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The problem of coupled (S-wave) form factors is formulated in the two-body two-channel
spinless case. Iterative and exact numerical solutions of coupled integral equations are
presented with model parametrizations of the T matrix. The problem of diagonalization is
discussed and the difficulties are highlighted. A method of solution for the weak coupling to
first order in T&2 is presented.

I. INTRODUCTION

The complete solution of the problem of form
factors necessarily involves a set of coupled inte-
gral equations in the form factors. A great deal
of literature exists on the study of the form factors
in the elastic unitarity limit which involves essen-
tially a one-channel problem. The problem of the
inclusion of inelasticity but still using only the
elastic intermediate states in the spectral function
for the form factor is also a standard one and a
good deal of published literature exists in this
field. ' The problem of including the coupling of
form factors which will necessarily occur if in-
elasticity is allowed, however, has not been
studied in a satisfactory way to the best of our
knowledge. The literature in this field is scanty
and somewhat incomplete. " In this paper we have
studied the problem of inclusion Of inelasticity and
also that of coupling of the form factors in the con-
text of a coupled two-channel problem. We as-
sume that in the first (elastic) channel we have
two scalar particles of mass m each and that in
the second (inelastic) channel we have two scalar
particles of mass M (&m) each. We also restrict
our discussion to that of scalar form factors.
There are two such form factors which we call
J, (s) and J,(s), Ws being the total center-of-mass
energy.

Most of the discussion in the literature on form
factors relies on the use of the lowest-mass states
for the saturation of unitarity relations. In many
cases, like the form factors entering the K„prob-
lem, this amounts to using the elastic unitarity.
This corresponds to the use of elastic amplitudes
in the big blob of the unitarity diagram of Fig. 1.
The solution is then the familiar Omnes-Muskhe-
lishvili representation ' '

J;(s)= J,(0)exp(-, , )"4sss2

keep only channel-1 intermediate states in Fig. 1
but introduce the scattering amplitude T» in the
big blob of Fig. 1 which takes into account the ab-
sorption. The phase 5(s) is then replaced by a
phase P (s), '

where

q(s) sin25 (s)
1+q(s) cos25 (s)

(1.2)

qe2i 6(s)
T„(s)=

II. FORMALISM

The two form factors are defined via

with k the magnitude of the center-of-mass three-
momentum. The solution is then given by Eq. (1.1)
with a replacement 5(s)- Q(s).

The use of full unitarity forces one to include
the unitarity diagrams of Fig. 2 which involve the
form factor J,(s) with the off-diagonal T-matrix
element, T», connecting it to channel 1. The use
of full unitarity thus necessarily yields a set of
coupled equations in the form factors. It is this
problem that we address ourselves to in this paper.

In Sec. II we have set up the basic formalism
that leads to an iteration scheme. This iteration
procedure, though in principle possible, is nu-
merically rather involved. In Sec. III the formal-
ism developed in Sec. II is used to calculate the
form factor in the vicinity of s =0 in the first it-
eration. In Sec. IV we present a calculation of
coupled form factors using a scattering-length de-
scription for the scattering amplitudes. Various
approximations are discussed for cases with and
without a resonance in the elastic region. In Sec.
V we discuss the problem of diagonalization high-
lighting the difficulties one encounters. We also
solve the problem for weak interchannel couplings
in a particular model.

where 5 is the scattering phase shift.
The next refinement one may introduce is to

-(R, 1, fjq(O)~O) =
(

„„J~+(s),4,)"' (2.1)
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CHANNEL 1 CHANNEL 2

1(

CHANNEL 1
—CHANNEL 1

FIG. 1. Elastic (first-channel) diagram. Small blob:
form-factor vertex; big blob: T matrix (scattering
vertex). and

FIG. 2. Inelastic (second-channel) diagram.

Im J,(s ) = Ref» Re J; + Im f» Im J,
where j (0) is a local scalar operator and v» and u&,

are the on-shell energies of the two particles.
The channel label is i(=1, 2). The 2&&2 T matrix
has elements T,„(i,j =1,. 2). The normalization of
our T matrix is such that for a purely elastic scat-
tering,

+Ref»Re J, +Imf»Im J, . (2.9)

Im J' = Ref Re J'+ Im f Im J,
with a solution

(2.10)

These two equations can be corgbined in a matrix
equation,

T = jp ~e & ~ sin (2.2)

The imaginary part of the form factors can be
worked out through standard procedures. ' The
imaginary part of J', (s) arising from the unitarity
diagram of Fig. 1 is

Im J = (1 —Im f) ' Ref Re J —= EReJ .

In particular,

Im J, (s) = H(s)Re J, (s)+h(s) Re J', (s),

(2.11)

(2.12)

o„(s)= Retk, T„J,*(s)]8(k,),
where

4k '=s -4m'

(2.3)
where

and

Ref» (1 —Im f») + Re f» Im f» (2.13)

The imaginary pa.rt of J, (s) coming from the dia-
gram of Fig. 2 is Ref» (1 —Im f») + Ref» Im f» (2.14)

o|2(s) = Re[k2T» Jf(s)]8 (k,),
where

(2.4)
with

X = (1 —Im f») (1 —Im f») —Im f» Im f» . (2.15)

c„(s)= Re[k,T„(s)J,*(s)]8(k, ) (2 5)

4O, ' =s -4M'.
In a completely analogous way the imaginary part
of J, (s) has contributions

The once-subtracted form of the dispersion rela-
tion for J', (s) is

) J (0)
s " Im J', (s' )ds
7I'~4 2 S (S -S-2e)

and

Define a matrix f,
k,T„8(k, ) k2T „8(k, )

v22(s) = Re[k2T22(s) Jf (s)]8 (k, ) . (2.6)

(2 7)

s I'" H(s') Re J, (s')
7t' g4 2 S (S —S —2E )

s t'" h(s') Re J', (s')
F ~2 S S —S —SE'

Let us write

(2.16)

Then the imaginary parts of J, (s) and J', (s) can be
written as

s I'" h(s')Re J', (s')
7f 4s2 S (S —S iE') (2.1V)

Im J', (s ) = Ref» Re J, + Im f» Im J,
+ Re f» Re J, + Im f„Im J, (2 8)

We have shown in the Appendix that Eq. (2.16)
has a solution (all symbols are defined in the Ap-
pendix)

s "" e ~" 'sing, (s')Ref(s'), s ""
Q, (s')ds'ds' exp—s.,„2 s (s -s is) -s.', 2 s (s -s ie)- (2.18)
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If we had a complete knowledge of J, (s) and the T
matrix, then Eq. (2.18) would determine J, (s).
Unfortunately, J,(s) is not known but is given by
an equation analogous to Eq. (2.18) and in turn de-
mands a knowledge of J,(s). In principle, we can
thus set up an iteration scheme as follows: One
solves the decoupled problem for J', (s) by approx-
imating Eq. (2.11)as

Im J,"'= Il",,'Re J,"'(s),
with

(2.19)

~( ) Ref„
1 —Im f»

The decoupled J2(0) (s) is then given by the Omnes-
Muskhelishvili function with phase Q',"
= tan 'F,",) (s). In this approximation we include
the interchannel coupling in the T matrix (essen-
tially inelasticity). With J2(o)(s) we can next deter-
mine the lowest-order approximation to f (s) via
Eq. (2.17) and finally get the approximate J', (s)
through Eq. (2.18). This J,(s) can in turn be in-
serted in the formula [analogous to Eq. (2.18)] for
J', (s) to yield a better approximation to J, (s) and
restart the whole cycle of iteration again. This
procedure is in practice very complex as one deals
with multiple integrals (all principal values) in Eq.
(2.18). Fortunately for many problems the range
of energy over which the form factor is required
is limited enough that a linear approximation to
the form factor is considered an adequate approxi-
mation (an example is the form factor in the K(3
problem). The parameter of interest in this case
is the slope of J, (s) at s =0. From Eq. (2.18) we
get

J, (0)
""

P, (s)ds
( 2

7)' 4 2 S

unitarity condition. It therefore includes the ef-
fects of inelasticity in the T matrix. The next two
terms arise due to the coupling of the form factors,
i.e., from the inhomogeneous term in the unitarity
equation [Eq. (2.12)] which is diagrammatically rep-
resented by Fig. 2. In the next two sections we
present model calculations where the formalism
developed in this section is applied.

The method outlined in the foregoing would fail
if E of Eq. (2.11) does not exist. This would hap-
pen if X of Eq. (2.15) were to be identically zero
for a range of energies.

We should add here a comment on the nonunique-
ness of these solutions. It is well known that the
solution of the one-channel Omnes -Muskhelishvili
equation is only determined up to a holomorphic
function. This ambiguity, of course, remains in
the coupled-channel case. It can be overcome by
specifying the asymptotic behavior of the form
factors at infinity. This can easily be done for
the perturbation solutions by choosing as the
zeroth-order approximation the Omnes solution
[of the uncoupled form factors J~(') (s) and J,"'(s)]
which has the fastest possible decay at infinity
compatible with the phase shifts. This then makes
the iterative solution unique. A thorough discus-
sion of the nonuniqueness and asymptotic behavior
of the solution of singular integral equations of the
Omnes-Muskhelishvili type and the connection
with the rescattering parameters (phase shifts)
has been given by Resnick. '

III. A MODEL CALCULATION

We assume the following parametrization for the
S matrix'.

S =g '~1 s&4M11

1 e ('")sing, (s)Ref(s)
+ Gs

~ "4m2 s
S= . 2ig, s&4M (3.2)

(2.20)
1 "" k(s)Re J,(s)
7T ~4~2 S

To order f» the'formulas given by Eqs. (2.13) and
(2.14) take the form

where

(1 q2)1/2e((6(+ 62)

The T matrix is obtained from Eq. (3.2) through

(3.3)
II(s) =tan(t), (s) =

11-Im „'
( )

Ref„+tang(2) 1mf(2
1 —Im f„

with

(2.21)

(2.22) 1
T =—.

2g
SV

(k,k,)'"

ZV

(k,k, )'"

qe2i~2 —1

k2

(3.4)

tang(0) (s) = Re.f
1 —Imf»

' (2.23)

We then see that the first term on the right-hand
side of Eq. (2.20) would be the only term present
if only Fig. 1 were to be considered in weiting the

The f matrix is then

gg2i &1

1

((k,/k P"iv

[Eq. (2.7)]

(krak, )'"iv)

)le 2('2 - 1 /
(3 5)
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In this model we find (to order f») from Eqs.
(2.21)-(2.23)

P, (s) =6,(s) 4m'&s&4M'

)I(s) sin25, (s)
1+q(s) cos25, (s) '

g(s) sin25, (s)
I+7i(s) cos25, (s) '

Ref»+ tang, (s) Im f»
1 —Im f„

s & 4M' (3.6)

s & 4M' (3.'I)

(3.8)

I'k, "'
Ref» =

~

—'
—,
'

(1 - rp)'" cos ( 5, + 5,), s & 4M'
(k,

mz s -4Mz
q(s) =1 -40—,, s & 4M'

s s —4mz (3.13)

with

m = 0.14 GeV, M = 0.5 GeV,

a, = 10, az ——0.5,

s, =1.5 GeV', s, =1.0 GeV'.

With this set we get the following parametrizations
for J', (s) near s=0.

kImf„=
~
—' —,'(1 —rP)'"sin(5, +5,), s&4M'.

I
(3.10)

The parametrizations we used were

fa m s —4m' "'

a M s —4M''"
Sz+S

Elastic approximation (g = 1):

J, (s) =1+1.85s . (3.14)

J, (s) =1+1.20s. (3.15)

Inelastic approximation and couPling to J,(s);
i.e., use of Eq. (2.20) up to order f». with approxi-
mations (2.21) and (2.22):

J,(s) =1+1.14s. (3.16)

The importance of these results is that by
switching on the inelasticity, yet using only the
elastic intermediate states in the unitarity rela-
tion for the form factors one can decrease the
slope over that for the purely elastic case [Eqs.
(3.15) and (3.14)]. By coupling the form factor of
the second channel, i.e., using the second-channel
intermediate states in the unitarity relation for
the form factors one can decrease the slope yet
further [Eq. (3.16)]. This is only a model calcula-
tion. There will certainly be models where the
trend is reversed, i.e., the slope is made to in-
crease rather than decrease. The results of this
section are relevant to the problem of K„scalar
form factors. ' One word of caution: In this model,
X 'has a pole at s=1.488, which seems to make
the third integral in Eq. (2.20) not defined. How-
ever, one easily verifies that this pole is canceled
by a zero in the numerator. Using the (uncoupled)
Omnes solution for J,(s) on the right-hand side of
Eq. (2.20), one finds

[We normalize J,(0) =1, s to be expressed in Gev'. ]
Inelastic approximation but no coupling to J, (s);

i.e., the first term on the right-hand side of Eq.
(2.20):

with

J,(0) "
(t), (s)ds J,(0) 7" e &"(' ins(j(I))s~ "" h(s')e»"'cos(t) (s')

4mz ~ 4mz 7)' 04u2 S (S -S)
J', (0) '" e»"'h(s) cos(t), (s)

7T +~2 s 2 y

S "
(jb) (S )dS

and similarly for p, (s).
It can now be shown that

h(s)cos( (s)=(~) (
-

)
with

cosg) 1 +tanzg
cosb, 1+[(1—)I)/(1 +)I)]' tan'5,

This quantity is certainly finite in the whole range of integration, showing a cancellation of the (spurious)
pole in X '.



1642 H. J. KREUZER AND A. N. KAMAL

IV. A MODEL: SCATTERING-LENGTH APPROXIMATION

In this section we calculate the coupled two-channel form factors exactly and in various approximations
using the scattering-length description for the coupled T matrix as described by Ross and Shaw. ' For the

f matrix of Sec. II we have

f„=k,(M„-ik,)D

f„—k, (M„—2k, )D

kf„=-k,M„D ' =—„'f„,
1

where

D = (M„—ik, ) (M 22
—ik2) -M„,

M, 1 =qk, (Bc -A),
M '=M '=q'k, B(1+c'),

M» —-cq,

q = —(Ac+B) '

(4.1)

(4 2)

with k, ' =k,'+ k,'. This is a scattering-length approximation around the inelastic threshold k,'. To have a
zero elastic phase shift at the elastic threshold as well, we impose the condition

k, = -cq. (4.3)

We can decouple the problem by choosing B=0 and c =0 which makes f» =T» = 0 and leaves the one-channel
scattering-length approximation for f».

For this model we can solve the coupled integral equations for the form factors in the case where there
is no resonance in the elastic region. With E(I. (2.11) for Im J,.(s), we get two coupled (once-subtracted)
integral equations for Re J,(s):

Re J,(s) =Re J,(0)+ P, -, Im J, (s)
s " ds'
11 +4~2 S S —S

s "" ds' (1 —Im f») Re f»+Ref» Im f»
1T 4S2 S (S —S) X

&4M2

n ., 2 s'(s'-s) 1-Imf»
s "" ds' (1 —Imf»)Ref»+Ref»imf»
11' S4S2 S (S S) X

(4.4)

Re J, (s)=Re J, (0)+ P, , Ref„+— " ")Re J (s')Im 21 Re

s,"" ds' (1 —Imf„)Ref„+Ref„Imf„
1T y4(22 S (S S )

s *" ds' (1 —Imf»)Ref»+Ref»imf»
71 ~ 4212 S (S —S) X (4.5)

where

X = (1 —Im f») (1 —Im f») —Im f„lm f» .
All the f,&

are of course to be taken at s'. From
the integrands we can easily read off Im J, (s) in
the various energy regions. After transforming
the infiriite integrals to a finite range we solve
this set of integral equations by a simple matrix

inversion technique. The poles in the principal-
value integrals are handled by subtracting the in-
tegrand at the pole position and differentiating nu-
merically. Unfortunately, this technique only
works as long as no resonances are present. It
seems that in this latter case one of the form fac-
tors goes rapidly to zero as s -~ so that the once-
subtracted integral equations allow at least two
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solutions differing by a polynomial of first order
in s. This nonuniqueness makes our matrix sin-
gular, and the matrix inversion technique breaks
down.

Figures 3 and 4 show two numerical examples
of coupled form factors for weak and strong cou-
plings when no resonances are present. We have
chosen a fairly large value for the scattering
length A in order to exhibit clearly the threshold
effect which, of course, already exists in the one-
channel scattering-length approximation when no

bound-state poles are present. ' To study the in-
fluence of the interchannel coupling we can simply
increase c. Instead, in Fig. 4, we have moved the
thresholds closer together to achieve the same ef-
fect. We notice that Im J, (s) is nonzero starting
at the elastic threshold, as it ought to be. In a
purely elastic one-channel case Im J,(s) would be
nonzero only above the inelastic threshold. More-
over, Re J,(s) shows a remarkable threshold en-
hancement at the elastic threshold, as this chan-
nel opens and begins to contribute to the imaginary
part of J', (s).

To get an idea about the coupled form factors in
the presence of an elastic resonance we have de-
veloped a perturbative solution for J, (s). In zero
order we include the coupling between the two

Jt {s}

}m j)(s)

5-

4-

J2(s}
3-

02 3
S)

4
S2

FIG. 4. See Fig. 3.

channels in the calculation of the T matrices only
but assume that the form factors are still uncou-
pled by putting [Rgs. (2.8) and (2.9)]

Im J,"' = Ref„ReJ;"'+Im f, , Im J,."'. (4.6)

Starting from J~~o'(s) we get a perturbative expan-
sion in the coupling between the two channels by
taking for n =0, 1, 2, . . .
Im J;.'"'"(s ) = Im J;.'"'(s) + Re f„ReJ,'."'+ Im f. , . Im J&"&

(4.V)

Ji(s)
Im Ji(s)

to be inserted into the integral equations for
Re J;.(s).

We have compared a first-order calculation of
this type with the exact solution in the case without
any resonances (Figs. 8 and 4). We found that for

m = 02
M= 1.0 20-

J2(s) 10-

(1)
mJ,

S1
1 2 3 4

Sg
5 6 7

0 s

-10-

3

e~Re Jn~

L

4- S
Sg

FIG. 3. Form factors in the scattering-length model.
Open circles: J& (s) ~ dots: J. (s) (see Sec. IV for
details). s&=4m, s2=4M . B= c has been chosen.
(m, M in GeV; A in GeV ~; s in GeV2. )

FIG. 5. First-order approximation J& (s) in the pres-
ence of a resonance in the elastic region. B= c has
been chosen. (m, M in GeV; A in GeV; s in GeV .)
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weak couplings the T coupling alone J,."'(s) (open
circles in Fig. 3) gives too small an effect, where-
as J,"'(s) (dots) gives excellent agreement with the
exact result. For the same (weak) interchannel
coupling we next calculated J,"'(s) for the case of
a resonance in the elastic region (Fig. 5). This
resonance in the elastic region of the first channel
is in fact the bound state of the uncoupled second
channel which is reflected via channel coupling as
a resonance in the first channel. " The form fac-
tor shows the typical resonance behavior. In this
case Jl(G)(s) is a much better approximation due to
the fact that the coupled T matrices, of course,
already contain all the information about the reso-
nance, whereas the inelastic region simply adds a
smooth background without much effect on the
resonance structure. We should mention that the
peak in

~
J,")

(s)~ is slightly shifted back towards
the original position of the bound-state pole in the
uncoupled channel problem as compared with the
peak in

~

Jl(G)(s)~. Both peaks are, of course, at
higher energies than the corresponding bound-state
pole in the uncoupled second channel.

Z+ibk
S = . q g=s~ —sIl Z iak & R

i(a2 b2)»2k
Si2=S2z =

Z -iak

S Z -ibk
Z —iak

(5.5)

The T matrix is

a+b
2(Z -iak) '

(a2 b2)l/2

2(Z —iak) '

a —b

2(Z -iak)

The f matrix [Eq. (2.7)] is

k a + b (a' —b')'"
2 (Z —iak) (a' —b')'" a b—

(5.5)

(5.7)

The eigenvalues of E [Eq. (2.11)]are ak/Z and 0.
The constant matrix

V. DIAGONALIZATION AND MORE MODELS (a+ b)l/2 (a b)1/2

-(a —b)'" (a+b)"' (5.8)

Written in the matrix form the unsubtracted
form of the form factors [see Eq. (2.11)] is

E(s') Re J'(s')
J(s) = — ' ds'

Tf 4 4m S —S —SE
(5.1)

G(s) =R(s)J(s),
one gets

(5.9)

serves to diagonalize F. Defining a matrix G as

Let R(s) be a matrix which diagonalizes E(s),

R(s) E(s)R '(s) =M(s), (5.2)

with eigenvalues M»(s) and M22(s). Then Eq. (5.1)
yields

G, (s)= (2 ) J(s)s( 2 ) G(s),

G,(s)=-( ) G(s)s( ) S(s).
(5.10)

K(s, s')M(s')R(s') Re J(s')
R(s) J(s) = — ds'

(5.3)

where we have defined'

K(s, s') =R(s)R '(s'). (5.4)

In general the matrix K(s, s') carries extra kine-
matical singularities and this feature causes some
of the difficulties one faces in solving the problem.
through diagonalization. In a model, later in this
section, we have explicitly demonstrated the ap-
pearance of these kinematical singularities. If the
diagonalizing matrix R(s) were to be energy inde-
pendent, then, of course, these kinematical singu-
larities would not appear. In the following we
have studied a particular model where such a sit-
uation occurs.

A. Degenerate Thresholds

Let us take a model with degenerate thresholds
which saturates the two-channel unitarity, "

In this model K(s, s') is energy-independent and

indeed equal to unity. As the eigenvalues of F
are M» = ak/Z g0 and M» =0, the integral equa-
tions for G,. (s) are [Eq. (5.3)]

and

1 " M»(s')ReG, (s')
G s =—

1
7/ G4~2 S —S -ZE

G, (s) =0.

(5.11)

(5.12)

The solution of Eq. (5.11) is the standard Omnes-
Muskhelishvili function 4

G, (s)=G, (0)esp —,, )
s " (t) (s')ds

with

(5.13)

(5.14)

The solutions for J', (s) and J,(s) on inversion of
Eq. (5.10) are
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J, (e) = J, (0)exp —,, ),
s " (t)(s')ds'

J (e)=( ) J, (e).

(5.15)

(5.16)

with 4k, '= s —4m' and 4k, ' =s —4M'. The eigen-
values of the matrix F above the inelastic thresh-
old (s&4M') are

ak1
11 Z

B. Nondegenerate Thresholds

With the S matrix defined in Eq. (5.5) and using
M» =0.

(5.19)

S. . =2zk. '"T . .k.'/'+ ~. .tj 2 fj j jjp (5.17)
The matrix that diagonalizes F above the inelastic
threshold is

one gets for s & 4M' (i.e., above the inelastic
threshold)

a+b
2g -iak, )

'

1 (a+5)' '
( )

(2 )1/2 (y /I )1/2 ( I))1/2
(e,/e, )'" (e —e)"')

5)1/2

(5.20)

1/2 (g2 I)2)1/2y -1/2
—T

2 (Z j(2(P„,)

k1 v —b

a2 2(Z -2ak, )
'

(5.18)
Note that for degenerate thresholds R(s) reduces

to that of Eq. (5.8). The form of A(s) clearly dis-
plays the kinematical branch points that appear be-
cause of the square roots. For both s and s'& 4M'
we have then

2 2 (a —b)

(s2 52)1/2

b2 1/2

k, ~k a-b
(5.21)

The kinematic branch points are displayed in Eq.
(5.21). For energies below the inelastic threshold,
4m'&s&4M2, we have from Eq. (2.7)

G(s) =R(s)J(s) (5.28)

K(s, s') for other regions of s and s' can be con-
structed out of Eq. (5.20) and Eq. (5.25). Defining

(e,x„p)

and Eq. (2.11) gives

1 Ref» 0
1 —Im f» B(s) 0

(5.22)

(5.23)

and noting that M» c0 while M» = 0, we get the fol-
lowing equations:

1 ",K„(s, s')M„(s') Re G, (s')0, (s)— p
7T pe((4 m 2 S -S -2E'

(-B/Re/„1)'
The eigenvalues of E are in this case

Re „
1 -Imf„

(5.25)

(5.26)

and M» =0. For both s and s' & 4M' one can also
evaluate K(s, s'),

( 1 0

B(s') B(s)
, Re „s' Re „s

(5.27)

where

B(s)= (1 —Im f„)Ref»+ Ref» Im f» (5.24)

and the diagonalizing matrix is (4m' & s & 4M')

( )
",K„(s,s')M„(s.') ReG, (s')

)
44m s -s —zE

where the integrand is defined on the upper lip of
the cut. The solution of Eq. (5.29) cannot proceed
in the manner given in the Appendix because of the
extra kinematic branch points in K»(s, s'). A com-
plete solution of this problem is therefore difficult.
However, it is clear from Eqs. (5.18) and (5.20)
that for small inelasticities the diagonal elements
of R are proportional to T» and the off-diagonal
elements to +12 This implies that

for s, s' &4M', K»(s, s') =1 (exact);
(5.81)

for s, s' &4M', K„(s,s') =
2

+O(T»2).2a

If the coupling between the channels is weak
(small inelasticity) and we wish to study the effect
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Kzz(s, s') =Kz', +O(T» ), (5.32)

then we get the standard Omnes-Muskhelishvili
solution

G, (s) =G, (0) exp-s
"" $(s')ds'

44m

where

(5.33)

of coupling only to first order in T», then the
element K» is energy-independent and there are
no kinematic branch points. The problem is then
solvable in the manner shown in the Appendix. If
we write

has very little influence on it, in this region.
- It should be emphasized that the diagonalization
of I' does not in general lead to a decoupling of
G,'s (i =1, 2). The cases where the diagonalization
would indeed decouple the G,.'s are where R(s) is
energy-independent or either Myy or M22 is zero.
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APPENDIX

] (s) = tan-'PC, &P M„(s)] . (5.34)
We want to solve the inhomogeneous integral

equation for J, (s), Eq. (2.16),

In this particular model G, (s)-O(T»). Then solv-
ing Eq. (5.28) for J;(s) one gets to order T»' J, (s) =J,(0)+ — ds', , '. + f (s),

s, H(s') Re J, (s')

or

J', (s) = [R '(s) G(s)],

J;(s) =G, (s), s & 4M'

= (R ')„(s)G, (s), s & 4M'.

(5.35)

(5.36)

with

tang, (s) = H(s).

We define

(A1)

(A2)

In this model the phase function $(s) is

ak
$(s) =tan ' ', s&4M'z

=tan ' a+b ak s & 4M'.
20 g (5.37)

This phase is to be compared with the phase btb (s)
which enters the same problem if we were to ig-
nore the second-channel form factor, , i.e., drop
the contribution of Fig. 2 from the unitarity rela-
tion,

, tanbtb, (s') Re J', (s') 1
2ZZZ„z z S (S -SIZE) 2Z

so that

= —.J, (0) + —,
' tang, (s) Re J, (s)

s "",tang, (s') Re J', (s')
+ .Z ds'

27zz g4 z s (s —s)

E(s,) —F(s ) =tang, (s) Re J, (s).

We know from (A1) that

(A3)

(A4)

(A5)

y(s) =tan ' ', s &4M'ak

Zk, (a+lb)
2Z'+ab, '(a —b)) ' s&4M'. (5.38)

an=0. 14 GeV, M =0.5 GeV,

This model does not lend itself to easy numerical
work since the inelasticity is switched on suddenly.
For s & 4M', a = b, but for s & 4M', a w b. We tried
a model calculation with

s I'",tang, (s') Re J,(s')
ZZ J4„z S' (S —S)

(A6)

(A7)

+ Ref(s).

Combining Eqs. (A3) to (A6) we get

Re J, (s) =i[F(s,)+ E(s )]+Ref(s).
Therefore from Eq. (A5)

E(s,) —E(s ) =i tang, (s)[E(s,)+ F(s )]

a =0.3 QeV,

s~ = 0.5 GeV .
b =0.27 GeV, (5.39) + tang, (s) Ref (s) (A8)

The use of Eq. (5.37) resulted in a form factor,
~ J, (s)~, which lies below that which results from
the use of Eq. (5.38) for energies less than ss and
above for energies larger than s~. The quantita-
tive difference was too small to plot. The reason
for the small quantitative difference is that a reso-
nance in the elastic region largely determines the
form factor in that region and a small inelasticity

E(s,)e "~z"' —E(s ) = . ' Ref(s)+Ii t nabt(bs)

(A9)

Let us look for a solution of the kind

E(s) =Q(s)g(s), (A10)

where 0 (s) satisfies the homogeneous equation
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or
Q(s, )e "~&"' -Q(s ) =0

1nQ(s, ) —1nQ(s ) =2ig, (s).

where

p(s) = P—s ""
(t), (s') ds'

Z( ~~~2 S (S —S)

This gives a once-subtracted solution

Q(s,) =Q(0) exp-
&( „4 2 S'(S'- S 5 ZC)

—= Q (0) exp[p(s) + i/, (s)], (A12)

We choose

Q(0) = J,(0).

Putting (A12) in (A9) we get

(A14)

or

Q(0)[y(s )ep(s&-'i@&(s) q( S)ep(s& iz)z(s-)] 4&( ) Ref (S)1+i tan(I), (s)

g (s,) —g (s ) = e P "' sing, (s ) Ref (s)jQ (0)

(A15)

(A16)

with a solution [g(0j =1/2i]

(t (s,) = —. 1+ — ds'( s, e '"'sin(, (s')((ef(s'))
2i z(&, 2 Q(0)s'(s'- s -ie)

Thus

I" (s,) = Q(s,)y (s,)

.J, (0) s ",e P"') sing, (s')

Ref�(s')

s f", P, (s )
2z J, (0)z( „4 2 s'(s'-s -ze) Z( &~ 2 S (S —S —ZE'))

and

J,(s,) =2iQ(s, )g(s,)+f (s)

f()()sd, e"'sing, (s')Ref (s')s'"d, p, (s')

(A17)

(A18)

(A19)

which is the eo1ution to Eq. (A1).
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