 1]

—K(r'+ r) (7.2)
K

is just 2K'I', I" =(t+)K)/(f) —((), so that the contri-
bution from the bound-state pole in a contour inte-
gration evaluation of Fo(r', r) exactly cancels the
explicit bound-state term. This choice of C cor-
responds to a Bargmann potential with a range
-b ', while any other choice would correspond to
a potential with a longer range, -~ '." In this way
the kernel F,(r', r) of the Marchenko equation has
a form that is independent of the sign of K,

The half-off-shell factor can also be written in closed form:

e -2br
(7.5)

On the other hand, the iterative expansion for f,(p, k) is obtained from (2.12) and (3.7)

(7.6)o P, k) =1+ P —k ) — Im e'"on ~ (-I)"I""1 1 ib 1 1

r sink (k) k ~ ib k, k+kink k k+kink —r)
It is easy to verify that (7.6) is the result that is obtained if the integral in (7.5) is evaluated with the help
of the expansion

(I + I e 2br)-1 P ( -1)n Pne 2nbr- (7.7)
n=o

The expansion (7.6) for the half-off-shell factor evidently converges when
~

I'~& 1. In other words, when
there is no bound state. This result suggests that the absence of bound states is the criteria for conver-
gence of the iterative expansion also in the general case.

Observe that any Bargmann-type, S matrix corresponds to a sum of separable terms for F,(r', r), so that
the corresponding Marchenko equation has a closed-form solution. This suggests that the Schmidt process
can be used in a natural way to rearrange the original Marchenko equation into a form for which the itera-
tive and Fredholm solutions are more rapidly convergent, and for which the iterative solution converges
when the iterative solution to the original Marchenko equation diverges. As an example, let

F,(r ', r) = FOB(r', r) + Fo(r', r),
where

(7.8)

1 C"F'( ' )=— dk "'"")ISB(k)-I]-
2w

2yZ'e- b~r'+r')
7

1 C'
Fk(&k y.)

— dk eik(r'+r)[S (k) SB(k)] e-n(r'+r)

(7 9)

(7.10)

Here C" =2)('I' and C' =C —C" (if there is no bound state, C =C' =C" =0, and i(&0 is a, free parameter). In
this way the kernel in the Marchenko equation has been split into a separable term and a nonseparable re-
mainder, and through a calculation similar to that familiar from the Schmidt process, the Marchenko
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equation is transformed into

-br QO -br' -bp'
B (r', r) =-2bl,

t
+ J dp'dp 5(r' —p') —2bI' 1»„FO(p', p)[5(p —r)+B, (p, r)], r'&r.

The iterative solution to this equation can now be used in Eq. (3.9) to generate a new series expansion for
the half-off-shell factor. As in Sec. IV, the r and p integrations can be carried out before the k integra-
tions in the F,'(r', r) factors, with the only complication that the final r integration cannot be handled as
neatly as before. If the parameters of Sos(k) are suitably chosen, the resulting expansion should converge
faster than the expansion (4.3), and it can also be expected to converge in some cases when (4.3) diverges.

The Fredholm solution to Eq. (7.11) can be treated as was the Fredholm solution to the Marchenko equa-
tion in Sec. VI.

VIII. SUMMARY

The problem of computing the off-shell continua-
tion of a given on-shell, partial-wave scattering
amplitude has been discussed when the underlying
interaction is diagonal in configuration space. It
has been shown that the methods of the inverse
problem of scattering theory can be recast in a
form which allows the (in this case essentially
unique) half-off-shell continuatio'n of the amplitude
to be calculated entirely in momentum space. This
avoids the potentially troublesome Fourier trans-
forms of the experimental and hence imperfectly
known S,(k) matrix. The procedure proposed here
has been shown to be satisfactory from a numeri-
cal point of view in the simple but not entirely
trivial case of an s-wave spherical-well interac-

tion, with parameters chosen to simulate the sin-
glet n-p interaction. In more complicated cases,
that is in the presence of bound states and/or for
higher partial waves, the numerical calculations
are still expected to be manageable although less
straightforwar d.
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