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A general analysis is given of the interaction of mesons of J~=0', 1', and 2+ obeying the
principles of broken scale invariance in the tree and seagull approximations. In analogy with
current algebra, where one assumes that the vector and axial-vector currents are dominated
by J =1' and 0' mesons in a field-current identity, we assume that the stress tensor e& is
dominated mainly by the 2+ and 0+ f, f', 0, and 0' mesons in a field-stress-tensor identity.
A consistent formalism is seen to require also certain nonpole f-meson mass terms in6l' .
With the usual smoothness conditions, the dynamics can be conveniently characterized by in-
troducing an effective Lagrangian. The conservation law 8~9'" =0 and the Poincar6-group
conditions then imply that (i) the f ' (x) fields (i =1, 2, . . .) of the f, f', etc., mesons couple
with all other "matter fields" (e.g., J+=0~, 1 mesons) by making the usual matter Lagran-
gian of current algebra "generally covariant" by replacing the Lorentz metric g» by a "met-
ric" formed from g&~

——q„~++;X„f&, (a =1., 2, ). (ti) The kinetic-energy part of the f
meson self-couplings must have the form of Einstein Lagrangians formed using the g„~, , e.g.,
v'-g, gl,"R„~where R&„ is the contracted curvature tensor. (iii) Improvement for the spin-
zero parts of the stress tensor is obtained by including "curvature" couplings, e.g. , stag, R„
where R, is the curvature scalar formed from g&~. In general, then, the f-meson couplings
are analogous to very strong gravitational couplings, with the f-meson mass terms breaking
the gravitational gauge invariance. For the situation where one has only one f meson present
our "metric space" is analogous to that of Zumino. However, the "metric space" considered
here is considerably more complicated than such a Riemannian space as more than one met-
ric g ~ Q = 1, 2, ~ . . , is defined on it, and hence by algebraic combinations an infinite num-
ber of "metrics" exist. (We note that in general these metrics will depend nonlinearly on the

f -meson fields. )
Broken scale invariance is introduced through a new postulate which requires that the im-

proved Belinfante stress tensor and its trace play a fundamental role as sources of the J~
=2+, 0+ mesons with a universal coupling strength. The universality also leads to new rela-
tions of the type g&=F m&, etc., between the f- and o-meson interpolating constants which
resemble the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin-type relations in current algebra.
The form of the vector current in the presence of broken scale invariance is derived. The
condition of scale breaking implies that the vector current has canonical scale dimension 3,
and the apparent conflict of conservation of vector current with the f couplings is resolved.
Experimental tests of the present formalism are indicated here and will be examined in de-
tail in a subsequent paper,

I. INTRODUCTION

During the past two years, there has been a
great deal of interest generated in the possibility
that strong interactions possess a broken scale in-
variance. ' This interest has in part arisen as a
consequence of the observed scaling in the electro-
production data, for the hypothesis that physical
laws are scale-invariant at high energies gives a
natural explanation of the scaling obeyed by the
electroproduction form factors in the deep-inelas-
tic region. While this result suggests the attrac-
tive possibility that scale invariance holds rigor-
ously at asymptotic energies, hadron interactions
are certainly not scale-invariant at intermediate
and low energies. Here dimensioned constants
(masses and coupling constants} enter in an im-

portant way. Further, should it turn out that as-
ymptotic scale invariance actually is of fundamen-
tal significance, the manner of its breakdown as
one proceeds to lower energies is also of impor-
tance. In order to discuss this latter problem, it
is thus necessary to examine hadron interactions
in the intermediate- and low-energy regions.

The purpose of this paper is to construct a gen-
eral formalism which attempts to describe meson
interactions at intermediate and lower energies
obeying the conditions of broken scale invariance
and chiral current algebra. In previous analyses
in this energy domain, much information about the
symmetries and partial symmetries of current al-
gebra could be obtained by making the single-
meson-dominance approximation. ' Thus in this
procedure one dominates the I =1 vector current
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by the p meson, the I = 1 axial-vector current by
the A, and m mesons, the divergence of the axial-
vector current by the m meson, etc. S-matrix
elements are then reduced to calculating a specific
set of tree and seagull diagrams (appropriately
unitarized when necessary). The technique has
been applied to a wide variety of phenomena with
considerable success.

A similar program for broken-scale-invariant
interactions would deal analogously with the stress
tensor 9~". Thus one would dominate 9t'" by the
J~=2' mesons [f(1260) and f'(1514)], as well as
the 4 =0' o and o' mesons [which we take tenta-
tively as the q, ;(700) and q, ,(1060)]. Scale break-
ing might be described by dominating the trace of
the stress tensor' 9—= q „,9~' by the o and 0' me-
sons. Much work along these lines has already
been done. ' However, analyses up to now have not
been sufficiently complete to bring out the full
nature of the couplings, implied by broken scale
invariance, of the J~=2', 0+ mesons to themselves
and to the other hadrons. Thus in previous work
only a single f meson is assumed to exist, or if
both f mesons are included they are treated only
in the first (i.e., linearized) approximation. Also,
the spin-0 parts of 6"" are neglected (or inaccu-
rately treated). As will be seen below, the pres-
ence of more than one f meson leads to a much
more complex formalism than the single f-meson
case for the nonlinear f-meson interactions. A

correct inclusion of the spin-0 pole parts of 9~'
leads in a natural fashion to dilatonlike scale
transformation properties for the o and o'. Most
importantly, it is seen that when the nonlinear f
interactions are included, the simple assumption
above that the trace of the stress tensor is pole-
dominated by the 0 and cr' mesons becomes incon-
sistent. A ne'er PrinciPle of scale breaking is Pro
Posed based on a universal coujling of the 8 =2', 0'
mesons to the (imProved) Befinfanfe sfress tensor
and its t~ace. Thus while scale invariance is lost
N lower energies, the breaking occurs in a uni-
versal fashion. The universality requirement leads
to new "Kawarabayashi-Suzuki-Riazuddin-Fayya-
zuddin- (KSRF)-type" relations between the spin-2
and spin-0 interpolating constants

g&=F m&', g&. =F mz, ', I', =I'...
where gz is the coupling strength of 8"" to the f
meson, E, is the coupling strength of B~" to the a
meson, etc. These are in quite good agreement
with the f-meson data (which also imply E,—=F,).

To carry out the above program, we make use
of the technique of introducing an effective Lagran-
gian. As is well known, with the usual smoothness
assumptions, this method is equivalent to the

II. FIELD-CURRENT IDENTITY FOR 9"".,
CONSERVATION, AND POINCARE-GROUP

CONSTRAINTS

A. Field-Current Identity

Any appropriately constructed symmetric stress
tensor must obey the local conservation law

9@v 0 (2.1)

as well as leading to P"-=f d'x 80~ and M""

f d'x[x "8=—'" -x"6'"] obeying the Poincare-group
relations. We refer to Eq. (2.1) as the CTC con-
dition (conservation of the "tensor current") and

Ward-identity technique. ' For our considerations
here it is more convenient than the latter, how-

ever, in that the construction of the single non-
linear Lagrangian corresponds in effect to the so-
lution of an infinite number of Ward identities.
Further, a Lagrangian approach allows more easi-
ly physical insights into questions involving sym-
metries and symmetry breakdowns. In Sec. II the
effective Lagrangian is set up for an arbitrary
number of J =2' mesons interacting with other
hadrons. The full conditions of the conservation
of 9~' and the Poincare-group commentators are
then imposed on this Lagrangian. As mentioned
above, the allowed nonlinear interactions so ob-
tained are quite complicated, and correspond to a
Riemannian space with an infinite number of "met-
rics" defined upon it (formed from the f -meson
fields). Section III illustrates these results for a
simple example involving f, w, and o couplings.
The improvement of the usual Belinfante couplings
arises by coupling the pion to the curvature scalar
formed from the f -meson "metric". The dilaton
nature of the o meson and noncanonical dimensions
of the interacting pion field are seen to arise nat-
urally from the formalism. Section IV introduces
the scale-breaking condition for the general situa-
tion of more than one f meson and more than one
o meson being present. The scale breaking is also
characterized there in terms of a breakdown of
Weyl gauge invariance. When f -meson interac-
tions were neglected, it was a valid approximation
to apply pole dominance to the vector and axial-
vector currents of current algebra. ' However,
just as the nonlinear f couplings prevent the pole
dominance of 6, the nonlinear f and o' couplings
(the latter arising from the scale-breaking condi-
tions) force specific nonpole terms involving f and
o mesons in the currents. These terms are brief-
ly discussed in Sec. V, where it is seen that they
can account for the sustaining of the e'-e annihi-
lation cross section -in the 2-3-GeV region.
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it plays a role analogous to the CVC condition for
vector currents. For the latter case, the conser-
vation condition ean be achieved by first choosing
the vector current V~(x) as the interpolating fieM
for the p meson:

V",(x) = g~ p ",(x), g~ = const. (2.2)

The effective Lagrangian for p-meson interactions
(in first-order formalism) is

e""= pg;(f""' 8-""f*)

(2.8)

where g, is the interpolating constant for the ith
J~=2" f meson, and F, the interpolating constant
for the ath J =0+ o meson. Thns

(2.9)

1 pv j.
2p a (sp pva svppa) 2mp pappa

+ & ppVap a +~I ~
PV (2.3)

where6 c",' is the polarization tensor of the ith f
meson of helicity X, and

(0)8""(0))o„k) = —', F(k "k" +q""m,')N, . (2.10)
where gr is the interaction Lagrangian. The field
equations are

s,p"."+m 'p" = Z". ; J",-=62„/6p". . (2.4)

The field-current identity (2.2) then leads to a con-
served vector current provided g~ is constructed
so that J", is conserved. Thus CVC constrains the
form of gr.

One may proceed similarly for the stress ten-
sor. Consider first the part of 6~" that can be
used as an interpolating field for the f meson. If

f„,(x) is the phenomenological f -meson field, 8""
could in general be a linear combination of f"' and
q""f, where f -=q"Bf„s. To find the proper linear
combination we note that in the vector ease, Eq.
(2.2) reads V" = -(g /m '}(Bg /Bp„), where g„ is
the p-meson mass term in Eq. (2.3). For the free
f -meson field, the mass term leading to an ir-
reducible spin-2 representation of the Lorentz
group may be taken to be'

(2.5)

g~(f"' -q"'f ), g~ = const. (2.6)

Here gz plays the same role as g did for the vec-
tor current. A term similar to Eq. (2.6) will ap-
pear in 8"' for each f meson.

While the conserved vector current of Eq. (2.2)
can have only a spin-1 p field in its field-current
identity, the existence of two tensor indices in Q"'
allows for the presence of spin-zero v fields as
well as the spin-2 terms of Eq. (2.6). The CTC
condition (2.1) requires that these fields enter 8"'
with the structure

where m is the f-meson mass. The f-meson con-
tribution to 8""may be chosen then to be -(gf/m')
x (&2 ~' ~/& f~, ), and leads to a field-current f -me-
son piece of

8. CTC and Poincare-Group Constraints

We examine first the case of a single f meson
being present, and will generalize to the case of
many f mesons in Sec. IIC below. The total ef-
fective Lagrangian describing both the self-inter-
action of the f meson and its interaction with other
fields has the general form

& = &x+ & + &~(fI . x~) (2.11)

The quantities Pz and 2„ involve only the f -meson
fields, with gf representing the "kinetic energy"
part of the f -meson Lagrangian and 2„ the mass
terms. One may write in general

(2.12)

where P~'~ is the free-field mass term of Eq. (2.5)
and ' involves any cubic or higher mass inter-
action terms which may be present. Similarly one
may write Z&=Pf'~+P&, where QP~ is the usual
spin-2 free-field term. ' In. first-order formalism
(with f„„and A" „, to be varied independently) one
has

g~ ~=-2(f"' -~g""f)[8 A" —8 A" j

The function M~" of Eq. (2.8} represents any terms
nonlinear in the f -meson fields that may be needed
for consistency. For the vector and axial-vector
currents such nonpole terms may be set to zero.
We will see below, however, that the CTC condi-
tion forces the presence of a nonzero M~" to cor-
rectly account for the f -meson mass contribution
to 8~'. Thus M"' is proportional to the f-meson
masses squared rn . The appearance of M~' is
due to the. basic nonlinearity of f -meson self-in-
teractions required- by CTC, arLd would not show up
in any linearized treatment of the f -meson sys-
tem.

', F (q"' ' —8"9")o, -F =const. (2.7)

Equations (2.6) and (2.7) represent the f - and
a-meson pole parts of 8"". We now choose as our
field-current identity for 8~' the general form

(2.13)

The term g„contains the free Lagrangians of all
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fields y, (x) other than the f -meson, the interaction
between the y, fields, and the interaction between
the f and y, systems. We will collectively refer
to the y, fields as the "matter fields".

Varying Eq. (2.11) yields the f -meson equations

gf bf + gf b'f

+ M"' + (gf m ') +p FH".', (2.15)
P II5

where we have introduced the abbreviation

ff/lV —l [~/V 2 BPSv]o (2.16)

+m'(f"" -rt"'f) = + . (2.14)
Pll PV PV

Using the field-current identity Eq. (2.8) (for the
single f-meson ease), one obtains an expression
for 8"":

Lorentz group conditions. Equations (2.18a) and
(2.18b) may be directly integrated. To do this de-
fine an "f-meson metric" g„„(x)according to

g„,(x)=-q„„+Xf„,, A. -=2m2/gf. (2.19)

Equations (2.18a) and (2.18b) then imply that ri,
and f„,(x) enter into g„and gf onLy in the com-
bination g&„(x). More precisely, the f-meson in-
teractions in „are to be constructed by starting
with the matter Lagra, ngian in the absence of f
mesons (i.e., with f„, set to zero) and introducing

f mesons by formalty forming a generally couari
ant scalar density using the f-meson metric g, (x)
of Zq. (2. 19). Thus one replaces q„, by g„„(x)
everywhere and multiplies by the appropriate fac-
tor of (-g)'f2 to form a scalar density. For ex-
ample, to introduce f-meson couplings into the
pion mass and kinetic energy terms one modifies
them in the following manner:

Now if e&" is to be correctly conserved and yield
a I'I" and M~" which generate the Poincare group,
it clearly can differ from the usual symmetric
Belinfante stress tensor 6)' by at most a "super-
potential" term. ' As is well known, the Belinfante
stress tensor for any Lagrangian g can be con-
veniently constructed by the following device: Re-
place the Lorentz metric q„, in g by a fictitious
external grauitational metric g&„(x), multiplying
where necessary by factors of (-g}'" (where g
=detgz„) to form a new Lagrangian 2 which is a
scalar density under general coordinate transfor-
mations. (E just represents the correct Lagran-
gian of the original system in the presence of the
gravitational field. ) Then the esI'" associated with

Lagrangian g is

(2.17}ePv 2 5: (.)-~l~V —&PV ='UPV

In the following we will introduce the convenient
abbreviation 2(bg/bq „,) for the right-hand side of
Eq. (2.17).

Returning now to 6~', the first three terms of
Eq. (2.15) can be associated with the contributions
to the Belinfante stress tensor arising from g~,
2&, and J, respectively. Thus if we write

5@~

~g'

/JV 1 PV

(2.18a)

(2.18b)

(2.18c)

the total 6"' will coincide, to within a superpoten-
tial, with the total Belinfante stress tensor, - and
hence automatically obey the conservation and

—2m' &a~a ~m7f & g &a&a~
2 1 g t

I V 1
P'g ~P&~~V 7T~ -2V -g g ~ 7T 8 7l

(2.20}

where g"" is the contravariant f-meson metric
defined by g j" g, = 5", . The above result thus de-
termines all the f-meson couplings to the matter
variables to arbitrary order in terms of one cou-
pling parameter A. .

In a similar fashion, Eq. (2.18b) implies that pf
is a generally covariant scalar density constructed
purely from the f -meson metric g„,(x). Further-
more, to correctly represent the free spin-2 f
meson, it must have a quadratic piece equal to Q&'

of Eq. (2.13). As is well known from Riemannian
geometry, only the curvature scalar density satis-
fies these conditions. ' Thus, define the "contract-
ed curvature tensor" R „, by

R„,(r s&) =&~r"„„—&„r „„+I'„,rs„8
—I'"„81"s„„, (2.21)

where 1"
z is an "affinity. " Then in first-order

formalism g& must have the Palatini form

Zf =(2/~') 4-g g &"ft „,(r"„), (2.22)

where g„, and I'
8& are to be varied independently.

If one expands g-g g~" to terms linear in f„„,one
easily sees that the quadratic parts of Zz have pz'e-
cisely the form of Eq. (2.13) with the association
I 8 =RA 8„. The quantity Zz of course is highly
nonlinear, the cubic and higher terms representing
f -meson self-interactions.

The above discussion shows that the interaction
of the ma, tter fields y, with the f meson and the
self-interactions of the f meson contained in gf
are formally identical to the corresponding gravi-
tational interactions. Both g„and g~ are "general-
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ly covariant" structures if one assumes that the f-
meson metric g„„(x)formally transforms under
general coordinate transformations as the gravita-
tional metric g„,(x) does. However, the mass
terms breaks this covariance, as there is no sca-
lar density formed from g„„(x}with quadratic part
equal to the 2"& of Eq. (2.5). Thus the f meson
acts as a massive strong gravitation. In general,
the mass terms in the Lagrangian are restricted
by Eq. (2.18c}. Since Z„ is a Lorentz scalar
formed from the Lorentz tensors f„„q„„,q"",
Eq. (2.18c}can be written as

ag'

P II CK II

We first note that Eq. (2.23} implies that M"" can-
not vanish, i.e., the field-current identity Eq. (2.8)
must contain nonpole terms to correctly account
for the f meson-mass contributions to 8"". This
may be seen most easily by attempting to solve Eq.
(2.23) with M~' =0 by an iteration procedure.
Thus, inserting the i', &'& of Eq. (2.5) on the right-
hand side of Eq. (2.23) gives a set of partial dif-
ferential equations to determine the cubic terms
in J'. However, one easily verifies that these
equations are not integrable, and so M~" cannot be
zero. Rather Eq. (2.23} can be viewed as an equa-
tion that determines M~" for arbitrary J'. Thus
the formalism leaves g comPletely arbitrary ex-
cept for its quadratic part which is given by Eq.
(2.5), i.e., the nonderivative f-meson self-cou-
plings are undetermined. The simplest possibility
would be to set g' =0, i.e., choose g =g"'.
Equation (2.23) then yields

M""=- *n"'(f f--f')+2 '(f".f "-f""f),
(2.24)

which is, of course, just the mass terms of the
stress tensor arising from the Lagrangian of Eq.
(2.5).

As we have now determined the form of g& and

g„, it is interesting to see how the field-current
identity combined with the f -meson field equa-
tions yield the correct stress tensor. Thus vary-
ing Eq. (2.11}with respect to f„„and using Eqs.
(2.5), (2.19}, and (2.22} one obtains the "massive"
Einstein equations

-(-g)'"G ""+ m'( f~" —q""f) = X +
2 egg 6g'

6gq, 6fq„'
(2.25}

where G„„—=R &„-2g&„R is the Ricci tensor (R
-=g""R&„) formed from the f-meson metric Eq.
(2.19). We note that the first term on the right-
hand side in Eq. (2.25) is just —,'X8g", where 8p
is just the Belinfante stress tensor formed from

Varying J with respect to" I' „,and follow-
ing the usual analysis of general relativity yields"

(2.26)

i.e., the "affinity" is the usual Christoffel symbol
constructed from the f metric. Equation (2.8) now

gives

8 "=-4X-'v'-g G "+8)"+8~'+PS.'a~",

(2.2V)

where

is just the Belinfante stress tensor contribution due
to the f -meson mass terms Z„[by Eq. (2.18c)].
The first term is, of course, the Belinfante stress
tensor arising from Zz. Its physical content be-
comes clearer, however, by noting from Eqs.
(2.21) and (2.26) and the definition of G"' that
4-g G"' begins with a structure linear in the f
meson fields. Thus one may write

G Pl/ I Pl/ + qPU (2.28)

C. Generahzatiop for Many f.Mesons-
"Multimetric" Spaces

We now generalize the results of the previous
section to the case where there is more than one

f meson present. Each part of the Lagrangian of
Eq. (2.11}now depends upon all the f -meson fields
f„'„, i =1,2, . . . , N. The quadratic part of the f-
mass Lagrangian is g~'& =PmPLf "~f„'„-(f')'],
and so the field equations read

where I."" is the linear piece and Q"" the quadratic
and higher nonlinear parts. One finds directly

y-1L jill —(s stlfaP+8 sPfaP +f /II sPsvf)

(2.29)

It is easy to verify that L~" is just a superpoten-
tial term, i.e., „Lt'" =-0 and L~" gives zero con-
tribution to P" and M"". In fact L~" plays a role
in 8"" analogous to the linear superpotential term
a,p,"' of the vector current obtained from Eqs.
(2.2} and (2.4). Thus the real f-meson contribu-
tions to the stress tensor come from the nonlinear
parts of Q"' which represent the f-meson kinetic-
energy eontx jbuUons to 6~". Indeed, the quadratic
parts of -4X ~Q"" +8"„"are just the usual free-
field massive spin-2 stress tensor, while the ad-
ditional nonlinear pieces represent the self-inter-
action stress tensor. '3
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eg
+ m, '(f»'' q»'f ) — + (2.30)

bf I 'I, 5ff 6ff

Using the field current identity Eq. (2.8), the con-
ditions that 8""obey the conservation and Poin-
cari-group constraints [the generalizations of Eqs.
(2.18)] are

gl 0 bf4
pp 0pp

(2.31a}

2 egg 6Sy
gI I bf'

pv . 0pp
(2.31b)

Bg' 5Z
M»" +Qg, m, * g" =2

5
(2.31c}

»IJ 1»v

In order to integrate Eqs. (2.31a) and (2.31b) we
define an f -meson metric g„„for each f meson:

g»~(x) = q„-»A+.;f„'„, A., -=2m /g;. (2.32)

[The index i is not summed in Eq. (2.32).] The full
content of Eq. (2.31a) is that the fmesons enter
I'„only in the combinations g„„jand that g„ is a
gene~ally covaxiant scalar density constmcted by

using these metrics. Similarly, Eq. (2.31b) im-
plies that g& is a generally covariant scalar densi-
ty constructed purely from the g»„,(x). Finally,
Eq. (2.31c) gives no constraints on 8' (which is
arbitrary other than the requirement that it has
the correct quadratic 2&'~ piece).

When more than one f meson is present there is
more than one metric which may be used to con-
struct g„and g&. The mathematical substructure
needed to describe the many f -meson interactions
is much more complicated than for the single f
meson and corresponds to a Riemannian space
with N independent metrics defined upon it. Spaces
of this type do not appear to have been studied in
any detail by relativists or mathematicians. %'e

give here a brief indication of the complexity of
such "multimetric" spaces. Once more than one
metric exists in S, Riemannian space, an infinite
number of metrics can be formed from algebraic
functions of the fundamental metrics. The new

metrics g„„„arerestricted only in that they be
second-order symmetric tensors constructed from
the fundamental g&„j and that they be normalized
to the "flat-space" limit

(2.33)pp j alp

Essentially two characteristic types of algebraic
functions can be formed. First, one may construct
new metrics out of polynomials of the type

g»vA QcAI g»vl+Eckf/kg»a48J gsvk+

(2.34}

Second, one may multiply any metric by ratios of
4-gj, since each of these transforms as a scalar
density, e.g.,

g ~a&/2 g ~a2/2
g»vA= I ~

' ' g»vm'~ ~ ~
~ (2.35)

Of course one can also combine the two types of
operations. Any of the new metrics can be used in
forming the covariant parts of the Lagrangian, g„
and g~. Thus in the example of Eq. (2.20} the met-
ric in the pion mass in general may be a different
nonlinear function of the g&,j than the one used in
the kinetic part. Similarly, the metrics in the
pion Lagrangian need not be the same as the one
in the kaon part of the Lagrangian or in the inter-
action part of the Lagrangian, etc. Thus when
more than one f meson is present, the nonlinear

f couplings become very complicated and are not
uniquely determined (as in the single-f case,
where we saw that all the f couplings depended on-
ly on one parameter X).

If one treats the f meson to the linearized ap-
proximation, matters again simplify considerably.
Thus keeping only terms linear in f„'„Eq.(2.34}
reduces to

g»uA ZPA4g»A u EPACT (2.36a)

or alternately, using Eq. (2.32), one can write

g»vA 1»u + Z~Aff»v ~

j

~At PAl ~4 ~

(2.36b)

P(g~/2m)')X„, =1.
Structures of the type Eq. (2.35) linearize to

gyp' gppm+OppM ~AjJ

Z(g, /'2m, 'b„,=0.
(2.3V)

~f Z(2/~A )~ gAgA ft»v(1 QyA) t
A

(2.38)

where A.„is the analog of X in Eq. (2.22) (and is de-
termined below}. If the f„'„are to correctly an-
nihilate and create f mesons in the "in" and "out"
states, the quadratic part of Eq. (2.38} must diag-
onalize to be a sum of structures of type Eq. (2.13),
one for each f meson. One can verify that this

As can be seen, the general metrics even in the
linearized approximation are not diagonal in the f-
meson fields, and mixing between the different f
meson fields can occur.

The arbitrary metrics of course also enter into

cGy 5 g p pAy A 1 N are N algebraically inde-
pendent metrics, then the N-meson generalization
of Eq. (2.22) is
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condition (that the theory linearize correctly) ex-
cludes algebraic functions of type (2.35), and thus
to the linear approximation g„,„has the form of
Eq. (2.36). Writing

ByA Z Ai A 8yi &

j
the requirement that the quadratic parts of f diag-
onalize (i.e., that g~') =P, g&~', )) becomes

(2.39)

Alternately, Eg. (2.39) implies that the matrix
p,„,—= X„,./X„ is orthogonal. In addition to Eq. (2.39)
the A.„,- obey the constraints given in Eil. (2.36b),
which allows one to relate ~„back to A.; -=2m /g, .
For the physically interesting case of two f me-
sons (the f and f'), one ha, s that g„, is given in
terms of one "mixing angle. " The fact that the
quadratic parts of g& have been diagonalized does
not imply that the cubic and higher parts will be.
Thus f f f', etc -ve-rt. iees can still exist. Such
interactions would be forbidden in the quark mod-
el, which would correspond here to the choice p,„;
= ~wc and g'p vw

= g p va ~

D. Summary

In this section we have obtained the full condi-
tions imposed upon the effective Lagrangian by re-
quiring that the field-current identity stress ten-
sor obey the conservation and Poincare-group
constraints. The analysis has been carried out to
arbitrary order in f couplings, with an arbitrary
number of f and o mesons interacting with an ar-
bitrary hadron system. It is interesting that the
assumption that the stress tensor is a smooth in-
terpolating field for the J~ =2', 0' mesons (which
is what the field-current identity implies) auto-
matically leads in the single-f -meson case to dy-
namical interactions between the f meson and
other particles and f self-couplings which are
identical to graviton couplings. In the many-f-
meson case (which is the physically interesting
situation) the coupling structure is more compli-
cated than. in the Einstein theory; it corresponds to
a Riemannian, n space with more than one metric
(and hence an infinite number of metrics) defined
on it.

We should like to emphasize that the assumptions
that have been made in this section are very few.
We have started by choosing the stress tensor as a
smooth interpolating field for the J~=2' and Q' me-
sons. The stress tensor must of course satisfy
the conservation of energy. and momentum as well
as obey the constraints imposed by the algebra of
the Poincare group. These results then automati-
cally imply that the hadrons interact with the f

mesons by inserting f -meson metrics into the
hadron Lagrangian to form "eovariant" structures.
Furthermore, the presence of more than one f
meson implies that the choice of metric is not
unique, and may in general be different in each
term in the hadron Lagrangian. This in turn leads
to the result that the f-f mixing will a Priori be
different at each vertex. Qne can of course force
this mixing to be the same by an appropriate choice
of the coupling constants. However, this would be
an additional ad hoc assumption for which there is
no justification, and in fact is in contradiction with

present experiment. Qne may also argue from a
purely theoretical point of view that mixing should
be different at different vertices. We must keep in
mind that the development presented here is a
phenomenological one, with the field operators
creating and annihilating physical particles, and
the Lagrangian an effective one to be treated in the
tree-seagull approximation. If, in fact, there did
exist an underlying fundamental theory in which
the f and f ' couplings were in a fixed ratio at all
vertices (e.g. , "ideal" mixing) then renormaliza-
tion effects at the vertices would in general result
in the ratio of the xenoxmalized coupling constants
(with which we work here) being different. (One
could obtain the same renormalized mixing at all
vertices only if there existed some deeper prin-
ciple such as a gauge invariance to guarantee it.)

The nonlinear self-interactions of the single f
meson have been treated by Wess and Zumino and

by Isham et al. in a different manner. Wess and
Zumino do not examine f couplings to other had-
rons and choose a particular class of f-meson
mass terms. " Raman and Renner have considered
the many-f -meson case interacting with hadrons in
the linearized approximation. In addition we have
also included the spin-zero components of the
str ess tensor, which will be seen to play an im-
portant role in the next sections.

III. IMPROVEMENT, ANOMALOUS DIMENSIONS,

ANDDILATONS

In this section we illustrate some of the proper-
ties implied by the previous results for the model
of a m meson interacting with a o and an f meson.
For simplicity we consider only the case of a sin-
gle f meson and a single o meson. The matter
Lagrangian is chosen to be (in second-order for-
ma. lism)

(3.1a)

2„=—zl —g g"'s„m,s„w, —2v'-g m 'm, ', (3.1b)

(3.1c)
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+WaVfg~ 8 g &a~P&aV+ ~ (3.1d)

As discussed in Sec. II the use of the metric g„, „(x)
of Eq. (2.19) introduces the f couplings in a fashion
guaranteeing the Poincare-group constraints, as
2„ is a generally covariant scalar density. The
three cr-m-m couplings are precisely the ones con-
sidered in previous em rent-algebra analyses. '
g„ is the "improvement" term defined below in
Eq. (3.6).

The dilatation current is given by D~ = -g,. o~".
The dilatation charge,

D(t) = —
J

d'xx, 8 ", (3.2)

generates changes in fields P(x) of fixed scale di-
mension d& accordii&g to

f[D(t), y(x)] =[d, +x S„]y(x). (3.3)

Qn, the other hand we shaQ call a "dilaton" any
field 7(x) which transforms under scale changes
according to

&[D(t), 7(x)] = I/5+x "&„~( )x; (3.4)

+ —
m v'-g G"', (3.6)

where the covariant derivatives' in Eq. (3.6) are
formed in the usual fashion from the f -meson met-
ric. In the limit that one neglects the f meson,
the first term is just the usual Huggins term. "
The second term represents an additional inter-
action energy between pions and f mesons.

In the following analyses, we will neglect the f-
meson couplings by taking the "flat-space" limit

the stress-tensor components 8" are obtained.
from Eq. (2.2V).

The "canonical" dimension of the pion field (as
obtained from the Noether's construction of the
dilatation charge), is d„=l. As is well known, "
this dimension is not obtained from Eq. (3.3) un-
Iess the stress tensor e~' is "improved. " An im-
proved stress tensor can automatically be obtained
by adding a "curvature" coupling P~ between the z
and f mesons:

g = ', n.m, v'-g--g""R„„(r8 ), (3.5)

where g„„ is given in Eq. (2.21) and I"
8 is the

Christoffel symbol [Eq. (2.26)] constructed from
the f metric. (We are using second-order formal-
ism. ) The total matter Belinfante stress-tensor
term 8)" of Eq. (2.27) thus contains the usual
terms from go„+go +Jr plus an additional term
from gs. One finds that 8g' = 2(sg„/Bg„„) is given
by

8g" = —'4-g [-(x')'"'+g""(m')' ]

g„,-g„, (i.e., &-0). A more complete discus-
sion of the paints considered below will be given in
the second paper of this series. " The dimension
of the pion field is most conveniently obtairied by
evaluating Eq. (3.3) at x"=0. Then D(0) = J-x;8"
Using Eqs. (2.2V), {3.1), and (3.6) one has {in the
flat-space approximation")

()05 gOt ~ gkg0
N

where

{3.V)

8'„' =[a'p,s'p, + a'gs'o —x„„s'~,s's.o
—q.„,w.(s'~.s'o+ s'w. sou)] --,' a*so{&.&.) .

(3.8)

The last term in Eq. (3.8) comes from the curva-
ture coupling (3.5). To calculate the commutator
of Eq. (3.3), one eliminates the time derivatives
ao7'T, and 80o in terms of the canonical momenta
p„(x),= eg„/s(&, w.) and p.(x) = sg„/s(s, o). One
finds

s, m, =[p„+p„,m, p, ]/&,

B,v =[(1—X„,o)p, + p,„,s,p, ]/A,

where

(3.9a)

(3.9b)

(3.9c)

The only terms in 8"which contribute to the pion
dimension are the o -superpotential term and the
pion Huggins term. One finds

d, =1 [E+,p,„,+A, „„o-+(g „)'w.m, ]/b . (3.10)

It is convenient to distinguish between the "can-
onical" dimension of a field and its "anomalous"
dimension. The canonical scale dimension is the
dimension one mould obtain from a Lagrangian
possessing only nonderivative couplings, and co-
incides with the usual dimension of the field (i.e.,
unity for the pion field). In our phenomenological
approach, we see that the pion has anoma, ious scale
dimension as well, arising from the derivative
couplings. In a nonderivative coupling theory,
anomalous dimensions arise only due to the singu-
lar nature of closed-loop diagrams is e see that
the derivative couplings produce anomalous dimen-
sions even at the t ee and seagull approximations.
The anomalous dimensions of Eq. (3.10) are of two
types. First there is a c-number piece I p, . In
addition, however, Eq. (3.10) exhibits more com-
plicated q-number anomalous dimension. This is
precisely the type of structures found by Coleman
and Jackiw" in their study of the closed-loop dia-
grams of simple models. There the anomalous di-
mension could be represented by a c-number shift
of d only to lowest order. In the phenomenological
analysis used here, the derivative couplings arise
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1/b, =F + p,„,(I +F,p,„,)m, v,/b, . (3.11)

Again we see that there is a normal or canonical
piece to 1/b, and an additional anomalous q-num-
ber part due to the derivative couplings. One may
thus call the o an anomalous dilaton. Note that the
canonical part of b, is not arbitrary, but in fact it
is deduced to be 1/F, . It is important to realize
that the dilaton nature of the 0 field does not arise
in attempting to realize some scale-invariance
condition, but rather is a direct consequence of
the presence of a spin-zero part of the stress-
tensor field current identity" (2.8).

~. SCALE-BREAKING CONDITIONS

In this section we shall investigate the dynamics
of scale breaking. As pointed out in the Introduc-
tion it appears possible that the physical laws are
scale-invariant at high energies, as for example
demonstrated by the scaling of the structure func-
tions of the electroproduction in the deep-inelastic
region. At the low- and the intermediate-energy
regions significant deviations from the scale-in-
variance limit would naturally arise. Thus if the
study of scale invariance is to be a useful idea one
must discover the manner in which scale invari-
ance breaks.

We propose in this work a new principle of scale
breaking which occurs as a dynamical equation of
motion. For the first part of this discussion we
assume the existence of only one o and one f mes-
on. The generalization to more than one meson is
given below. That scale breaking is intimately
connected with the existence of the o meson and its
interactions with other particles has already been

naturally in the current-algebra interactions, and
thus the anomalous dimensions arise naturally.
We see therefore that the effective-Lagrangian aP
proach in the tree seagull approximation is suf-
ficiently powerful to simulate in the low- and in
termediate en-ergy ranges the anomalous effects
characteristic of closed loo-p diagrams. Most sig-
nificant is the fact that since the effective Lagran-
gian gives an approximately realistic description
of the low-energy phenomena, the parameters ap-
pearing in the anomalies can be related to real ex-
perimental phenomena, i.e., one is not merely
dealing with a model. "

We next turn to the scale-transformation prop-
erties of the o meson, which again can be calcu-
lated using the B"of Eqs. (3.7) and (3.8). The
significance of the o-meson superpotential term
becomes clearer in that it implies that the 0 meson
has dilatonlike transformation properties. Thus
evaluating the commutator of Eq. (3.4) for o(x) ex-
plicitly at x~ =0 gives

noted. Thus it has been suggested4 that scale
breaking can be characterized by dominating the
trace of the total stress tensor by the cr meson it-
self, i.e.,

(4.1)

This condition, unfortunately, turns out to be in
conflict with the CTC and the Poincare-group con-
ditions when f -meson couplings are included.
Thus it was seen in Sec. II that the f meson cou-
ples to all "matter" fields in a "generally covari-
ant" way, while Eq. (4.1) is a noncovariant "flat-
space" trace. Specific problems arise in the f-o
couplings. Using the stress tensor of Eq. (2.8),
the covariant f -o couplings of Eq. (3.1c) can be
seen to be inconsistent with Eq. (4.1). Thus while
Eq. (4.1) represents a valid possible scale-break-
ing condition in the absence of f mesons, it must
be modified to take f couplings into account
These modifications will have to produce a "co-
variant" condition to eliminate the inconsistencies
with CTC, which implies covariant f -meson cou-
plings.

At this point we should like to remark on a dif-
ficulty usually associated with Eq. (4.1). In the
event that we deal with a single 0 meson, one finds
that it leads to the well-known problem that' m, '
= 2F,g, „„=O(m,'). However, if there exist both a
a and a 0' meson, then one finds instead m, '
=2(F,g,„„+F,,g, ,„).This last result is consis-
tent with experiment since it only requires that

g„,and g, ,„be of opposite sign and cancel to
O(m, '). The scale-breaking conditions with two
mesons present will be given below, and the de-
tailed verification that the resultant equations are
consistent with the experimental o and o' widths
will be discussed in paper II.

It is instructive to examine the question of scale
breaking in terms of fields and their sources.
The sources of the gauge fields are the currents.
For instance, the source of the photon equation is
the electromagnetic current

g PP~ -e~P (4.2)

and the source of the p-meson equation is the vec-
tor current

&„p~&" + mp'p& = J~&. (4 3)

For the graviton and the J~=2+ fields, the Belin-
fante stress tensor of matter eg" (=252„/6q„„)
plays a role analogous to that which the electro-
magnetic and the vector currents play for the pho-
ton and the 8 =1 meson. Thus Bg" acts as a
source of both the graviton and the f meson. For
the f meson the field equations read
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v'-g ( o:"-+ m, 'o) =y6„ (4.5)

where o: . is the generally covariant d'Alember-
tian

o: . =(1/v'-g )s (v'-g g~'8 o) (4.6)

formed from the f-meson metric and arising from
varying Z„of Eq. (3.1c). Our postulate implies
that the scale breaking is governed by the dynami-
cal equation (4.5) rather than Eq. (4.1). The mat-
ter Lagrangian may be written as g„=g„+g„,
where J~ is the 0 interaction Lagrangian. Equa-
tion (4.5) thus implies that 521,/bo =y6„. The
constant y is thus far undetermined. It represents
the effective charge or strength with which the o

meson couples to matter via the trace of the Belin-
fante stress tensor. However, in the approxima-
tion of neglecting the f meson, the total stress
tensor of Eq. (2.27) has a trace of 6 =6„+F.a'o.
Requiring Eq. (4.5) to reduce to Eq. (4.1) in this
approximation evaluates the constant y to be y
=1/F, . Hence the scale-breaking condition is

&~s

&u
(4.7)

Equation (4.V) may be viewed as a functional dif-
ferential equation to determine the o -coupling
structure in g„, and an example of this will be
given in Sec. V and also paper II. It represents a
generalization of Eq. (4.1) to include the nonlinear

f- and o-meson couplings in a consistent fashion.
Equations (4.4) and (4.5) are two fundamental

equations of the formalism. The two constants
m'/g and y =1/F, represent the coupling constants
of the matter stress tensor to the spin-2 and spin-
0 mesons, respectively. It is possible now to car-
ry the discussion one step further. Just as the
nonlinearity of the current algebra normalizes the
amplitudes of the currents so that it is meaningful
to talk about a universal Fermi interaction, the

m2' (-g)'"G""+m'(f"' -n""f)= 64' (4 4)m' g'y

The above discussion exhibits the fundamental
role that eu~" plays as a source and a "current. "
However, unlike the vector case where CVC for-
bids the vector J," having a spin-zero part, CTC
does not prevent eu~' from having a spin-zero
piece, i.e., its trace, e„=gu„9u„'. If e„ is also
to be a source, it could only be a source of the
spin-zero fields. We therefore postulate that the
"curved sPace" trace of the Belinfante matter
stress tensor 6„is the source of the o meson W.e
will see that this assumption represents a scale-
breaking condition which is a natural generaliza-
tion of Eq. (4.1).

We now have

Poincare group normalizes the amplitude of the
stress tensor, and so it is possible to talk about a
universal coupling of 6"„' to the f and o' mesons.
We now propose a uniuersal coupling of the J~=2+,
0+ mesons to the Belinfante stress tensor and its
trace. This universality demands that y = m'/gz,
and hence one obtains a "KSRF-type" condition re-
lating the spin-2 and spin-0 interpolating con-
stants:

gy=E m . (4.8)

It is instructive to derive the scale-breaking con-
dition (4.5) from another viewpoint which is mathe-
matically equivalent to our first postulate. This
approach characterizes the scale breaking as a
broken-gauge invariance of the second kind. To
motivate the argument let us consider first an
analogous derivation of the PCAC (partial conser-
vation of axial-vector current) condition of current
algebra. Consider the A, field a~(x) interacting
with a set of other fields X„=v, (x), p, (x), . . . . We

may write the total Lagrangian as 2 =J»
+2„(X„,a,"), where Z» is the free A, Lagrangian
and g„ is the remainder. We define a (chiral)
gauge transformation of the second kind by

5a ~(x) = (g„m„-')s„5x.(x),

5v.(x) = F,5X.(x),

etc. , where 5A.,(x) is the infinitesimal gauge func-
tion. One has then

&S~ 5g~
5Au= )t d~x 5aq, + 5X„

&+ua &Xa

where

(4.9)

(That it is the total Z, „rather than only the mass
part of g,„that enters into this characterization of
chiral breakdown is due to the fact we are dealing
with gauge transformations of the second kind. )
One has then that

5Que + 5X~=
~Qua XA ~a ~a

Using the field equations this implies

»a (4.10)

~2g ~N —a
~x~ ex~ " e(s„x~)

'

We now postulate that chiral breakdown arises due
to the lack of invariance of the free pion Lagran-
gian, i.e.,
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where J„(x) is the source of the pion field. Equa-
tion (4.10) is just the PCAC relation B„A",= E„m,'x,
for the axial-vector current A~ = g„a",+I",8"m, .

Returning now to the scale-breaking condition,
the analog of the chiral transformations are the
Weyl transformations, which are also gauge trans-
formations of the second kind. Under the Weyl
transformations the fields transform as

6g„„=-2g„,(x)6x(x),

6XA = &AXA(x)~&(x) XA«

5o = F.5X{x),

(4.11)

(4.12)

We now postulate that it is the free-o. Lagrangian
that prevents A~ from being Weyl-invariant

(and hence causes the breakdown of scale invari-
ance); i.e., we assume as our basic scale-break-
ing condition

where dA is the Neyl dimension of the field y„.
The 0 meson has a dilatonlike transformation.
The Weyl dimension of g„, is -2. We write

~of + Iddd( gpu ~ XA) ~

where g,z
= gf + 2 is the f-meson Lagrangian

(which now contains f -meson self-interactions due
to CTC), and XA are the matter fields, including
the 0 meson. As has been shown by Wess and
Zumino, ' invariance of g„under the Vfeyl and the
Einstein transformations guarantees invariance
under the scale transformations. In Ness and
Zumino s analysis, the metric was a fictitious ex-
ternal gravitational field. However, the argument
works equally well with the f -meson metric. The
change in the action under the Weyl transforma-
tion is

Eq. (4.16}is identical to Eq. (4.7).
Let us now consider the extension of our result

to the multi-f and multi-o cases. We consider
again the action A„, where

XA} (4.1V)

and g„„;is the metric of the ith f meson of Eq.
(2.32). For the case of more than one metric the
Weyl transformation must be generalized. We de-
fine

6o.= F.6X.(x),

6g„„;= -2Q A.;~,gp „~ 6A.~(x),
J,C

(4.18)

(4.19)

since it is possible that the Weyl transformation
mixes the g„„.. If one is now to extend the theorem
of Ness and Zumino4 and achieve scale invariance,
as a consequence of Einstein and Weyl invariance
it is necessary that 6g„„=-2g„„.e for the special
case 6A., =e, where x'" =(1+a)x~ is the infinitesi-
mal scale transformation. This leads to the con-
dition

QX;, =6;,
C

(4.20)

The extension of the postulate Eq. (4.13) implies
that for the multi-0-meson case the change 52~
under the Weyl transformation be given by

, &&0
6A.~= d x 50, ,60, (4.22)

The change in A„under the general Weyl trans-
formation is

dd„= . dx Qd d„„tQ d dX).6&dd

i

(4.21)

5A.~ = 60 .I' 620, (4.13)
where g„=g,go„. From Eqs. (4.21) and (4.22)
and the equations of motion we get

Thus it is the dilaton field that causes scale break-
ing in A.„. Using Eqs. (4.11), (4.12), and (4.13) we
have [since 6X(x) is arbitraryj

-2 g„bA. + g 6XA
EPI/ A XA

= -g-g (-o'".„+m, 'o)F,5X.

(4.14)

where J, is the source of the ath 0 meson;

J, = v'-g, (-o.' . + m, 'o.)
and

Mj i RPyJ'e "=—2
goui

(4.23)

(4.24}

(4.25)

The matter field equations read 5p„/5XA =0 and
Summing over the index a in Eq. (4.23) and using
Eq. (4.20) we obtain the result

&&i,v'-g (-o ' .„+m, 'o) = J, -=

From Eqs. (4.14) and (4.15) we obtain

I' J —gp, 8"

(4.15)

(4.16)

PF.J.=Pe„,, (4.26)
a

Equation (4.26) is the generalization of Eq. (4.1) to
include f -meson couplings, when more than one f
and o meson is present.
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The above formalism allows for a particularly
simple possibility if the numbers of f and v mesons
are equal (as at present appears to be the case ex-
perimentally). Then the indices a, c, i, and j of
Eqs. (4.18) and (4.19) run over the same range,
1, 2, . . .¹ As discussed in Sec. II, one is free to
introduce new metrics which are linear combina-
tions of the fundamental g„„. Thus a new set of E
algebraically independent metrics is

guava Zeaigpui I Zeai (4.27)

From Eqs. (4.19) and (4.27) we obtain

~gpaa = -2Z &aaagpua&~a ~

where

x.„=pc.;z;,,(c '),,

(4.28)

(4.29)

Let us now assume that there exists a particular
set of g„„,- such that the A,,b, are completely diago-
nal. Then

lac- »a~»a. ~ (4.30)

since Eq. (4.20) requires in any basis P,A.„,=5„.
This implies that the multidimensional Weyl group
of Eqs. (4.18) and (4.19) is a direct product of one-
dimensional groups. In the special frame of Eq.
(4.30), 5g„„=-2@~„,5X„ i.e., the g„„,metrics have
Weyl dimension -2 with respect to the transforma-
tions generated by 5A, From Eqs. (4.23) and
(4.30) we find

v'-g. (—v. '". +m, 'v. ) =Z. =F,-'6„.,
where

(4.31)

gp-.
~8pva

(4.32)

(4.33)

where 6"„',=2&@„/Sg„„. Thus the g„„.of Eq. (2.32)
are the fundamental metrics for the f-meson
couplings, while the g„„are the fundamental met-
rics of the 0-meson couplings. The 0-meson met-
rics are "rotated". relative to the f -meson met-
rics.

The. existence of the special basis, of Eq. (4.30)
leads to, ,Eq. (4.31). .This allows one to generalize

We note that Eq. (4.31) is the direct analog of Eq.
(4.V) for the multi-f multi-v case. Equation (4.31)
tells us that the source of any. given 0 meson is the
trace of the subpiece of the Belinfante tensor,
formed from the g„metric. Analogous to Eq.
(4.31) we also have the f-meson equations in the
diagonal form

yn'
( g)1/2 g /JV + m 2(f j!U qPllf )

& ggll

Eq. (4.8) to the multimeson case with the assump-
tion that all f and v couplings to the Belinfante
stress-tensor sources are universal. From Eq.
(4.31) and (4.33), this implies that all the con-
stants m, '/g, and F, are equal. For the case of two

f mesons and two v mesons the universality con-
dition reads

E, =E,, = gf/m~2= gf, /m~, 2. (4.34)

As will be discussed in paper II, Eq. (4.34) is in

agreement with the present data.
In summary, we have emphasized the role that

currents play as sources and have postulated that
the scale-breaking condition is given by using the
trace of the Belinfante stress tensor as the source
of the 0 meson. A universality of the strengths
with which the Belinfante stress tensor and its
trace couple to the source of the f meson and the
0 meson is assumed and new KSRF-type relations
are derived. Equation (4.5) for the single-f and
single-v eases, and Eqs. (4.26) and (4.31) for the
multi-f, multi-v cases, are powerful conditions
which represent dynamical equations for scale
breaking. Some consequences of these equations
are examined in the next section and others will
be examined in paper II.

V. EFFECTS OF SCALE BREAKING ON THE
CHIRAL CURRENTS

In this section we focus our attention on the de-
velopment of the chiral algebra in a manner con-
sistent with the constraints imposed by the field-
current identity for O~', the CTC condition, and
the scale-breaking conditions. The general pro-
cedure for invoking the current-algebra conditions
in the absence of f couplings was as follows. ' The
vector and axial-vector currents were introduced
via the field-current identity, and the constraint
variables eliminated in favor of the canonical vari-
ables. One was then in a position to impose the
Gell-Mann equal-time commutation relations on
these currents, thus obtaining algebraic equations
determining the coupling constants. However,
some interesting new features surface when f and
0 couplings are introduced consistent with CTC and
scale breaking. We consider here the I =1 vector
current, which serves as a nice example for il-
lustrating some of these points.

In the absence of f -meson couplings, the vector
current is proportional to the p field, i.e., V&(x)
= g~q"'p„(x). Such a form cannot be correct,
however, when f -meson couplings are included,
for as was seen in Sec. II the CTC conditions re-
quire that all interactions be formed using the f-
meson metric (rather than the Lorentz metric) in
a generally covariant way. This suggests that the
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vector current be modified so that V",—4-g g"'
xp (x), where g„„ is one of the metrics of Eqs.
(2.34) and (2.35). (The factor v'-g implies that
V", is a vector density. Thus the CVC condition
~„V",=0 is then a covariant condition since the or-
dinary and covariant divergences coincide for vec-
tor densities. ) As was seen in See. IV, the scale-
breaking condition plays a role analogous to CTC
in determining the o -meson couplings. Thus just
as there is f -meson "clothing" of the p field in V",

from CTC, one may expect o-meson "clothing"
also arising from scale breaking. We will there-

V",(x) = gpss(o, )v'-g g"'p„(x), (5.1)

where A.(o,) is a function of the o fields and obeys
x(0) = l.

To illustrate the above points more explicitly, we
limit our consideration to the case of a single-f
and single-o meson coupling to the p meson. The
effective Lagrangian of the p-f -o system (in first-
order formalism for the p field) reads

fore assume that the vector current has the general
form

~()p" 8[„p]+ I&()P" P ( g) g„gs 4()& g g PoP
+ 2 X,( o) p",' (P„.B,ob —p. 8„o)+ ~a A4(o) e~a p„,p „,p,""—aXa(o) v'-g g"'B„oB„o—am, 'q(o) v'-g . (5.2)

Here p„, and the tensor density p",' are the funda-
mental p-field variables, and X, and X, , obey the
boundary conditions X,(0) =X,(0) =1=5.,(0) so that
~ correctly contains the free p-field Lagrangian.

We first note that by a point transformation p„,
=A(o) p„„with 8(lnA)/Bo = -A.,/X„one can always
set A,, to zero. With this convention, the field
equations read

8„(A~",")+m 'gl-g p", =lac„,p~p,"", (5.3)

~l ppv 1al g 8[1&pv]a+~4~ g ~abcp pbpvc& (

ate 6C p8 (X g-g 8"o) —m 2v'-g ' =-, (5.5)v 5 a Bo 6o

A.2 =X,
8(Z,/X, ) =0. (5.6)

We next impose the scale-breaking condition (4.7).
This, along with Eq. (5.5} gives

8X~ 8 Aq1 1 0 4
80' 80 80' (5.7)

and

832 2= —3L g5s (5.8)

1 BA5

2X, Bo
A.5

7 (5.9)

1 ~&s 2

2X5 ea' (5.10)

Using the boundary conditions A, (0) =X,(0)= 1, we
then have X, =1=7,. Equation (5.9) gives 1,=1/
(1+2o/F ) since A.,(0) = l. Equation (5.8) now
yields Xa = 1+2o/E upon using the boundary con-

where g~ is the first four terms on the right-hand
side of Eq. (5.2). From Eqs. (5.1), (5.3), and (5.4),
the CVC condition 8„V,"=0 implies

dition Xb(0) =1. Finally, Eq. (5.10) gives A.,=o'.
From Eq. (5.7}one has also that A4 is a constant
and hence it can be evaluated by going to the limit
where the f couplings are neglected. The current
commutation relations then determines' X4 = m~'/g~.

We see from the above that the combination of
CVC, CTC, and scale breaking has determined the

f -p-p and o-p-p couplings explicitly. The vector
current has also been determined to be

V,"(x)=g (I+2o/E, )g-g g&"p„, . (5.11)

Note that if we define the f and o "clothed" mass
term by

2m 2L, (o-)4 ggl'" p„,-p„„

then

V& = -(g, /m, ')(8g /Bp„.),
and so Eq. (5.11) is the natural generalization of the
usual p-dominance current in the presence of f and
o couplings obeying broken scale invariance. The
remarkable feature about Eq. (5.11), however, is
that CTC and scale breaking r equire that there be
non p Pole f-p -an-d o-p terms in the vector cur-
rent. This leads to several immediate consequen-
ces which we now discuss.

(i) As was seen in Sec. II, the CTC condition re-
quires that the f mesons have generally eovariant
couplings so that there must exist a three-point f-
p pvertex in Eq-. (5.2). If one had chosen the usual
p-dominance form g~q""p„ for the vector current,
then CVC (and the current algebra} would require
that the p field couple only to the isospin current. '
Thus CTC and CVC would be inconsistent. Similar-
ly, scale breaking and CVC would be inconsistent
(since the former requires a o-p-p vertex, i.e.,
A, ab 1). It is precisely the nonpole form of Eq. (5.11)
that removes this inconsistency, and so the more
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pof5g'=
6a, p,.

Equations (5.3) and (5.11) then yield

0 ~P~a= 2 ~gpa+~oacpgs»c ~

Sl
p

(5.12)

(5.13)

(Note that V', correctly generates isotopic rota-
tions. ) Now the canonical scale dimension of P,'
is 2, and hence V', has scale dimension 3. For the
spatial components of V&, we have

V~, = gz(1+2o/E, )g-g p;, . (5.14)

Since p„has canonical scale dimension 1 and e'" ~

has canonical scale dimension 2, V&, has scale
dimension 3. Making use of the fact that g„, has
canonical scale dimension zero, and using Eqs.
(5.13) and (5.14), we may determine V„and V', to
both have scale dimension 3 as well. In summary,
CVC and the scale-breaking condition lead to the
conclusion that the scale dimensions of all compo-
nents of the vector current of Eq. (5.11)are 3.

(iii) If one expands Eq. (5.11) one obtains

V.= g, Q "p„. 2(mi'/gy)f 'p-~

+ (2/E, )vq""p + ~ ~ ~ (5.15)

The first term is the usual p-pole contribution.
The additional terms show that there exists a di.-
rect coupling between the photon p and f mesons
and between the photon p and 0 mesons. These
couplings will have one less p pole than the p-
dominance term in the electromagnetic current.

complicated form of Eq. (5.11) is actually required
for a consistent formalism to exist.

(ii) The usual p-dominance current, g~q~"p„, has
canonical scale dimension 1, which is to be con-
trasted with the quark currents which possess
canonical dimension 3. This may be viewed as a
serious difficulty in the p-dominance current, for
if asymptotically any anomalous-dimension contri-
butions due to derivative couplings (as discussed
in Sec. III) disappear and the interactions become
scale-invariant, then a scale dimension 3 is pre-
cisely the value needed by Bjorken" to deduce the
experimentally observed scaling of the electropro-
duction form factors. (The scale dimension 3 also
implies a 1/q' falloff for the total e'-e annihila-
tion cross section. ) However, the o factor in Eq.
(5.11) precisely modifies V," so that it has canoni-
cal scale dimension 3, i.e., the current of Eq.
(5. 12) implies asymptotic scaling of the eleotropro
duction form factors (provided, of course, the
anomalous-dimension terms vanish asymptotically).

To see this we note that the canonical coordinates
of the p field are p„(i=1, 2, 3), while the conjugate
momenta are given by

Thus the e'-e annihilation cross section into pions
will contain additional structures that will sustain
in the 1.5-2.5-GeV region. These additional ef-
fects turn out to be in agreement with present col-
liding-beam experiments and are discussed in
paper II.

VI. CONCLUSIONS

In this paper we have examined some of the con-
sequences of setting up a formalism for a stress
tensor obeying broken-scale-invariaAce conditions
in a fashion analogous to the one that has been
used successfully in current-algebra considera-
tions. ' Thus just as one assumed in the latter case
that the currents are smooth interpolating fields
for J~ =1', 0' mesons, we have assumed that the
stress tensor B"" is a smooth interpolating field
for the J =2', O', 1=0 mesons (f,f', . . . ,
o, o', . . .). When one imposes the usual physical
constraints on 6"' a number of remarkable fea-
tures emerge. Thus the conservation condition
8„8""=0 and the Poincare-group constraints
strongly restrict the form of the f-meson eou-
plings to itself and to other hadrons. When all the
nonlinear effects are correctly included one finds
that the f mesons couple in a fashion identical to
the graviton except that the former possess mass.
Indeed, one may define "f-meson metrics" g„„;,
i= I. . N(one .for each f meson) which play a role
analogous to the gravitational metric of Einstein's
theory. The existence of many metrics due to the
physical presence of more than one f meson, how-
ever, makes the geometry of these "multimetric
Riemannian spaces" much more complicated than
the conventional Riemannian geometry. The pa-
rameter governing the strength of the deviation of
the f-meson metrics from "flat space" is A. —= 2m&'/

gf This quantity is about 10" times larger than
the corresponding gravitational parameter v 2z,
and so the f meson does indeed represent a
"strong" gravitation. As is well known in Einstein
theory, the nonlinearity of the equations eventually
produces very large gravitational fields having
dramatic effects, but only at very small distances
(e.g., at =10 "cm for elementary particles). For
f-meson couplings these would occur at distances
of the order X'/a=10" larger, i.e., at 10 "cm.
However, the f-meson potentials are not long-
range due to the f -meson mass, and so the po-
tentials are effectively reduced (i.e., they act over
a limited region of space-time). Whether this lat-
ter effect is sufficient to prevent the nonlinearity
from being significant is not a priori obvious, and
it might be interesting to take the nonlinear f-
meson Lagrangian sufficiently seriously to see if
any of the striking effects of general relativity re-
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main.
At asymptotic energies, one might assume that

all interactions are scale-invariant. The form of
the f -meson couplings complicates the nature of
the breakdown of scale invariance that must occur
at intermediate and low energies. Thus the usual
assumption made in the absence of f mesons, that
8=—g 6"' is pole-dominated by the 0 mesons, is
seen to be inconsistent with the above f-meson
couplings. For the case in which the number of f
mesons equals the number of v mesons (which ap-
pears to be experimentally reasonable) a particu-
larly simple and elegant statement of scale-invari-
ance breaking can be given: The f mesons have as
their source the Belinfante stress tensor of the
matter fields 8"„' (i.e., of all fields other than the

f -meson itself) and the v mesons the "curved-
space" trace, g„,e~', of the matter stress tensor.
The coupling constants are all equal and given by
a single universal constant F,. The possibility of
a universal coupling of the f and a mesons to the
Belinfante stress tensor is a meaningful idea, for
just as the nonlinear current algebra normalizes
the Cabibbo currents and allows for the concept of
a universal Fermi coupling constant, the Poincare
group normalizes the amplitude of e~~'. The above
scale-breaking hypothesis reduces in the zeroth
approximation to the usual pole dominance of e and
allows one to treat higher-order processes. The
universality condition leads to a number of "KSHF-
like" relations on the interpolating constants of the
field-current identity (2.8) [i.e., Eq. (1.1)]. In

paper II these latter are tested in the f -meson de-
cay sum rules and found to check quite weQ. The
discussion there shows that the data imply that the
universal scale-breaking constant I', is equal to
the PCAC constant E, within experimental accu-
racy. This last result, combined with the fact that
the breakdown of a symmetry (scale invariance)
can be characterized in terms of a universal cou-
pling, suggests the possibility of a deeper origin
of some of the results of this paper. In particular,

it should be noted that the f -meson couplings arise
from the very fundamental requirements of Poin-
care-group invariance, while the O. -meson cou-
plings arise from the a priori unrelated scale-
breaking condition. (Some not-so-deep possibili-
ties involving hypotheses on the breaking of Weyl
invariance are considered in the text. )

The scale-breaking condition combined with the
"strong gravitation" form of the f couplings forces
modifications on the structure of the axial-vector
and vector currents. In particular, specific non-
pole f -p and cr-p terms must appear in the vector
currents. This gives rise to a number of conse-
quences. Qn the theoretical side, the inconsistency
between CVC and sca.le breaking (one forbidding
and one requiring a o-p-p coupling) is removed
Further, all components of the vector current are
forced to have canonical scale dimension 3. Thus
the field-current-identity current has the same
(canonical) sca, le dimension as is usually associ-
ated with the quark currents. If one is willing to
extend the analysis to higher energies and if the
anomalous dimensions are absent asymptotically,
the f -meson and scale-breaking couplings con-
sidered here deduce the scaling of the electropro-
duction data and the I/q' falloff of the e'-e an-
nihilation cross section. " At lower energies the

f -p and o-p nonpole terms make direct contribu-
tions to the e'+ e -4g cross section over and
above the usual vector-dominance terms. These
are calculated in paper II and are seen to give con-
tributions of the right size in the high-energy re-
gion ti.e. , &r,,, = (1-2)x 10 '2 cm2 for energies of
1.5-2.5 GeV]. A number of additional successes
in comparison with experiment (f-nucleon cou-
plings, cr-nucleon couplings, etc.) will be discussed
in paper II. Paper II also discusses a number of
formal applications of the theory, i.e., anomalous
dimensions, the resolution of the problem that the
0 couplings g „are proportional to m, ', and a
more complicated discussion of the current-alge-
bra conditions in the presence of f and o mesons.
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