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The dual model is generally factorized using Lorentz oscillators a„" with ghost (or negative-
norm) states arising from the indefinite metric ([a„,a„~]==1). Here all ghost states are prov-
en to decouple for unit Regge intercept (G. o

——1) as a consequence of the Virasoro gauges (L„).
By reformulating vertices in light-cone variables and exploiting the local commutators (for
Q", P") on the Koba-Nielson circle, the spectrum-generating algebra (A„',A~+~) is found that
commutes with all the gauges L„. All physical states are explicitly constructed. The no-
ghost theorem follows from the remarkable isomorphism of the transverse generators A„'

(i = 1,2) of Del Giudice, Di Vecchia, and Fubini to the original oscillators Wn a„', [A ',A ]
=n6;, 4„+ 0, and the isomorphism (up to c numbers) of the longitudinal generators A„+ with
the conformal group generators L, , [A„+,A + ] = (n -m)A„++ +,2n D„+ 0. Increasing. the num-
ber of spatial oscillators (a„', i=1, . . . ,D -1), one observes a critical dimension D =26. For
B& 26 ghosts appear, for D & 26 there are no ghosts, and A[+i gives the null states postulated
by Brower and Thorn. But for D =26, all A„+ correspond to null states, so that the second-
order Pomeranchukon is precisely a Regge pole (0,'z = &0,"s+2) as proposed by Lovelace.

I ~ INTRODUCTION

Solutions to finite-energy sum rules are often
plagued by resonances with complex couplings
(g'& 0), called ghost states. ' Indeed this is a typ-
ical difficulty of Lorentz-covariant theories with

spin. For example, suppose we modify the nonrel-
ativistic harmonic oscillator

=2mcua .a+const

by replacing a ~ a with a" g„,a' and m'+2mB with
s=(m+8) to construct a covariant theory. Since
this gives a series of integer-spaced zero-width
trajectories linear in s, the Lorentz oscillator
might be appropriate for approximating hadronic
resonances. However, the negative metric of the
time-component oscillator introduces ghost states,
which as in quantum electrodynamics should be
decoupled by a subsidiary (or gauge) condition.

The dual model is a particular covariant har-
monic oscillator with an infinite' set of modes
(n=1, 2. . .)

[a„', a'„t] = 6„„g~, g= (-, +, +, + ), (1.2)

with resonances of masses, -p'=m'+P„na„~ a„.
Over two years ago, Virasoro' observed that the
dual model for unit Hegge intercept (o.,= 1) pos-
sesses an infinite set of gauges L, and boldly con-
jectured that these decoupled all the negative-met-
ric states. Here see Prove Vixasoro's no-ghost
conjectuxe.

Moreover, the demonstration4 ' follows from a
remarkably simple algebraic structure. The gen-

erators for the physical spectrum are naturally
expressed in light-cone variables [P = (P', P'), P,
= (P'~ P')/v2 ] as averages (denoted by ( ~ ~); see
Sec. II) over the "densities" P"(8) and Q"(8) for mo-
mentum and position:

A„= (pe'"o-),

A&-&=(P s'"'-) =0

Ai+) (.P sino .)+. . .

The difficult mathematical problem (see Sec. III)
is the need to add corrections to A'„'~ to restore
the conformal gauge invariance ([I,„A„]=0) de-
stroyed by normal ordering.

However, ignoring infinities, the three nonzero
components of A„"= (P"e'"o-) close algebraically
(see Sec. IV) lacking only the c numbers of the
rigorous derivation, and the algebra obeys the
isomorphism" X„-Wna„, Ai' —t.„up to c num-
bers.

The no-ghost theorem follows essentially be-
cause the isomorphism does not require the use
of the time components in I.„. Hence, we can pro-
ject our states into a positive definite (unitary)
Hilbert space. The vital questions of normal or-
dering, infinities, and linear independence aside,
our demonstration is a surprisingly simple solu-
tion to an infinite gauge algebra.

There are two major goals that this construction
may serve. First it should lead to -a new formula-
tion of the dual theory on the physical states, in
light-cone variables. Also, exten'ding the proof to
other theories' with the same conformal invariance
should allow one to explore rigorously the options
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available for a more realistic spectrum.
Alternately, the results may have a qualitative

significance that can be abstracted. After all, we
have here a theory for multiparticle amplitudes
with positive-norm resonances that (1) is covari-
ant, (2) has Regge behavior, and (3) is crossing-
symmetric (i.e., dual). This provides a, new theo-
retical laboratory in which to study their combined
consequences. Indeed, as we note at several
points, a sort of parton (or multiperipheral) pic-
ture seems to emerge.

The transverse oscillators X„obey nonrelativis-

tic commutators, and the longitudinal modes A„'
are consistent with positivity and the notorious
angular conditions. The A„algebra can be under-
stood as implementing the transverse momentum
cutoff, and work is proceeding to understand the
A „' algebra in terms of the consequences of covar-
iance and positivity.

Perhaps we can see how the mathematical "par-
tons" are mapped onto the resonance states or at
least how to introduce resonances in a more sys-
tematic fashion reflecting partially the above con-
straints.

II. BASIC OPERATORS

Here we review those algebraic properties of the model essential to our subsequent construction. We

hope that the presentation is complete enough so that the uninitiated can supply the derivations. Moreover,
the intuitive content is emphasized to motivate the mathematics.

A. N-Particle Amplitude

We wish to study the pole structure (or spectrum) in the dual amplitude,

(2.1)

which is the direct generalization' of the beta function to N external particles of mass m and leading trajec-
tory intercept of n, =-m' and slope n'= 1. Factorization is performed on the oscillator basis

(2.2)

where
I 0, p) is the lowest-mass state with momentum p.

It is convenient to replace the a„'s with the Fourier expansion"
-n pV n

q (z) = q, —ip, lnz + a„ z + a„ z

n=z n (2 2)

where p,"/v 2 is the momentum operator (p,"I(Xj,p) = W2p" gX), p)) and v2 q," is the conjugate position operator
([q,",p', ] =ig~) In ter. ms of the complex Koba-Nielsen variable

z = exp(~+ i 8), (2.4)

we can replace the fundamental oscillator commutators (1.2) by the local (in 8) equal-T commutation rela, -
tion

[q"(8, ~), P'(8', ~)] = 2vig"'5(8- 8'),

where the conjugate "momentum" operator is

(2.5)

P"(8, ~) =iz —q~(z}, (2 6)

or for o., = 1, P"=me, q~(8, T)
This local structure is not only suggestive intuitively, "but also provides the essential mathematical in-

gredient for our construction. One may regard q" (8) and P" (8}as position and momentum for mathemati-
cal "partons" labeled by 8 (infinite in number, -m & 8& m) as they move in their proper time r. The central
theorem of Fubini and Veneziano" reexpresses the amplitude BN for e, = 1 as the vacuum expectation value
of the T-ordered product, "

d 4) ~ -z

with the vertices [z, =exp(~~), 8~=0]

V(p, z) =:exp[ iWZp~q„(z-)]:.

(2.7)

(2.8)



SPECTRUM-GENERATING ALGEBRA AND NO-GHOST THEOREM. . . 1657

By setting up = 1 we have dropped the only factor,

z) y z(

dependent on ordering the external particles (p„.. . , p„). So by integrating over all orderings of the T s
the fully symmetrized amplitude is achieved. Of course, all the properties of the operators can be under-
stood as a direct consequence of the equivalence" between Eq. (2.1) and Eq. (2.7).

B. On-Shell Physical States
~ Q, M

By introducing the dilatation operator L, (I L„Q]= zdQ/dz), from the vertex condition

V(z, P) =z 'V(1, P)z (2 9)

it is easy to discover the poles in B„. For the term with z; (z„„setting (z„z„„z~)= (0, 1, ~) and intro-
ducing x, = z, ~ ~ z, and evaluating the integral

tl
dxx "=(1—I„)-',

40

we obtain

B„= 0 Pg V 1p Pg y V 1
y Pg 2 V 1

p P2 Op P]
1 1

0 0
(2.10)

The states lg, N) contributing to a pole at P'= 1 —N
satisfy the (Klein-Gordon) equation

(L, +m')ly, N)=0, m'=-I
where I.,= 2P, '+gnat a„.

Under the general conformal generator,

(2.11)

I.L„Q(z)]=z""d—Q(z), (2.i2)

the vertex for n, = 1 (or p'=1) is a conformal vec-
tor, '4

IL„V(z,P)] = z —„,I:z"V(z, P)]. (2.13)

As a consequence" there are (spurious) states
((A), plL, at each pole (p'=1-N) that decouple,
and all the physical states" (orthogonal to these)
must obey the subsidiary conditions

L, I ),N)=0 for l)0. (2.14)

A bizarre feature of introducing a four-vector
(parton) position operator Q" (8) is the uncon-
strained (noncausal) time Q (8). Classically, a
four-velocity x (~) satisfies x'=-1, so that r is
the (Lorentz scalar) proper time. Curiously our
gauges may be viewed as constraining Q'(8, v) so
that v'20. ' 7 is the proper time, "on the physical
subspace. The constraint

(p',¹I:B,Q"s,Q„:I{Ij,N)= -2&'(g' N
I 0 N)

(2.15)

I

ghost states (decaying backward in time) violate
this causality constraint.

Finally, we notice that all the basic operators
are expressible as averages over 8 (i.e., sums
over partons). For example, the gauges are

d8 +il 8, g2 ~

l ,2'
1 ~dz

. () —z:P:.
4mi g z

(2.16)

Also as realized by Del Giudice, Di Vecchia, and

Fubini (DDF), the on-shell vertex transition op-
erator (p'=1) is

. ~I
—v(z, p) (2.17)

using (2.11) and Cauchy's theorem. We wjjj, often
use the shorthand notation"

(V)=-2„. (t —V(z, P),
1 f' dz

(2.19)
7TZ

since these integrals are used so frequently. Also
note that the gauge condition (2.13) for the on-shell
vertex (V) becomes

as one can readily verify by taking the matrix ele-
ments (p = 1 —N„N, =g, kA~'j),

({~&"j,p, && . z"v{&,{)z-"{~"j,p)
= 8&{"),p, l VII, p)l(&"j), p.), (2.18)

follows from (2.11), (2.14), and the expansion: Q':
It is attractive to suppose that the

I L„(v)]= o

for all l.

(2.20)
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III. GENERATING THE PHYSICAL STATES

Here we shall explicitly construct all physical
states

I g, N). The physical states on shell
[P'= 1 —N, (L,-1)I (,N&=0] form a linear subspace
of the states

(~ )" (4')"(a')" (a".)""I0, P&, (3.1)

with giX, =m, Pip, , =n, m+n=N that satisfy the
condition '

L, I (,N&=0. (3.2)

The first step taken by Brower and Thorn' was to
count the number of (linearly independent) solu-
tions to Eq. (3.2). In this section, we shall con-
struct the correct number of solutions, which are
proven in Sec. IV to be independent.

A. Counting

Using the Virasoro algebra (D =4)

L ]=(n —m)L„, + —'D(n' —n)5„,„,, (3.3)

we demonstrated' that the physical states Iy, N)
have the same degeneracy, spin, and parity as
those states generated by the spatial oscillators
(a„"). [In subsequent discussions, we shall want to
vary the number (D —1) of spatial dimensions. ]

Specifically, a D-component oscillator a„"

(p, =0, . . . , D —1) generates T (N) states at p'
=1 —N, where T (N) is the coefficient of x" in

(1-x")

In Ref. 5, we constructed a basis for the spurious
states,

IC)], , ~&=(L'.)""(L,')"
I i, N-m&,

where pig; =m and
I p. , N m) are orth—ogonal" to

the spurious states withgiA, ;=N m. Com-parison
with (3.1) shows that there are S(N) spurious states

S(N) = g T'(m)T '(N —m)

state I4'„N, & into another phy'sical sta, te I 4„N,&

by absorbing a "photon" of momentum k, and

polarization i =1, 2 (see Fig. 1)

A'(k')= P (&)e ' ' " '

27ri
(3.5)

The procedure is the same as for constructing (V(p)&

except that it is convenient to pick a standard vec-
tor k since the mass-shell condition p =1 —N;,
for p, =p, +k', can be satisfied by scaling k'
= (N, N, )-k = nk with 2k P, = 2k P, = -1 (or W2 k P,

1} 19

By taking the vector k along the z axis k =

(1,0, 0, 1)/v2 we can convert to light-cone coordin-
ates P = (P', P'), P, = (P + P') /v 2 and

A„=—(pe'"o-& . (3.8)

Since there is no normal ordering, one can easily
check conformal gauge invariance

[L„A„]=0. (3.7)

For arbitrary orientation of the "photons, " the
vertices acting on the ground state [Q; At(k;')I 0, p)]
probably generate all physical states. However,
their norms are extremely difficult to calculate,
because of the difficult (nonlocal) commutator

[Q~(8, &), Q'(8, ~)] =2sig&'~(8' 8) . - (3.8)

[A„', A'. ] =nf„~„,„,„
(A')t=A'„, A„'I 0, P&=0, n&0.

(3.9)

One more series of operators A~„' purely in the
longitudinal (P+) and scalar (P ) subspace is
needed to generate all the physical states.

Subsequently, ' Goddard and I realized that since

[k,' Q( 8,), k,' Q( 8,)]- k,' k,' = 0

for collinear "photons" (k,'=nk, k,' =mk), the com-
mutator of A„' and A.' could be easily calculated
from the local commutators for Q and P. Indeed

reminiscent of a field theory in light-cone vari-
ables, the transverse subalgebra is precisely that
of the (nonrelativistic) oscillators Wn a„', vn a„'t

= T'(N) —T' '(N), -
(3 4)

or there are To '(N) physical states.
To generate the physical states we might try to

replace the four (D) componen-t vectors (a„") by
three- (D —1) component objects (A„).

B. Transverse Algebra

As a consequence, the beautiful idea' of Del
Giudice, Di Vecchia, and Fubini (DDF) to use the
transition operators A„' for the vector zero-mass
particle (at + =1) appears natural, at least in re-
trospect. This vertex operator takes a physical

FIG. I. On-shell vertex for I%&,N&)+Iv, nk)- I%2,N~).
The mass-shell constraints (p; =1-¹„k=0) with ener-
gy conservation p2 =pi + W imply n =%2-N& and 2u p f
=2k p~ =-I..
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C. Longitudinal Generators

[L A ]=--,'n(l'z'e'"o-) (3.12)

However, the nonzero commutator is entirely in
the scalar (k a„) modes, so we suggest adding a
scalar correction term E„(k a) to make A(')
= A„+ ~ nE„gauge invariants

[L„A„"]= o. (3.13)

To construct E„, again the strategy is to exploit
the local commutators in light-cone variables.

Using the expansion

P(z') = P,P -PP, +-P'

On grounds of covariance, Ref. 7 suggests you
consider the vector

A"= -'( [ P"(z)e'" o- +e'"o P"(-z)]:), (3.10)

which is in the light-cone gauge (A„' '= 6„,). Since
the scalar part is zero (n+0), the only new compo-
nent is the longitudinal part

(3.11)

Now the normal ordering is required to obtain a
finite operator, and this alone destroys gauge in-
variance, '

g„acts on a state.
A basis for the physical states (~{&„'],N)) at

(p+Nk)' = 1 —N is

With a little care with the normal ordering the
generating algebra is calculated:

[A(' ~, A(' ~] = (n —m)A(„; ~ + 2n'6„.

[A„',A'„] =nb;q5„.

[A„*,A' ]=m„',„.
(4.1)

Remarkably, only the c number in the commutator
for

A ' =-'( I(P e'" -j:+nP (P ) 'e'"

(3.19)

where g, „iA„'=N. T.he states are generated by
ordered products from the lowest state

~
0, p) at

at p'=1. As we shall show in Sec. IV, they are in-
dependent and the null states (for D & 26) have
x', ~0.

IV. CONSEQUENCES OF THE GENERATING ALGEBRA

A. Generating Algebra

=2+(z') 'L, ,

the constraint on I'„ takes the local form"

(3.14)

(3.15)

is affected by the normal ordering' and the E„cor-
rection term. In this sense, the results are ex-
tremely simple.

The term ((e'o )"P,) has the form of a conformal
generator

where Q' =P (0'), Q"=Be P (6') Repres.enting E„
as a general integral of the functional 5„,

E„= —6:.(Q, Q', q", . . . ), (3.16)

and using

[P,(8'), 6'.]=+[P,(e'), Q "(~)l, &„,
6:.(Q "

)

E„= n~l —P ln(P )—e'" (3.17)

with the local commutators, the equation reduces
to a set of differential equations. The solution
gives (the entropy)

[I, q~] =i(e")"s,q" (e),
with Q —e,P,—98. This is the root of the confor-
mal algebra for the A„+, except that F„must obey

[E„,A' ]=nE„,.+n'6„... (4.2)

and normal ordering only doubles the c number.
In closing the algebra, the collinearity is essential
on merely kinematical grounds. As is well known
to current algebra experts, [A(k,), A(k, )] is pro-
portional to A(k, +k, ) with k, +k, lightlike only if
k, and k, are collinear.

By the replacement

A'„'- 2'„'=A'„'- —,
' g:X„„.X,:, (4.3)

[I.„P (P ) ']=zd [z'P (P ) ']+lmz'. (3.18)

or integrating by parts E„=(P (P ) 'e'"o ). A
direct check on the solution follows immediately
from

the algebra is diagonalized:

[X&„&,A~„] = o

and only the c number for 2„' is changed to
2m' —(D —2)m'/12.

(4.4)

The integral for E„ is well defined since v2 k p,
= -1 allows ln(P ) or (P ) ' to be expanded in a
series of k a„, k a„-indeed a finite series when

B. Linear Independence and p~ ~ Limit

To prove that we have constructed all the T~ '(N)
physical states ~4', N), we must show they are
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linearly independent. This is most easily done by
introducing the auxiliary operator' C „(or E„),

1 ~dr et Q

2m' g z
(4.5)

and proving that A„', A „', and 4 „generate all in-
dependent states (physical an dspur'ious). Since
they close algebraically,

[4„,A~ ] =0,

[A&„',C.] =mc„...
the T (N) oydeyed products,

(4.8)

to first order in q = e ' [Boost=exp(iyK, )]. Hence
we can expand any state

II (c',)"II(A'„)"*(A'„')" ~ ~ (A", )
"

l o, p),
C,S

should give all the on-shell states.
We consider the boost along the z axis (Q —qQ

P, - q 'P, , P- P) on the generators. We have

+ X/2
~A(+) i (ast+aot)

n n

(4.7)

the quadratic terms.
As a consequence of this representation of the

metric tensor in a positive-definite space, all
eigenvalues (and norms) are either positive or zero.
The zero eigenvalues are due to linear dependences
in the a„', g„basis and null states in the original
A„basis."

The null states postulated by Brower and Thorn
are given by any state with A~ adjacent to

l 0, p),
since L, II(A „)" lo, p)=II(A „)"L, l 0, p) and

L,'e' ""l0~ p) =A "i'I o~ p&-& il0) =0 (4 1o)

There are no other null states for D&25, because
the other states in the isomorphic representation
(a„', i', ,) are easily shown to be linearly independent.
The argument is too close to that given in the ap-
pendix of Ref. 5 to necessitate repetition.

The bizarre feature noted by Thorn was that a
ghost state appeared if the spatial dimensions
were increased to D -1&25. This is now under-
stood as a consequence of the c numbers involved.
For D = 26 there are new null states due to the de-
pendence of g„on a„' in accord with new null states
found on the second daughter. '

V. CONCLUSIONS

Wna„*, A'„-Wna„",

I o, p&-I o),
(4.9)

where g„ is constructed from 24 spatial (positive-
metric) oscillators and i =1, . . . , D —2 &24. The
algebra for J„requires only spatial oscillators
because the eigenvalue relation is Z, lo)=0. Con-
sequently, we can choose to drop the linear term
(p a„) for Z„(p'=0) and use spatial oscillators for

in terms of products of A „and 4 „. The procedure
is to replace each a„by the corresponding A „(or
4 „), then expand to find the 0(q) term, and repea. t
substitution to identify the O(g) and so on. Hence
(A, C ) generate all Tn(N) states, and there are no
linear dependences. So the subset of T~ '(N)
ordered products of A„have no linear dependences.

C. No-Ghost Theorem

The inner product between physical states l 4, N)
=II„(A „)~nlo, p) or the metric tensor is calcu-
lated entirely from the algebra, by moving the A„
right (or A„ left) and the eigenvalue equation

(4.8)

Consequently the calculation can be done with an
isomorphic representation.

The isomorphism (suggested by the P- ~ limit)
is

The models with D&4 are interesting, "since
one can assign to each particle an extended mo-
mentum k, = (k', , k', , k';, k';, C,', . . . , C~ '), where the
Q's are new conserved quantum numbers and the
trajectory in the ij channel (k;+ ~ ~ ~ + k,.)' has inter-
cept

~„(0)=1-Q (c',. +c',.„+~ ~ +c,')'. (5.1)

Only the channel with zero ("vacuum") quantum
numbers has n, =1. Hence there is a large class
of unequal intercept models which are free of
ghosts.

For D ~25, the physical states lfX„'j, N) [defined
in Eq. (3.19)] have positive norm, except the null
states with powers of A', '

(A. ', co). At a pole the
null states also decouple" so there are actually
T '(N) —T '(N 1) states. ' For -D=26 all states
with &', v 0 are dependent (in the 2&'„~ basis these
are the null states), so there are T'4(N) states con-
tributing to a pole."

As pointed out by Lovelacem' for dimensionality
D = 26, the new singularity in the second-order
diagram can be a factorizable pole, if one assumes
the removal of taco dimensions of states by the
gauges. Here, we see that the new null states (not
new gauges) give precisely the required effect to
make the Lovelace Pomeranchukon into a pole
[o.p(s) = ,'n's+ 2].'4—

Et is interesting that there is a maximum den-
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sity'P of states p(m) consistent with a positive-
norm space, and that the loop theory is most ele-
gant at saturation (D = 26). Above D = 26, renormal-
ization is impossible.

These techniques are being extended to the
Neveu-Schwarz model' where the leading trajec-
tory has no tachyon and saturation occurs at D = 10.
The D= 5 model of Halpern and Thorn" should have
no ghosts, no tachyons, and no zero masses if the
trajectory at o.,= 1 is given positive signature (like
the Pomeranchukon). P7 Any example of a zero-
width resonance-saturation scheme with positive
masses and norms is an interesting achievement.

Work is now proceeding to reformulate dual mod-

els entirely on the physical states (in the light-
cone gauge). Although one may lose manifest co-
variance, " the new formulation may help us to
understand the role (if any) of a parton concept in
the dual theory. Here is the first opportunity to
study the interplay between covariance and pesi-
tivity for a resonance spectrum consistent with

the multi-Regge limits.
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The Marchenko approach to the inverse problem of scattering theory is transformed into
a procedure for the calculation of the (half-) off-shell partial-wave transition amplitude from
the on-shell amplitude and certain bound-state parameters.

I. INTRODUCTION

In many theories for multiparticle systems, like
the Faddeev equations for three-particle systems,
the input information is not the explicit interparti-
cle potentials but rather the two-particle transition
amplitudes t(p', p; E +ie) Howe. ver, two-particle
scattering experiments provide direct information
only on the on-the-energy-shell part of these am-
plitudes, corresponding to

~

p'
(
=

~ p (
= k, where

k'/2g =E is the energy; while in the multiparticle
theories the scattering amplitude is in general also
needed for off-shell values of the momenta, and
for negative energies.

The methods to extract information on the off-
shell parts of t from on-shell parts in one way or
another exploit the assumption that t corresponds
to a unitary S matrix or, more precisely, that the
solutions to the Schrodinger equation correspond-
ing to different energies form a complete set. The
best-known consequence of this so-called unitarity
condition on t is of course that the on-shell transi-
tion amplitude itself in every partial wave can be
parametrized in terms of a real function of ener-
gy, the phase shift 5, (k),

Imt, (k, k;E +ie) = — sin5, (k)e' &(" . (1.1)
~ = 1

Other well-known consequences, ' also applying

to partial-wave amplitudes, are that the amplitude
can be expressed in closed form in terms of half-
off-shell amplitudes, ' 4 e.g. , for the imaginary
part of t„
Imf, (p', p; E+ie)

vpkf, (p', k-;E+ie)tf(k, p;E+ie) (1.2)

and, moreover, that only the modulus of the half-
off-shell amplitude depends on the off-shell mo-
mentum, leaving it with the same phase factor as
the corresponding on-. shell amplitude,

t)(p) k;E+ie) =f, (p, k)t;(k)k;E+ie) )

where the half-off-shell factor f, (p, k) is real.
Thus, in every partial wave, the completely off-
shell amplitude can be parametrized in terms of
the two real functions (),(k) and f, (p, k).

The remaining general restrictions on t due to
the unitarity condition' are less transparent, since
they are expressed in the form of an integral rela-
tion which is quadratic in the half-off-shell ampli-
tude. However, in the important special case when

the transition amplitude corresponds to an interac-
tion potential which is diagonal in configuration
space (a, condition that excludes, for instance,
separable interactions) the situation is consider-
ably simplified. From the solutions to the inverse
problem of scattering theory, ' it is known that in


