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Ball and Zachariasen have proposed a model of high-energy diffraction scattering, which
entails nonshrinking diffraction peaks. The model has some resemblance to the multiperiph-
eral model, in that it emphasizes s-channel unitarity with a simple factored form of pro-
duction amplitudes. It leads to an integral equation for the elastic amplitude which is rela-
tively simple in appearance. The equation is analyzed here with the help of methods which
may also be useful in the study of more realistic high-energy models. The Hankel transform
of the original equation is studied as a nonlinear equation in a certain Banach space. Exis-
tence of an infinite class of solutions is proved by means of the contraction mapping princi-
ple. These solutions are constructed by iteration for small values of a parameter c, which
measures the strength of particle production. The range of allowed values for the product
of c and the elastic cross section does not include the physical value. One can try, however,
to continue the solutions to the physical value, since they are analytic in c. In paper II, the
solutions are calculated numerically, and the continuation to large c is attempted. The con-
tinuation stops short of its goal, because of a singularity of the Frechet derivative of the
nonlinear operator. This derivative becomes a linear integral operator of the "third kind, "
which has no inverse in a space of continuous functions. No physically acceptable solutions
of the Ball-Zachariasen equation have been found. A proposed approximate solution appears
to have some difficulties, as is explained in paper II.

I. INTRODUCTION

Models of strong-interaction processes almost
always lead to nonlinear integral equations of one
difficult type or another. Our understanding of the
associated mathematical problems is at a very
primitive level. On the one hand, theorems on
existence and qualitative properties of solutions
are usually lacking. On the other hand, attempts
at numerical solution are often not convincing,
since there is usually no theoretical basis for the
numerical method used.

One can make a more systematic attack on non-
linear equations by combining the methods of non-
linear functional analysis with numerical studies.
This is a very natural approach, which is under
development in classical continuum mechanics
and in other areas of applied mathematics. ' In
applying this method to problems of high-energy
physics, we encounter some novel problems, since
our equations are quite different in detail from

those usually studied by applied mathematicians.
In this paper we study an integral equation pro-

posed by Ball and Zachariasen, ' in connection with

a model of high-energy diffraction scattering.
%e shall not try to criticize or improve the physi-
cal basis of the model in this report, but rather
regard it as an interesting special example from
which we can learn some general lessons. For
example, we learn how to use a fixed-point theo-
rem in a Banach space of integral transforms.
This technique should be useful in connection with
various other models of high-energy processes. '

In order to explain our approach in general
terms, we should first point out that the methods
of functional analysis normally do not provide a
basis for a complete qualitative analysis. That is,
it is hard to get global existence theorems in
which all solutions are cataloged. It is often pos-
sible, however, to prove existence of solutions
for some restricted range of the physical param-
eters (for weak coupling, for instance), and to
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construct those solutions by a convergent iterative
algorithm. This has been done for certain equa-
tions of 8-matrix theory in the papers of Ref. 4;
for a survey of such work, see Ref. 5. The re-
strictions on the physical parameters in the exis-
tence proofs are often due more to the limitations
of technique than to some intrinsic properties of
the equations. One is then free to attempt a con-
tinuation of the solutions with respect to the pa-
rameters, outside the original limited range.
This continuation must be done numerically, gen-
erally speaking, but some guidance on w'hat to ex-
pect in the calculation is available from functional
analysis. For instance, one can expect that the
continuation will proceed successfully at least to
the first singularity of the Fr6chet derivative of
the operator studied. " The meaning of this re-
mark is roughly as follows. Suppose that the equa-
tion to be solved is

F ((p, c) =0,

where c represents the parameter or parameters
to be varied in the continuation, and y is the solu-
tion sought. The Frdchet derivative of F [evalu-
ated at (y, c)] is a linear operator F„(cp, c) such
that F~(y, c)6q is the first-order change in F(y, c)
when y is changed to q+5y. Let y, be a solution
with parameter c„F(y„c,) =0, and suppose that
F~(y„co) is nonsingular (i.e., that it has an in-
verse). Then there will be a unique "solution
curve" q (c) extending from q, =y(co) to q, =y(c, ),
where c, is the first value of c at which F~(q(c), c)
becomes singular. The curve may or may not go
further, and if it does, the continuation is not
necessarily unique. There might be "bifurcation"
at c,. In the calculation we must be on the lookout
for singularities of E„, and if any are encountered
we shall probably need a good anal'ytic understand-
ing of their character if we are to have a chance
of passing beyond them. Since E~ is a linear op-
erator, an analysis of its singularities is not out
of the question.

A less systematic approach, which is suitable
when both the physical basis of the equation and
one's physical intuition are sound, is simply to
guess an approximate solution. Two serious ques-
tions then arise, however. First, how does one
judge the goodness of the guess, and second, how
may the guess be improved systematically'P
These questions are closely related. A possible
answer to the second question is provided by the
Newton-Kantorovich (NK) method. ' Let q 0 be the
proposed approximate solution. We linearize
about yo, with the hope of obtaining an improved
approximation pg ..

F4') =F(q.)+F,(q.)(q q.), -

F(q.)+F,(q.)(q, —q.) =o. (I 8)

If F~(y, ) is nonsingular, there is a unique solution
of (1.3):

q i = q. -F,(q.) 'F(q.).
The higher NK iterates

q. +, =q. F„-(q„) 'F(q „),

(1.4)

will converge to a solution under conditions laid
dow'n by Kantorovich. According to Kantorovich,
there will be convergence provided y, is suffi-
ciently close to p„assuming that E~ ' and the
second derivative E«are bounded in norm near
y, . The closer E is to being singular, however,
the closer p, must be to y,. At a singularity of
the Fr6chet derivative, the NK iteration fails com-
pletely. '

The matter of judging the goodness of an approxi-
mate solution is also strongly dependent on the
"condition" of the Frdchet derivative (an operator
which is close, in some sense, to singularity is
called "ill-conditioned"). This is seen very clearly
in the trivial case of a linear system of equations.
Consider the ill-conditioned system

F(y) =Ay -y =0, (1.6)

The solution of (1.6) is y, =y, =1. A small change
in the matrix A will cause a big change in the solu-
tion, however. With A replaced by

(1.8)

the solution y, =10, y, =-8. Furthermore, the so-
lution (I() for A appears superficially to be a fairly
good approximate solution of (1.6), in the sense
that the "residuals, "Ay -y, are small compared
to y. That is, (AP -y), =0.09, (Acp -y), =0. In gen-
eral, residuals are worthless as a test for the
goodness of an approximate solution when the sys-
tem is badly conditioned, simply because the ap-
proximate solution can have an incorrect compo-
nent in the eigenspace of a small eigenvalue of
the matrix, without having a big effect on the re-
sidual. The system is also sensitive to small in-
accuracies in computation of the matrix. Essen-
tially the same situation holds for a linear equa-
tion in an infinite-dimensional Banach space.
Moreover, when a nonlinear equation may be re-
garded as locally linear, we can expect analogous
phenomena in the case of no.nlinear, infinite-dimen-
sional equations. Representing the small nonlinear
remainder by R(y), we may write F(cp) =0 as
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(1.9)

If E (y ) is singular or nearly so, and y, is a, pro-
posed approximate solution close to y„ then the
residual E (y, )y, —y(y, ) may be a poor measure
of the closeness of y, to a solution.

We now give a brief recapitulation of the Ball-
Zachariasen model. ' The elastic scattering ampli-
tude is assumed to factor as follows at high energy:

r(s, i)-is &'(f), s-. ~.
(The squared center-of-mass energy is s, and i
is the invariant momentum transfer squared. )
That is, the diffraction peak has constant shape
asymptotically. The amplitude for two particles
to produce ~ is also given a factorized form:

tained, and in Appendix A we show that this is
equivalent to the original equation. The trans-
formed equation is studied in the remainder of
the paper, since it is noticeably easier to handle.
Our analysis follows the general pattern sketched
above. First, in Sec. III, we give an existence
proof for an infinite class of solutions at small
values of c. We also find that these solutions are
analytic in c, in a circle with center at c =0. The
solutions may be constructed by iteration; in fact,
the existence proof is based upon iteration. In
Sec. IV, we discuss the continuation of the solu-
tions to larger c. We examine the Frdchet deriva-
tive of the nonlinear operator, and find that it can
develop a singularity when the solution becomes
sufficiently large. The singularity arises because
the Fr6chet derivative becomes a so-called Fred-
holm operator of the third kind, i.e., an operator
E~ of the form

where t,. is the invariant momentum transfer
squared between an initial particle and a group
of final particles. By some physical assumptions, 2

the form of A„(s) is determined as follows:

A„(s) ' (sc)" '
s (lns)" ' ' (1.12)

(1.14)

In (1.14), the integration is over the region where
the argument of the square root is positive. The
amplitude is normalized so that the total cross
section is given by the optical theorem as

Since (1.14) is the high-energy limit of the elastic
unitarity integra1, the asymptotic value of the
elastic contribution to the total cross section is

where c is a constant. The s-channel unitarity
condition now gives the Ball-Zachariasen equation

(1.13)

where

F~5rp = a(b)by (b) + K(bi b')hp (b')db', (1.18)
0

where K is a Fredholm kernel, and a(b) is a given
function which has zeros. In general, such an
operator does not have an inverse in a space of
continuous functions. It may have an inverse in
a space of generalized functions, however, as
will be shown in another publication. '

In paper II,' we report the results of numerical
calculations. We calculate solutions as obtained
in the existence theorem, and attempt the continua-
tion to larger c. One quickly encounters a singu-
larity of the Frdchet derivative, however, which
brings the continuation to a halt. We try to get
around the singularity by an excursion into the
complex c ylane, but the attempt does not succeed.
Vfe also consider a proposed approximate solution
of Ball and Zachariasen (second paper of Ref. 2),
which, unlike the solutions obtained in the present
paper, is continuous in the impact parameter.
The Fr6chet derivative evaluated at the Ball-Zach-
ariasen function is again nearly singular, which
makes it difficult to decide whether there is an
actual solution in the neighborhood. Our conclu-
sions are summarized at the end of paper D.

By (1.13}, we then obtain c as

co„=In(o, ,/v. ,) .
If we use cross sections from P-p scattering at
the highest available energies, we get approximate-
ly c=0.1 GeV'.

In Sec. II, we discuss some general properties
of Eq. (1.13), with the help of Hankel transforms.
A formal Hankel transform of the equation is ob-

II. HANKEL TRANSFORMATION OF THE

INTEGRAL EQUATION

It is convenient to change notation and write
5((-f)~') and 9((-t)~'}for the functions that were
called F(t) and 9(t) previously. We define the
variable x=(-i)~', which is conjugate to the im-
pact parameter b in the sense of HankeI trans-
forms. The zeroth-order Hankel transform of
9:(x) is HF(b):
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aS(b) = J,(bx)S{x}xdx = S(b).
0

(2.1)

It will be convenient to use the two notations HF

and F interchangeably. Here J, is the zeroth-
order Bessel function. The integral appearing
in Eq. (1.14) now reads

(2.2)

I

s(x,)s(x,)
( } (2~)2 E 1 g g [2(xax 2+x2x 2~x 2x 2) x4 x 4 x 4]lf2

)x-xy)

In order to compute the Hankel transform of (2.2), we apply a formula of Sonine"; namely, if x„x„x)0,
then

Jl J (x,b)J' (x,b)J (xb)bdb=
0

0, x, (ix-x, i

—[2(x'x,'+x'x '+x 'x ') -x' -x ' -x ~)-'~'2

0, x, )x+x, .
x -x~ (x (x+x (2.3)

By substitution of (2.3) in (2.2), we have

1 OO

S(x) =— x,S(x,)dx, x,S(x,)dx, J,(x,b)J (xp}J (xb)b db.1 1 1 2 2 2 0 I 0 8 0

We shall now derive an equation for the Hankel
transform S(b) by manipulations which are formal
in the sense that integration orders are changed
without justification, and Hankel's i~version for-
mula" is assumed to hold in the form

{2.5)

whenever we need it. In Sec. HI, we analyze the
equation for S'(b), showing that it has solutions
which are such as to justify all the formal steps.

By evaluating the b integral last in (2.4), one
finds

9{x)=8 J,( b)s(b}'b&b
0

=—H(s(b)'}.
8m

(2.6)

s()=9(). (2.7)

By substituting (2.6) in (2.V), and taking the Hankel
transform, we have

s(b) =—s(b)'.
8m

(2.8)

According to this, S(b}can have only the values
8m and 0, so a solution of (2.8) is a step function

P(b}= 8v PX (b),
I I

where It (b) is the characteristic function of a
closed interval I, i.e., g (b) = I if bC I, and X,(b}
=0, otherwise. The sum in (2.9) runs over any
finite set of finite, disjoint intervals I. Equation
(2.9) is not the general solution of (2.8}, or even

{2.9)

This resuIt can be used to solve the Ball-Zacharia-
sen equation (1.13) in the special case c =0, i.e.,
the equation

the general Hankel-transformable solution. -In-

stead of (2.9), one could let S(b) be equal to 8v
for alE 5 greater than some 6,. Such solutions
would not be transformable, except in the sense
of generalized functions, and are probably not of
physical interest. On the other hand, one can
make transformable solutions. by letting the sum
in (2.9) run over an infinite sequence of intervals
of decreasing length. Ef the intervals of the se-
quence converge to zero length with sufficient
rapidity, then the resulting solution S(b) is Hankel-
transformable. In this way, one gets an infinite '

set of transformable solutions, in addition to the
infinite set that we already have in (2.9).

For reasons of simplicity alone, we shall deal
only with a finite sum in (2.9). The function S(x)
for e =0, may be evaluated explicitly by means of
the identity xJo{x)=.[xJ,(x)]'. Let the i th interval
where (2.9) is nonzero be s,. (b(r, . Then

8m
S(x) =—g [r,J,(rp) —s,J,(s(x))X

=O(x-~'), x-~. (2.10)

A particularly simple choice of (2.9) is to put P(b)
=8w, b ( r, and S{b)= 0, b )r Then we h.ave the
simple result

( )
J,(rx)

(2.11)

( )
. 4$QJq(cÃ)

x (2.12)

The scattering from a perfectly absorbing sphere,
evaluated at high energy and small angle by the
eikonal apyxoximation, yieEds the amykibxde"
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where a is the radius of the sphere. The formula
(2.11) thus corresponds to the diffraction scatter-
ing from an absorbing sphere of radius r, except
for the presence of an extra (and somewhat puz-
zling} factor of 2. The c =0 limit of the theory,
although sensible mathematically, is rather curi-
ouS physically. Putting c =0 turns off the particle
products)n, which is the physical source of the
absorption. Nevertheless, we have a picture of
pure absorption at c =0.

To generate solutions to the full equation (1.13)
for c 0, we first take c to be very small, in the
hope of finding solutions which are close to those
for c =0. We continue to work in the space of
Hankel transforms, in which the analysis is much
easier, even when c is not zero. Before proceed-
ing, it is convenient to renormalize f and c so as
to eliminate factors of Sm. We put

f =P/8v, c' =8vc, (2.13)

and henceforth discard the prime. In view of (2.6),
the Ball-Zachariasen equation now reads

or

fk) f &P&)f(&F&d&
0

xexp c J0 b b bdb
0

f =If(f ').If(f *)(""'*&-1),

(2.14}

(2.15)

where we have formally added and subtracted 1 in
the exponential factor. Now take the Hankel trans-
form of (2.18):

f f 2 ~Q(H(f 2)(ecBQ' & 1)) (2.16)

h(b) =+X (b). (2.18)

It is convenient to define a function )p(b}, to take
the place of f (b), as follows:

There are some simple properties of solutions
which are immediately evident from the equation.
Suppose that f (z}, g(z), f (b), g(b) are sufficiently
well behaved so that their values at the origin may
be obtained by putting x =0 or b =0 under the inte-
gral of their Hankel representations. Suppose
also that g =f *. In Appendix D we show that the
following properties are then true:

(I) If@)l-f(0), lg(z)l-g(0);

(ii) if f (&)) & 0 [hence g (z) & 0],
then l f (b)l- f (0)~1, lg(b)l-g(0)~1,

f (0)- o~/o;. , (2.IVb)

For the c =0 solution in b space [Eq. (2.9)], we
use the notation

f (b) =h(b)+q (b)[1 -2h(b)]. (2.19)

Since h' =h, (1 —2h)' = 1, and h (1 —2h) = -h, there
is the identity

f'=(h -q )',
and (2.16) becomes

y =A(y, c),
where

(2.20)

9)„=A()p„~,C) . (2.22)

According to the work of Sec. III, this approach
is successful for sufficiently small. c, with any
choice of the step function h(b). The sequence
f)pJ converges to a solution, which is the only
solution in a certain subset of an appropriate func-
tion space.

The solutions for smaQ c, obtained in Sec. GI,
are analytic in c inside a circle with center at
c =0. This suggests analytic continuation to larger
c. The circle mentioned is n0& the circle of con-
vergence of the power series about c =0. It is
merely a region to which we are confined by the
technical limitations of the iterative method. In
order to reach larger c we employ the numerical
methods of paper II,"since we are not yet able
to locate singularities in the c plane by analytic
means.

It is possible to compute the initial terms in the
power series for y(b}. We put

)p(b c)=P c"cp "(b), (2.23)

and substitute in (2.20) to obtain

y'2& a(i2)

q"'=q "&+a(-'h2 —4krf(hq ~'&))
(2.24}

In fact, any y '- may be expressed in terms of the
lower terms y ', l& k. In the case of the simple
step function h(b) = e(r - b), we have fi =rJ,(rx)/x,
and, therefore,

A(ql c) =(p2 yff(If((h )p) )(c' &&2-2'» —1))
(2.21)

Equation (2.20}will be the object of our analysis,
since the function )p(b). turns out to have better
continuity properties than f(b) itself. In Sec. III,
we shall find that (2.20) has solutions, and their
behavior is such that one can take Hankel trans-
forms, reverse integration orders, and thus get
back to solutions of (1.13}. The latter is demon-
strated in Appendix A.

A naive approach to solving (2.20) is simple
iteration. Beginning with @0=0, one forms the
sequence ()p„], where
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@(~)(b)

x ' J,'(rx)J,(b x)dx
p

——(4x —b ) +x ———sin —,b &2rb, ~u~, 1 1 . , b

4m 2 1f 2r g

0, b&2r (2.25)

Thus, when we calculate solutions by continuation
in c, starting at c =0, which particular value of r
we choose is irrelevant.

III. EXISTENCE THEOREM FOR

ITERATIVE SOLUTIONS AT SMALL c

We intend to solve Eq. (2.20). Written out in
full, it reads

dy &' l(b)
db

——(4x' —b')'~' b & 2i

0, b&2r.
(2.26)

The first-order function y]' (b) decreases mono-
tonically between b =0 and b =2r, with

y ' (0) =r'/2, (p
' (2r) =0,

(') (0) =-r/]]', qr
' (2t) =0.

f(x;xo, c), 0&c&~ (2.27)

where rp&0 has some fixed value. Then we im-
mediately have a solution for any desired param-
eters (r„c,), namely,

(2.28)

The second derivative of y ' has an inverse-
square-root singularity at b =2r. This latter fea-
ture may occur also in the exact solutions obtained
in Sec. III. We have no reason to expect that the
power series (2.23) will provide a practical means
of computing solutions for interesting values of c.
Nevertheless, the formulas (2.25) and (2.26) will
be useful later.

It is important to note the transformation prop-
erties of solutions of the integral equation under
a change of scale." The product bx is dimension-
less, so a scale change b- A. b is accompanied by
the change x- A. 'x. The constant c has the dimen-
sion of b ', while f(x) has the dimension of b',
and f (b) is dimensionless. Thenpt is easy to see
that if f (b) is a solution of (2.17) with parameter
c W 0, then f (A.b) is also a solution, hut with param-
eter A. 'c, where A. is any positive number. Simi-
larly, if f(x) is a solution of (1.13) with parameter
ca 0, then A.

'f (A. 'x) is also a solution with param-
eter A. 'c.

The scaling property simplifies the problem of
finding "all" solutions. Suppose, for example,
that h(b) = 6)(x —b). Then we have two parameters,
r and c, on which solutions depend. We need not
solve the equation for all r and all c to cover ef-
fectively the entire parameter space. Suppose
that we can find a solution manifold of (1.13),

y(b)=p'(b)+f xd|:J,(bx)E(x) (e* ('~ —1],
(3.1)

R(x) J bdbJ (bx)(h(b) —rp(b)]
0

(3.2)

where h(b) is the step function (2.18). In order to
simplify notation, we assume in the following that
h(b) has just a single step; i.e. , that h(b) = 8(r —b)
It will be clear that our proof applies as well to
the general step function (2.18), with a, finite num-
ber of finite closed intervals I. We employ some
elementary methods of nonlinear analysis. A
physicist's introduction to these methods may be
found in the first paper of Ref. 5. In particular,
we need the contraction maPPing PrinciPle: Let A
be a mapping of a complete metric space E into
itself, and suppose that A. is contractive; i.e.,

d(Ay, A(j) ) -Pd(y, P),

0&P&1; all y, PCK (3.3)

where d(y, P) denotes the distance between y and
Then there is a unique fixed point of the map-

ping in K, which is to say a unique solution in K
of the equation

(3.4)

n

d(y, P„)- 1 d(y„q, ). (3.5)

In the present problem, A(y) will be the right-
hand side of Eq. (3.1), and the complete metric
space will be a closed subset of a certain Banach
space, the distance being provided by the norm in
Banach space:

d(~, e)= lie -e ll (3.6)

The Banach space B consists of all real functions
y(b) on the line 0 & b &~ which are continuously
differentiable, which have continuous second de-
rivatives except at b =0 and b = 2r, and for which
the following quantity, the norm in B, exists:

The solution is the limit of the iterative sequence
y„=Ay„„which begins with any element yp of K.
The error at the nth iteration is bounded as follows:
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II 9 II
= sup [ I &,"v (&) I

+
I &,"v'(&) I]0( b( oo

+ sup I 6, ' 'b' '(5 —2r)'/'y "(g)
I
.

0&b&2r
2r&b&~

(3.7)

Similarly,

G' = cE'(cE+G) =O(c'x„-'),

(3.16)
G" = cE"(cE+G) +cE'(cE'+G') =O(c'x+ ') .

Here, b, =6+1, and "sup" means "least upper
bound. " All functions in B and their derivatives
have bounds as follows:

ll yll
5 2)

The integrand of (3.1) contains the factor

E(e's —1)= cJ'+ cH,

where

cH = 2cJK+ cE'+EG .

(3.16)

(3,17)
ll yll

I 9 '(&)I -
f, 5/, , (3.6) From (3.10) to (3.17), it follows that

ll yll
Iy (&)I-l, 3/2l, &/2I Q 2~Ii/2 ~

The metric Kwill be merely a closed ball cen-
tered at the origin in B; i.e., it consists of all y
in B such that

Ilq II- c, (3.9)

E(x) =J(x)+K(x),

J(x) =r(1 —2(p(~))
J,(rx)

(3.10)

(3.11)

K, K', K"=O(x+ ~/ 4), x+ =x+1. (3.12)

Also K" is continuous (in fact, Holder-continuous)
at all x. Here and in the following, E(x) =O(G (x))
means IF(x)I-MG(x), for some fixed M)0 and
all x.

To show that the x integral in (3.1) is in K, we
must now treat the leading term of the integrand,
which behaves at infinity as [J,(rx)/x]', separately
from the rest. We integrate that term explicitly,
since upper bounds obtained by taking absolute
values would not be sufficiently good. We isolate
the leading term and bound the remainder as fol-
lows:

where 4) 0 is a fixed-ball radius. It will be shown
that A. maps K into itself and is contractive pro-
vided 4 and the parameter c of (3.1) are sufficient-
ly small. Thus, there will be a unique solution of
our integral equation satisfying (3.9). Of course,
there may be other solutions which do not satisfy
(3.9).

To show that A maps K into itself, we first
analyze the integral (3.2), assuming that y is any
element of K. We must bound the asymptotic be-
havior of E(x) and its first two derivatives, in
order to show that the x integral in (3.1) belongs
to K. This is done in Appendix B, where we obtain

H, H', H" =O(x, ). (3.18)

When the first term of (3.16) is substituted in (3.1),
we obtain the integral (2.25) that occurs in the
first term of the power series for y(b). By (2.26)
and (2.26), this integral is a member of the Ba-
nach space B.

To bound the contribution to (3.1) of the remain-
der cH, we can merely repeat our analysis of the
integral E, (Appendix B), substituting x for b and
H for y'; (the behavior of H is not quite as good
as that of cp', but still good enough). The result is

I, I' =0 (cb, '/'),
(3.19)

Ili O( h- 2h -2) ~

I(b) = c xdx Jo(bx)H(x, c) .
0

(3.20)

Also, I"(b) is H51der-continuous, except at 5 =0.
Now we may collect our results to see that the

ball K of (3.9) is mapped into itself by the operator
A., provided the constant c and the ball radius 4
are sufficiently small. The integral in (3.1) is in
B, as we have shown above, and is sufficiently
small by virtue of the factor of c in (3.16). The
term y in (3.1) is in 8, and is sufficiently small
since its bound is proportional to the square of
the ball radius.

It remains to show that the operator A is con-
tractive. Let y, and y, be any two elements of K.
To evaluate the first term in II', -Ay, II we
must treat

Ay, —Ay, = y, '(h) —y, '(b)

+ xdx Jo bx Fj -F2 x

(3.21)
where, according to (3.16),

E, E, = cr'[ 4+y,—(r) +-y, (r)][@,(~) —y, (~)]

x [J,(xx)/x]'+ c(H, —H, ) . (3.22)
e'~ —1 =cE+Q,

IGI(-,'(«)'s""P '=O(c'x -')
(3.13)

(3.14)
After some calculation (Appendix C), one finds
that
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where

xdx&. (bx)[F, (x) -F, (x)] -Well v, -v, ll,
0

(3.24)

where M, is some constant. It is immediate to
show that

so from (3.21) we have

(3.25)

(3.25)

The operator is contractive when c and 4 are suf-
ficiently small. The proof is complete, so that we
are assured of the existence of a unique solution
in the ball K, when c and 4 are small.

The analysis above leads immediately to the re-
sult that y(b, c) is analytic in c for each b and

I cl & c,. Note that the proof can be done as well
for complex c, if the space B is replaced by a
similar, but complex, Banach space B,. In the
complex case, let c, be such that when

I cl & c„
the equation has a solution given by the limit of
the iteration sequence (y„). Since II y„ II

&4 [Eq.
(3.9)], the sequence of entire functions of c,
(y„(b, c)), is uniformly bounded and convergent
for

I cl&c„at each b. By Vitali's theorem of
complex function theory, it follows that y (b, c) is
analytic for I c

I
& c„at any b. An alternative

proof of analyticity may be done by using the im-
plicit function theorem' to show that the Cauchy-
Riemann conditions hold.

IV. FRECHET DERIVATIVE OF THE INTEGRAL

OPERATOR, AND CONTINUATION OF

SOLUTIONS TO LARGER c

We rewrite our equation y =A(y, c) as

F(y, c) = q —A, .(y, c) = 0. (4.1)

For the question of dependence of solutions on c,
we are interested in the Frdchet derivative (i.e.,
the "variational derivative") of E with respect to
y. This derivative, evaluated at (y, c}, y 6B, is
a linear operator in B, denoted by F~(y, c). Simi-
larly, E,(y, c) will be the derivative with respect
ia c. By formal variation of (3.1) and a change of
integration order, we find

F„(y, c)by = (1 —2y)by + K(b, b'; y, c)by (b')db',
0

(4.2}

(3.23)

From our previous analysis of integrals, it then
follows that

E,(cy, c) = xdx Jo(bx)E'(x)e'E " .
0

(4.4)

If F~(y„c,) is nonsingular (i.e., it possesses
an inverse in B), the implicit function theorem'
guarantees that there is a solution y(c) which de-
pends continuously on c, and which agrees with

yp at c„ i.e.,

E((p(c), c)=0, y(co) =NO. (4.5)

This is true for c in a sufficiently small neighbor-
hood of c,. Furthermore, there are continuation
theorems' to the effect that there exists a continu-
ous "solution curve" y(c}which extends at least
as far as the first singularity of F~. This curve
does not cross itself: If c, ac„ then y(c, )Wq (c,).

We may hope, then, to extend our solutions of
Sec. III as far as the first singularity of the opera-
tor (4.2). As long as the factor 1 —2y(b) in (4.2)
has no zero, the operator is effectively a standard
Fredholm operator. We merely divide through by
1 —2y to put it in standard Fredholm form. Singu-
larities will then occur only when the following
kernel has a unit eigenvalue:(,)

-K(b, b', y, c)
1 —2q (b)

(4.5)

A second way to get a singularity arises when
1 —2y has a zero. Then we do not have a standard
Fredholm problem, but rather an integral opera-
tor of the "third kind. " Such an operator will not,
in general, have an inverse in a space of continu-
ous functions. By examining the finite dimensional
analog of this case, one guesses that the operator
does have an inverse in a space of generalized
functions of the form

cb(b —b, ) +y(b), (4.V)

where b, is the point at which 1 —2q (b) vanishes,
and P(b) is continuous. Conditions for this guess
to be true are given in Ref. 9. This space cannot
be used in analysis of our nonlinear equation,
since we would encounter squares of the delta func-
tion.

K(b, b'; p, c) = 2 xdx J, (bx') Jo(b'x)
0

x [e'e(1 + cE) —1][b(b') —y (b')]b'.

(4.3)

It is not difficult to show that (4.2) is the actual
(as well as formal) Frechet derivative, and that
K(b, b'; &p, c) is the kernel of a completely continu-
ous operator in B, when ygB. The Frechet de-
rivative with respect io c is an element of B hav-
ing the form
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In paper II we shall find by numerica, l calcula. tion
that a singularity of the derivative does arise. We
ha.ve not been able to pass through the singularity,
which appears long before the physical value of
cv, ~ is reached. Thus, we are not able to attach
any physical significance to the class of solutions
found in this paper, at least in the case where h(b)
is the simple step 6(r —b). The numerical calcu-
lation was done with the simple step; it is con-
ceivable that some more complicated choice of
h(b) would be more successful.

In the second paper of Ref. 2, the existence of
a different sort of solution of (1.13) is conjectured.
This solution is continuous in b, in contrast to
our f(b) which contains step functions. Unfortu-
nately, we are not able to say much about this con-
jecture by analytic means. The only solution con-
tinuous in b that we know of is f (b) =-0; (the con-
traction mapping argument carried out in a space
of small continuous functions would lead to this
trivial solution). We do try to study the conjec-
tured continuous solution numerically in paper II.

which is O(x, '), a.ccording to (3.39}and (3.40).
By (A4), H(HP) =P, so the Hankel transform of
(Al) reads a,s follows:

Hf H(f 2)ecH(f ) (A8)

Thus, Hf solves Eq. (1.13) provided that H(f ') is
equal to the functiong of (2.2) evaluated with f=Hf.
In view of (2.4), this means that we must prove
the identity

20 2

bdb J,(bx) xdx Jc(bx)Hf (x)
0

xdxHf(x) xdxQf(x)

x bdb Jc(bx, )Jc(bx2) J', (bx).
0

(A'I)
We write f(x) for Hf (x), and use the following
properties of f and f obtained from Sec. III:
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APPENDIX A

f (b} f 2(b) d H(H(f 2)(ecH(f ) 1))- (A1)

In Sec. III, we have obtained solutions of Eq.
(3.1) which have continuous second derivatives
(except at b =0 and b =2r} and which obey the
bounds (3.8). We now prove that any such solu-
tion yields a solution of the original Ball-Zacharia-
sen Eq. (1.13). First recall that the following
equation is the same as (3.1):

f(b) =0(b ) f '(b)=O(b ' )'

f' continuous, f ' piecewise continuous. (A9)

These conditions are a good deal stronger than
necessary for the proof of (A7).

Since the b integral on the right-hand side of
(A7) is only marginally convergent, the problem
is somewhat delicate. Our technique will be to use
partial integrations to improve the convergence,
so that the integration order may be reversed on
grounds of absolute convergence.

We first justify a reversal in order of the x, and

b integrations in (A7); i.e., we prove that the
following integrals are equal:

f (b) = h(b) ~ [1 —2h(b) ]y (b) . (A2) I, = x,dx, f(x,) bdb Jc(bx2) jc(bx, )jc(bx),

To go back to x space, we may use Hankel's in-
version theorem, "namely, if the integral

(A10)

(A3)

exists and converges absolutely, then

bdbJ0 by XdX Jp bX X
0 0

= 2[4(y +o) + 4(y —0}]. (A4)

b=bdbd (b )d, ,(b )f xx,dx, f (xx, )d (bx, )
0 0

(A11)

After a, partial integration using (3.12), the b inte-
gral of (A10) takes the form

Apply (A4) to the continuous function

(})(x)=H(f 2)(e'"~ ' —1), (A5)
1 d

bdb J,(bx2) —[Jc(bx, )jc(bx)].
X2 p

(A12)
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After substituting (A12), we forU(alty reorder the

integrals in (A10) to obtain

I, = db J,(bx, )J,(bx) b—dx, f(x, )J, (bx,')

(A14)

We can prove that the derivative indicated in (A14)
is piecewise continuous, and may be evaluated by
differentiating under the integral sign. In that
case,

d OO

b dx, f(x, )J, (bx, ) =b x, dx, f (x, )Jo(bx, ),

(A15)

because of the identity J, (z)+zJ, '(z) =z J,(z).
desired result I, =I, follows. To justify the differ-
entiation under the integral, we first remark that
there is no difficulty for the part of f(x) which is
P (x, '~'); the justification is made by standard
means. The remainder of f(x), proportional to

J, (rx)/x, is handled by explicit evaluation of the

integral. The relevant integrals are in standard
books, and the result is thai

d f' Ck OO—J,(rx)J, (bx) = dx J, (rx)J, '(bx)
0 0

(A18)

1
2r' 0&b&r

r~ b&~.r
2b2 P

(A17)

For the proof that I,=I„ first integrate by parts
on x2 '.

I, = — bdb —[J,(bx, )Jo(bx)] dh, f(x, )J, (bx, ),
0 0

(A13)

We now show that I, =I„and later that I, =I,. By
partial integration I, becomes

I3 = — x, dx, f '(h, ) J, (bh, )J,(bh, )J,(bh)db .
0 0

(A20)

I, = x,dx, f (x, ) bdb J,(bh, )Jo(bx)f (b),
0 0

(A22)

I-. = b~b Jo bx b
0

(A23}

This is done by essentially the same means used
to prove that I, =I,. That is, we integrate partially
on b in (A22), and reverse the order formally to
obtain

I, = — bdb —[J,(bx)f (b)]
0

x d'x, x, J, bx,
0

(A24)

We then prove that I, =I, and I, =I„ following the
above pattern. The details are simpler than be-
fore.

APPENDIX 8

We must majorize the integral of (3.2) which con-
sists of three terms:

By introducing the known value of the b integral in

(A20) (Ref. 11, p. 411), and by a final partial inte-
gration on x, , we find

"'"'
h, dx,f(x, ) (A21)

~1/2
.x -x1 ~

where the denominator K /2 is the same that occurs
in Sonine's formula (2.3). By (2.3), it follows that

I, =I, .
To complete the proof of (A7), we are concerned

with showing that the following integrals are equal:

dx,f (x,)J, (bx, ) = + — dx, f'(x, )J (bx,). 'f(0)

(A18)

E(x) =E,(x) -2E, (x) +E,(x)

-2J bdb J,(ebb�(b)
0

Since Jo(0) =1, we obtain
I

I =f (0) — db —[J (bx )J (bx}]
0

x~t dx, f (x,)J,(bx,).
0

(A19)

+ bdb J,(bx)y'(b) .
0

We suppose that y belongs to the ball K, so that
(3.8) and (3.9) hold. For all b and x we have the
bound

bbJ (bx) -P (b -((( ax -b~2-b()

Reordering of the integrals in (A19) is now per
mitted, since the repeated integral converges ab-
solutely [cf. (A8)]. We reorder, then, and inte-
grate by parts on b to obtain

b, =b+1, x, =x+1. (B2)

The following identities will also be needed:

s"J'„,(s) = [s"J„(s)]',
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d—[x 2J, (b x)] = b»-'J,-(bx),

—[x
-'J,(b.~-)] =-', bx-'[5J, (bx) -J,(bx)].

X

(B4)

(B5)

Equation (3.19) is then established.
Finally, we note that E"(x) is continuous at all

x, and that I"(b) is continuous except at b =0. For
E," and E," this is clear. and for E," we use the
formula

We do two partial integrations with the help of
(B3) to obtain

)
rJ, (rx)

( )
rJ, (rx),

( )x

E,"(x)= — b' db J, '(bx)(p'(b) .
0

By the mean-value theorem,

(B13)

r
db J,(bx)q '(b)

X 0

+—, bdb J,(bx)q "(b) .
0

From (B2) and (3.8), it then. follows that

E, (,~) = ' y(r)+O(x, "'4).rJ (rx)
X

(B6)

(av)

I&*"(')-&,"(J)I f&-''&&v'(b)I& (& ) &', (&y)-P
''

0

~
I J,"(b~)l'b'lx -~l'. (»4)

Since J, ' and J," are uniformly bounded, (Blo)
gives

IE.'(x) -E."(x)l- &I ~ -s I', o&b&1, (»5)

By appealing to (B4) and (B5), we have similar
bounds for derivatives:

for all x, y. For I'(b) a similar argument is used,
hut convergence from J, '(bx), J,"(bx) =O((bx) ' ')
must be invoked to give

E„'(x)= ' q(r) O(x -"4)
X

E,"(x)= ' q(r)+O(x, -"4).
(as)

II"(b)-I"(b')I-kalb b'I', o-&b&-,',
for all b, b'&e &0.

(a16)

For E, the partial integrations give APPENDIX C

E, (x) = ——, db J,(bx)y" (b)
0

1
+ —, bdb J,(bx)(p' (b).

0
(B9)

To establish the bounds (3.20), we use the def-
inition of H, (3.1'7), to calculate the following dif-
ference;

From (3.8) and (3.9), we have

q '(b) =O(b, -'C')

~"(b) =O(b, -'C'),

q'"(b) =O(b, 'b-"I b —2rl-"'4')
(Bio)

c(H, H, ) =2c(J,--J,)K, +2c(K, —K )J,
+c(K, -K,)(K, +K,)

+(E, —E~)G2+(G, —G, )E, .

From Sec. III, we know that

(Cl)

When (Blo) is used with (B9}, (B4), and (B5), we
obtain

E,E ', E "=O (all)
Differentiation under the integrals in (B9) was
justified by the uniform convergence of the differ-
entiated integrals.

When we apply the above analysis to the integral
(3.1't), we have to use the weaker hounds (3.15) in
place of (B10). The bounds are still good enough
to evaluate I"(b} hy differentiation under the inte-
gral, except near b =0. Since J, '(s) =O(s ' '), the
behavior near b =0 is bounded as follows:

J, -J.=o(.,-"IIy, -q, ll),

K; K, =O(x, "II-y, -q, ll),
-

E, =O(x, -~'), G, =O(x, -'c'),

K =O(x -")
(C2)

and that similar bounds hold for the derivatives of
these quantities. Hence the first four terms of
(Cl}, a.nd the derivatives thereof, are O(cx, 'Ily,
—q&, ll). The last term is handled by noting the
identity

G, —G, = c(E, —E ) " [e"~&'~' "ls2' —1]du.
0

II"(b)l- c x'dxJ, '(bx)H(x, c) =O(cb ~').
0

(B12}
The integral in (C3}and its first two derivatives
are O(cx, ~'); Eq. (3.20) follows.
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APPENDIX D

To prove the statements of E(ls. (2.1'la) and

(2.17b), we first note that
~ J,(bx)

~
&1, so that

g(o)- Iz(«ll«f bob]b —Iz, (b«)l]]bby]*-o.

(D1}

From this assertion (2.17a) follows. If f(x)~ 0
[and, hence, g(x)~0], then the same argument
give s

f (0) = xdxg (x)e~(")
0

o xlxg x — O

0

Therefore,

f (0)-1, g(0)=f (0)'&I ~

Finally, note that

f (0) &e' xdxg(x) =f (0)'e
0

(D4)

If (&)I -f (o), lg(b)l &g(0).

Also,

(D2)
ol"

f (0))e cb'(0)
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