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The analogy between high-energy events with many particles in the final state and a dis-
tribution of particles in a fluid is examined in detail. It is shown that many theoretical
models lend themselves to such an interpretation. Using experimental data on prong cross
sections and one-particle inclusive distributions, some properties of this analogous fluid

are computed. The possibility and significance of a "phase transition" are discussed and

predictions based on such considerations are made for higher energies.

I. CLASSICAL-FLUID-MULTIPARTICLE-

PRODUCTION ANALOGY

One of the current ways of viewing high-energy
inclusive and exclusive multiparticle production is
Feynman's" analogy of such reactions with statis-
tical properties of fluids. This analogy permits us
to translate some of the intuition we have about
classical 'fluids' bounded by finite walls to the dis-
tribution of produced particles in the multiparticle
phase space of high-energy processes.

In this article we shall exploit this analogy seri-
ously and compute, from experimental data, quan-
tities such as the grand canonical partition func-
tion, pressure, distribution function, etc. , and
compare these with general features implied by
multiparticle-production models. ' The class of
models we shall consider are those that are con-
sistent with this analogy and that more specifical-
ly imply a nontrivial thermodynamic limit. This
procedure, coupled with theoretical prejudice as
to the limit of certain quantities at infinite energy,
permits us to predict the detailed behavior of these
quantities at high but finite energies. For example
we shall make a prediction for the topological n-
prong cross sections, o „, as a function of n for
energies higher than those at which data are pres-
ently available.

In order to define the notation used in this article
let us review the procedure described in Ref. 1 for
establishing the aforementioned analogy. 4 We are
interested in the production, at high energies, of
n, particles of type 1, n, of type 2, etc. , by two
incident particles with center-of-mass energy Ws.

Instead of using the momenta of the secondary
particles we shall describe a production process
by means of the longitudinal rapidity'

P!I
E —p

and the transverse momentum p, . Following Wil-
son (Ref. 1} let us denote (y, p, ) by the collective

variable r. Instead of the energy of the incident
system we use

Y = lns.

In the center-of-mass system the y's are confined
to essentially --,'Y&y& —,'Y, and the p~'s are sharply
bounded. We may thus assume that all points r
fall into a cylinder of length Y in the longitudinal
or y direction and bounded radius of the order of
300 MeV in the transverse direction. An event is
specified by fixing the r's of all produced particles.
We thus note the analogy between a specific pro-
duction configuration and a configuration of particles
in a fluid bounded by the above cylinder. The prob-
ability of obtaining such a configuration is (up to
constants)

p((ni)'(r)' Y}=e "IM((n0'(r); Y) I'&'9'-gp).
(3)

In the above (r) denotes collectively the coordi-
nates necessary to describe the final state and

M((n;);(r); Y) is the matrix element for this transi-
tion. p((n, );(r); I') may likewise be considered the
distribution function for a fluid with n, particles of
typei at points r, &, j=l, . . . , n, in a volume with

longitudinal length Y. The cross section for pro-
ducing n, particles of type i,

fd(r) p((n, };(r); Y}
(4)ntnt. ..

corresponds to the canonical partition function for
the analogous fluid. A one-particle distribution
in an n-particle configuration for a particle of
type 1 for instance is

I

&,& (( ) Y) f (r) p((n, );(r}; }
(5)

(n, —1)!n, !~ ~ ~

where the prime on the integration denotes that
we do not integrate over one element of volume of
type 1. Again one may draw the required analogy
with a fluid.

It is a maxim of statistical mechanics that life
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is simpler in the grand canonical ensemble than
it is in the canonical ensemble. With this in mind
let us obtain the grand canonical partition func-
tion

The sum extends over several Regge trajectories.
We assume that at z =1 the leading trajectory
passes through a(z) =1. The "pressure" Eq. (8)
may now be evaluated and we obtain

Q(( ] Y)=Z (6)
(10)

where z, is the fugacity of the ith particle type
(component). The one-particle distribution in
the grand canonical ensemble is

((z,);Jr];Y)=uzi"~z." p((ni];[r};Y). (7)

For fluids one assumes the existence of the ther-
modynamic limit from which one may obtain the
pressure and surface tension

(6)

(We take the thermodynamic limit solely in the
longitudinal direction as dimensions in the trans-
verse directions are bounded. )

The existence of this limit will be investigated in
the context of the multiperipheral models and the
diffractive dissociation model for multiparticle
production. In the multiperipheral model the
"pressure" has an interesting interpretation. In
all that follows we assume that certain interpreta-
tions and hypotheses on experimental observations
as valid. The most important of these are: con-
stancy of total cross sections (mild, i.e. , logarith-
mic, variation could be accommodated by dividing
all partial cross sections by the total cross sec-
tion), Feynman scaling, e and short-range correla-
tion in rapidity. '

II. MULTIPERIPHERAL AND DIFFRACTIVE

MODELS

A. Multiperipheral Models

Under this category' we shall include any of the
multiexchange mechanisms. ' The critical assump-
tions we shall make on these models is that for a
wide range of coupling constants of the produced
particles to the exchanged ones we obtain Regge
behavior of the total cross section, ' the inclusive
spectrum obtained from these models has a cen-
tral plateau in the rapidity distribution. For ease
of discussion let us concentrate on only one type
of produced particle.

Following Fubini' and Mueller' note that the
grand partition function Eq. (6) is just the total
cross section for a multiperipheral theory in which
all the coupling constants of the produced particles
have been scaled by a factor of vz. Using the as-
sumptions indicated in the beginning of this section
we obtain for large Y

Q(z; Y) =QP„(z)exp([a„(z) —1]Y].

where n(z) denotes the t =0 intercept of the lead-
ing trajectory as a function of z. We thus note that
the multiperipheral models allow for the existence
of a nontrivial thermodynamic limit.

Based on detailed calculations'" and on general
arguments we expect a(z) to be a smooth mono-
tonic function of z with o.(z =1) = 1. As a conse-
quence the pressure is expected likewise to be
smooth and p(z =1) should be zero. We shall soon
note that this behavior is indicated by experiment.

The structure of the one-particle distribution
may likewise be obtained. Without delving into the
details of the model'" we find that

p(z; r; Y)=f(z; p~) exp([ n(z) —1]Y),

where for large Y, a(z) is again the leading tra-
jectory. Contingent on the validity of this model
we expect to be able to recover the pressure from
the ope-particle distribution and compare it to the
pressure obtained by looking at the grand partition
function.

B. Diffractive-Dissociation Models

In this section we shall consider the general
properties of models" based on the exchange of
a vacuum trajectory, geometry, or any other dif-
fractive mechanism that is responsible for the
production of many-particle systems. The features
of these models are that each o(n; Y) approaches
a limit as Y tends to infinity and that the one-par-
ticle distribution function is strongly correlated
to the beam or target particle. The inclusive spec-
trum is either the beam or target fragmentation. "
There is no central plateau and the particle multi-
plicities behave as constants with energy. (There
is a special version of this type of models" which
does give a logarithmic rise of the multiplicity, ' we
shall not explicitly discuss this model as the par-
tition function would not exist for z & 1.) The par-
tition function, Eq. (6), is independent of 1' (the
intercept of the leading trajectory is fixed at a = 1
independent of the coupling constant) and thus the
pressure is identically zero. From the preceding
discussion we expect all particles to be correlated
with the incident momenta; thus it is not surpris-
ing that the pressure is zero as all the particles
in the "fluid" tend to cling to the "container walls. "
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C. Hybrid Models

It may be expected that both of the above mech-
anisms are operative and contribute to the produc-
tion of many-particle systems. A diffractive
mechanism is expected to exist due to the fact that
there appear to be exclusive cross sections that
survive (up to logarithms) for large energies.
That there is another mechanism may be inferred
from the fact that the diffractive contributions do
not seem to be sufficient to build up the whole of
the total cross section and that the multiplicity
does grow logarithmically" with increasing ener-
gy. We shall assume that this other mechanism
is of the multiperipheral variety.

Based on discussions of Secs. IIA and IIB we
can outline our expectation on the pressure and
on the one-particle distribution in this hybrid
model. For z & 1 the leading trajectory from the
multiperipheral mechanism will dominate and the
pressure will be a smooth function p(z) &0, reduc-
ing to zero for z =1. For z& 1 we expect the dif-
fractive mechanism to become dominant and the
pressure should remain equal to zero. In statisti-
cal mechanics these are just the features of a
phase transition.

The one-particle distribution will likewise be-
have discontinuously as z passes through the value
one. For z & 1 the multiperipheral process should
dominate and the distribution should be flat in the
rapidity variable with some dependence on the
rapidity near the edges of phase space. For z& 1
the diffractive process will come to play and the
distribution should concentrate near the edges of the
rapidity plot As in.dicated by Eq. (11) the pres-
sure may be determined from the one-particle dis-
tribution. In the central region where the multi-
peripheral mechanism governs the distribution the
pressure should be smooth and not indicate any
phase transition at z =1. In the wings of the rapid-
ity plot the diffractive process will play a role and
we should either obtain a pressure curve with a
phase break in it or perhaps find no energy depen-
dence at all in p(z, r, Y) and thus have essentially
zero pressure for all z. Although the pressure
may be defined, in analogy with statistical me-
chanics, only inthe central region, for subsequent
discussion we shall extend this concept to the frag-
mentation region through an application of Eq. (11)
to this region.

III. EXPERIMENTAL DETERMINATION

A. Grand Canonical Partition Function

Because of obvious experimental limitations, the
only data on cr(n„' Y) that are available for a large

range of energies are on various charged-prong-
number cross sections. We shall evaluate the
partition function as a function of the fugacity z
for charged particles and with the fugacity for
neutral particles being kept equal to one. The
pressure was obtained as follows. Directly from
experimental data we may evaluate

Q(z,' Y) =Qz'"v(2n; Y), (12)

where o(2n; Y) is the 2n-prong topological cross
section. From previous discussion we expect that
in@ will have the following structure for sufficient-
ly large Y:

inq(z; Y) =P(z)Y+s(z). (13)

A plot of (in@)/Y vs 1/Y extrapolated to 1/Y =0
will yield the pressure, p(z). This procedure is
illustrated for actual p-p data in Fig. 1."" Some
remarks are in order about the details of this
graph. For higher energies the elastic cross sec-
tion is not included in the report of the experimen-
tal data. " As it was assumed that the total cross
section is a constant an elastic p-p cross section
was assumed to have a value yielding a total cross
section of around 39 mb. (The magnitude of the
elastic cross section necessary to achieve this
was always about 10 mb. ) Thus the fact that p(z =1)
is equal to zero is not a triumph of this analysis
but is built into it from the outset. For lower en-
ergies the definition of Y was modified somewhat
from that of Eq. (2) in accordance with the pro-
cedure used in Ref. 15, and we took

Y = 2 in(Ws —2m~) .

For even moderate s the difference between Eq.
(2) and Eq. (13) is slight. After the data. are
plotted, the best straight line was drawn for each
value of z. The intercept gave the value of the
pressure. The results of the best linear extrapola-
tion are indicated in Fig. 2. There is no sign of a
phase transition.

As may be noted from Fig. 1 a straight line ap-
pears to be a credible extrapolation for z & 1; for
z & 1, however, even a cursory glance at Fig. 1
will show that there is more structure. Based on
the prejudice acquired in the previous section, a
quadratic extrapolation constrained to yield p(z & 1)
=0 was made. The details are indicated by the
dashed lines of Fig. 1. The utility of this extrapo-
lation will be discussed in Sec. IV. If this ex-
trapolation turns out to be the valid one then the
pressure curve would be expected to follow that
of Fig. 2 for z&1 and to level off and stay at zero
for z&1. In Sec. IV and in Fig. 4 we refer to the
best linear extrapolation as extrapolation A and
to the one yielding a phase transition at z =1 as
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extrapolation B.
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B. One-Particle Distribution

In a similar fashion to the one described above,
one may form p(z; r, Y) from data on one-particle
distributions from n-prong final states. At present
we are limited to machine energies below 30 GeV,
where scaling may have set in but where we have
as yet seen no evidence for the central plateau.
Thus all subsequent comparisons with experiment
are suspect and a more definitive analysis will
have to await the results of higher-energy experi-
ments. Undaunted, we have looked at various ex-
isting inclusive data. Due to experimental diffi-
culties much of the data is presented without ab-
solute normalization. In the spirit of our assump-
tions discussed in Sec. I the one-particle distribu-
tions from n-particle final states were normalized
in a way to give scaling for the inclusive distribu-
tion at x=0. (x is Feynman's' scaling variable,
x = 2p~~/Ws. ) The processes that were studied were
pp-7I'+anything, "

7t p-m +anything" and the
process on which we shall report the details m'P

+ anything at 7 GeV/c'9'zo and 18.5 GeV/c. "
Note: this is an exotic inclusive channel" and per-
haps scaling will set in at lower energies.

As in Sec. III A we evaluate

p(z;x, Y) =gz'" —„(2n;x;Y)

and from this the pressure via

(15)

FIG. 1. Logarithm of the partition function divided by
Y for pp —charged prongs vs 1/Y. The low-energy
points are from Ref. 16 and the three high-energy points
are from Ref. 15. The two extrapolations discussed in
the text are indicated.
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FIG. 2. Partial pressure due to charged particles in
p-p collisions as a function of the charged-particle
fugacity.

lnp(z; x; I') ~ Pjz; xj.
Y

(16)

(Instead of the rapidity in this section we will use
Feynman's longitudinal fraction x.') In general we
have very few points in Y to work with, and a,

straight-line extrapolation, though probably un-
reliable, fits very well. The results of this pro-
cedure for the process 7I'p- m + anything for vari-
ous ranges of x is shown in Fig. 3. For conve-
nience the pressure obtained from the prong dis-
tribution is repeated and labeled "topological. "

%e note that the general trends discussed in
Sec. IIC are evident. For z & ) the pressure ob-
tained from the prong distributions and that from
x-0 (hopefully the start of the central plateau) are
similar. For z& 1 the x=0 pressure has much less
of an indication of flattening out than does the pres-
sure from the prong distributions. It has the fea-
tures of a pressure or Regge trajectory charac-
teristic of multiperipheral mechanisms. In the
fragmentation regions (x-+0.2) the pressures
show much less variation with z and are in general
smaller than the pressure at x=0. This is more
indicative of a diffractive process. For example
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the fragmentation of a w' into a m is expected to
occur in a final state of few particles in an ener-
gy-independent way (diffractive production of an

A, or A, resonance). With the appropriate warn-
ings as to the use of low-energy inclusive data the
rough features of the hybrid model seem to be
supported.

IV. CONCLUSION AND PREDICTIONS

In an erudite way these calculations may be
viewed as the computation of the equation of state
for the "Feynman gas. " More concretely it in-
dicates that the limits discussed do exist and that
multiparticle production proceeds via a mixture
of mechanisms which may well be the diffractive
and multiperipheral ones.

We do not at present have any real indication of
a phase transition from the pressure obtained from
the prong cross section and very flimsy suspect
evidence from the pressure seen in the one-parti-
cle distribution. (Admittedly, we have presented
the best case here though the results obtained
from the other processes discussed in Sec. IIIC
are not markedly different. ) However, it is an

appealing idea, at least to this author, to have
distinct production mechanisms with the conse-
quent phase transition. If such a discontinuity
does occur it is interesting to speculate on its
nature. As discussed earlier for large fugacities,
Q will be dominated by states with a large number
of particles more or less uniformly distributed in
rapidity. Below z =1 it will be the states with
fewer particles that will dominate and the produced
particles will concentrate at the ends of the rapid-

Pl ~P=z
Y 8z

(17)

This derivative evaluated at z =1 suggests that
the critical n/Y is around 0.75. If these specula-
tions are valid then events with n/Y&0. 75 will have
the produced particles cluster in the fragmentation
regions while for n/Y& 0.75 we expect a more uni-
form distribution.
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ity space; the pressure will go to zero and we will
have only surface effects. The density at which
such a transition may be expected can be estimated
from Fig. 2 and the expression relating density of
particles to the fugacity,
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FIG. 3. Pressure as a function of fugacity obtained
from the reaction m+p 7r + anything ptefs. 18, 19, and
20). For convenience the pressure from the topological
cross sections (Fig. 2) has been replotted.

FIG. 4. Prediction of charged-prong cross section as
a function of the number of prongs for very high energies.
The curves are dra~ to guide the eye.
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Can we make predictions for higher energies
(at least higher than those used in the analysis
presented here)? Based on the prejudice with

which we extrapolate the data of Fig. 1 in order
to obtain the pressure, we may determine Q(z; Y)
for Y larger than that of any data points presented.
From the Q(z; Y) we may reconstruct the o(n; Y)
which would yield such a partition function. Based
on the two extrapolation methods discussed ear-
lier, the best linear method (extrapolation A) and
the one constrained to give p(z&0) =0 (extrapola-
tion B), the prong cross sections have been com-
puted for an intersecting storage ring energy of
(30+30) GeV in the center-of-mass system and
for a hoped-for energy of (200+200) GeV. The re-

suits are presented in Fig. 4. We note the dramat-
ic dip in the prong cross section in the situation
B. The existence of such a dip was emphasized
by Wilson. '
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