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A new definition of the time delay in the scattering of a quantum-mechanical wave packet
is proposed. It has a broader domain of applicability than previous definitions. The average
time delay for the scattering of a plane-wave train is evaluated. Applications of the result
to the quantum theory of the second virial coefficient are given.

I. INTRODUCTION

The concept of time delay in quantum scattering
was introduced by Eisenbud,® in connection with
the scattering of a spherical wave packet with a
given angular momentum (e.g., s wave). Let n(E)
denote the scattering phase shift as a function of
energy, and let us choose units such that 7 =1.
Then, according to Eisenbud, the time delay under-
gone by the center of the outgoing wave packet in
the scattering process is given by

-94d1
At=2 75 1)
Negative Af corresponds to a time advance, rather
than a delay.

This result was employed by Wigner? to give a
physical interpretation of the energy dependence of
n and of an inequality for dn/dE that is related with
causality. The time delay (1) would take large
positive values close to resonances, corresponding
to a temporary capture of the incident particle by
the scatterer. However, causality would not or-

dinarily® allow Af to assume arbitrarily large neg-
ative values. The connection with causality was
recently reexamined in an indefinite-metric the-
ory.*

Alternative derivations of (1), some of which are
based on quite different definitions and interpreta-
tions of the time delay, have been given. A review
of these treatments is given in Sec. II.

The result has also been extended by Froissart, -
Goldberger, and Watson® to the scattering of
plane-wave packets. They found for the time delay
of the scattered wave packet in the direction 6 the
expression

]
A== argf(E, 6), 6+0 @)

where f(E, 6) denotes the total scattering amplitude
in the direction 6; the result does not apply in the
forward direction. A related spatial displacement
of the center of the wave packet was also found.5+¢
A new definition of the time delay for spherical
wave packets, representing an extension of ideas
due to Smith? and Goldberger and Watson,® has re-
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cently been proposed.®® The resulting expression
for the time delay is the expectation value of (1)
over the energy spectrum of the incident wave
packet. Its domain of applicability is considerably
broader than that of (1) (cf. Sec. II).

In the present work the new definition is extended
to the scattering of plane-wave packets. In Sec. III
we evaluate the average time spent by such a wave
packet within a spherical region in the absence of
interaction. The result is readily interpreted in
terms of the average time of flight for a classical
free particle beam.

The average time delay in the scattering process
is obtained in Sec. IV by reevaluating the expres-
sion of Sec. III in the presence of interaction. The
main result, given by Egs. (33)—(35), involves not
only the expectation value of (2) over the energy
spectrum of the incicent wave packet, but also an
average over all directions, weighted by the dif-
ferential cross section. It also includes the con-
tribution from the time delay in the forward direc-
tion, which is given by a different expression, due
to the interference with the incident wave.

The physical interpretation of the result and its
domain of applicability are discussed in Sec. V.

In Sec. VI it is shown that the continuum contri-
bution to the second virial coefficient of a quantum
system is proportional to the average time delay
associated with an energy distribution given by the
canonical ensemble. As an illustration, the domi-
nant term in the high-temperature second virial
coefficient of a hard-sphere gas is evaluated.

II. DISCUSSION OF PREVIOUS TREATMENTS

One group of contributions to the theory of time
delay!+®:5:11-13 defines it in terms of the displace-
ment of the “center” of a wave packet, although
this concept has different meanings for different
authors.

The derivation of (1) given by Wigner? employs
as a substitute for a wave packet an incident beam
that is the superposition of two monoenergetic
beams of slightly different energies, as is some-
times done in discussions of group velocity. How-
ever, the corresponding outgoing wave represents
not only the effect of the scattering, but also the
decay of the excitation that was initially concentrat-
ed within the interaction region. For Wigner’s
incident beam, the latter effect can become of the
same order of magnitude as the former near reso-
nance, when the corresponding initial excitation
within the scatterer becomes large.

For a true spherical wave packet, the result (1)
has been derived!!'!? by identifying the center of
the wave packet roughly with the location where the
probability amplitude is largest. The method of

stationary phase is employed to determine the
centers of the incoming and outgoing wave packets
thus defined. It is assumed that the energy spec-
trum of the incident wave packet is sufficiently
narrow so that the variation of dn/dE over the
spectral width can be neglected. By suitable choice
of the incident wave packet, the initial excitation
within the interaction region can be rendered
negligibly small.

However, even when all these conditions are
satisfied, it does not necessarily follow that the
center of the outgoing wave packet is time-delayed
by the amount (1). In fact, the method of station-
ary phase leads to incorrect results if the wings of
the energy spectrum do not fall off sufficiently
rapidly. Thus, Gaussian wave packets may be em-
ployed, but not Lorentzian ones.!*:!* Furthermore,
since the shape of a quantum-mechanical wave
packet can change considerably even in free propa-
gation, the above concept of “center” need not be a
good indicator of the average position and may thus
lose much of its significance.

It should also be emphasized that, under the con-
ditions for which (1) may be employed, the time
delay, even at resonance, is a very small effect,'*
in the following sense: The displacement of the
center of the wave packet due to the time delay is
much smaller than the uncertainty in position as-
sociated with the packet (a narrow energy spectrum
corresponds to a broad wave packet in configura-
tion space). It follows, in particular, that it would
be difficult to detect deviations from causality by
using this effect.*

In Brenig and Haag’s treatment,*® the center of
the wave packet corresponds to the “center of
mass,” i.e., to the expectation value of » =|¥|.
Choosing the origin of time so that {») =(v) ¢ for
the incident wave packet, where (v) is the expec-
tation value of the velocity, they find that, for
sufficiently large times, (r)=(v)(¢t —(A¢)) for the
scattered wave packet. The average time delay
(At) is obtained from (2) by averaging over the
energy spectrum of the incident wave packet, as
well as over directions. “Sufficiently large times”
means ¢ so large that (a) the scattered wave packet
is effectively outside of the interaction region, so
that it can be treated as free; and (b) ¢>f,, where
t;, the spreading time of the wave packet, can be
defined as the time for which the wave packet has
attained twice its original width through the quan-
tum-mechanical spreading effect. The latter is a
very stringent requirement®; as is well known,
the conditions prevailing in ordinary scattering ex-
periments are such that the spreading effect can
be neglected.'”

A second group of contributions to the theory of
time delay”!° originated from a new interpreta-
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tion of this concept, proposed by Smith.” He de-
fined it as the difference, for large », between the
time spent by the particle within a distance » of
the scattering center and the same quantity in the
absence of interaction. Smith considered only
stationary scattering states. The sojourn time
within a sphere of radius # in a stationary situa-
tion was defined by the ratio of the probability to
find the particle inside it to the inward or outward
flux through the surface. This leads again to the
result (1).

Goldberger and Watson® extended this interpreta-
tion to spherical wave packets, in the special case
of potential scattering.’®* The resulting expression
for the time delay is the expectation value of (1)
over the energy spectrum of the incoming wave
packet.

The restriction to potential scattering is unneces-
sary; it suffices to assume that the interaction is
probability -conserving.’~'° In fact, this implies
that the probability of finding the particle within a
distance 7 of the scattering center at time ¢ is
given by

P(r,t)= f ' &(r, ¢ ")at, (3)

where &(r, ¢) is the inward probability flux through
a sphere of radius », and the incoming wave packet
is so normalized as to represent one incident par-
ticle for - —. In units such that 7 =1 and the
particle mass m=3, the flux is given by

. 8y _ op*
= X L 2
o, t) zf(zp o ~Vay )r s, (4)
where (T, t) is the wave function associated with
the wave packet.

The average time spent by the particle within the
sphere is

T(r) = f wP(r, Hdt . (5)

The time delay in the scattering process is defined
by

Atr)=T(r) - To(r),_ (6)

where T,(») is the value of T'(r) in the absence of
interaction, and # is large enough so that the inter-
action can be neglected at the distance »; say,
rZ R, where R is a characteristic distance mea-
suring the range of the interaction. We see that,
indeed, the only basic assumption about the inter-
action is probability conservation, and that only
quantities defined in the asymptotic domain » = R,
“outside” of the interaction region, are involved.
By evaluating (6) for a spherical (e.g., s-wave)
wave packet, one finds®1° that the /result contains

an oscillating term as a function of », which rep-
resents a quantum effect connected with the un-
certainty principle for (A»). Averaging over 7 to
eliminate this oscillating term, one gets for the
average time delay

—9(dn
(At>_2<dE (M

. b
n
where the right-hand side denotes the expectation
value taken over the energy spectrum of the in-
coming wave packet.

In particular, for a sufficiently narrow energy
spectrum, we may be able to neglect the variation
of dn/dE over the spectral width, and we then re-
cover Eisenbud’s expression (1) for the time de-
lay. However, ( At) does not necessarily represent
a shift of the center of the outgoing wave packet
(which may undergo appreciable distortion); it
should rather be interpreted as an average colli-
sion time, in the above-defined sense. The do-
main of applicability of (7) is much broader than
that of (1); it may be applied to any normalizable
wave packet, and it yields the dependence of the
result on the choice of the incident wave packet.

By considering explicit examples, it can be shown'®
that (7), in contrast with (1), gives a reasonable
account of the average time delay in all cases.

The expression (7) is valid for all » = R; in par-
ticular, it would remain valid at distances so large
that spreading effects become important, and it
would then agree with Brenig and Haag’s result.'?
However, (7) can already be applied for much
smaller values of », well within the range of or-
dinary scattering experiments (of course, the very
definition of scattering implies that the observa-
tions must be made for » = R).

We see, therefore, that the above interpretation
of the time delay is not subject to the limitations
found in previous treatments. Let us now extend
the results to the scattering of plane wave packets.

III. AVERAGE FREE TIME OF FLIGHT

Let us consider a plane incident wave train'®

dole )= [ A(E) expl (ke - BO)dE, (8)
where (in units 7 =2m=1)
E=Pk2. (9)

The total incident flux per unit area associated with
(8) is

P ==1 f:( 5 Lo —%a—%—)dt

0 9z 9z

=4q J” PIA(E) [ dE . (10)
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The total incident flux on a sphere of radius » is time spent by an incident particle within the sphere
therefore in the absence of interaction is
F= 7”'2‘?1,. ’ (11) w
T,(r) = f P,(r, t)dt, 13
and (3) must be replaced by o) —e olr, D) (13)
t
FP(r, t)=f &y, t")dt’, (12) where P, is obtained by replacing ¢ by ¥, in (4) and
- (12).
where &(r, ¢) is still given by (4). The average Performing this substitution, we find
t o 00
PPy, )= ~dmir® | ar [ a [ aE raxE) A@) gk - k) exp| ~i(E - BN +ecc., (14)
~o 0 0

where c.c. denotes the complex conjugate, and

T i -—
g({):-zlif exp(i¢ cosh) coshsinh de=ﬂ§—§2§ﬂ-s—g (15)
[}
The time integration in (14) may be carried out with the help of
. ¢ : exp|-i(E - E")t] ®
— N Y ’ VP Riniat i S S e M A S | -7 -E! -E’ 16
elirzl+ _mexp[ {(E-E'+ie)t'|dt' =i E—E 110 iexp[—i(E E)t]E_E,+1r6(E E’), (16)
where @ denotes the Cauchy principal value.
Since
g(9)=3¢+0(%, ¢-0 amn

the 5 function does not contribute in (14), and the Cauchy principal-value symbol may be omitted, yielding

FP,r, t)=47rrsz dE fwdE’kA*(E’)A(E)&(lézk:_——’i;—)r—) exp[ —i(E - E")] +c.c. (18)

Substituting in (13) and performing the time integration, we get another & function, which; together with
(17), leads to

Frr, ()= 3% [ | AE) P . (19)

The expectation value of the momentum in the incident wave train is

<5>=(f_:¢35¢0dz)/(f_:wz¢odz) =§<f_:k|A(E)I2dE>/ () 14w raz)

=3(v) 2, (20)

where (v) is the expectation value of the velocity (the particle mass is m=13 in our units) and Z is the unit
vector in the z direction. Taking into account (11) and (20), the result (19) finally becomes

Tolr) = % Ok (21)

This result for the average free time of flight through a sphere of radius » has a simple physical inter-
pretation. Consider a homogeneous beam of classical particles traveling in the z direction with velocity v,
and going through a sphere of radius » centered at the origin. A particle that crosses the (x, y) plane at a
distance p from the center has a travel time 2(»2 ~p?)'/2 /¢ through the sphere. Since the fraction of such
particles between p and p +dp is 2mpdp/(mr?), the classical average free time of flight through the sphere is

. 4 4 '
T80 = 2 [ 0= pdo= 5 (22)

and v must be replaced by an average velocity if the beam is not monoenergetic.
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1IV. THE TIME DELAY

In the presence of interaction, the total wave function associated with the incident wave train (8) becomes
‘l)(-f, t) = wo(zy t) + lps(-f) t) )

where the scattered wave packet (¥, ¢) is asymptotically given by

(23)

0 0= [ "ABVF(E, 6)expli(kr ~EN|dE, rzR (24)

where, as in Sec. II, R denotes a distance so large that the interaction may be neglected for » = R and (24)
holds to a sufficiently good approximation.

We may then substitute (23) and (24) in (4) and (12), leading to

F[P(r, ) ~Py(r, t)]=—f_:dt’f dﬂf: dEJ;de’exp[—i(E-E')t’]kA(E)A*(E’)
x{r f(E, 6) exp[ir(k -k’ cos)]
+7cos8 F*(E", 6) exp[ir(k cos6 —k")]
+f(E, 6)f*(E', 0)exp[i(k —k')r]}+c.c., (25)

where P(7, t) is the free-particle contribution (14), and we have neglected higher-order terms. Perform-
ing the time integration with the help of (16), we get

FIPG, 1) ~Polr, 0] =1 [ a2 [ " dER| A(E) P (1 +cos6) F(E, 0) exp[ikr(L - cos)]

+ f*(E, 0) exp[—ik7r(1 —cos6)]}+2| f(E, 6)1%)

—i(Pf ae fwdEf: djE’eXp[-i(E-E’)t] A—(?_i;gl

X {r(k +k’' cosb) f(E, 6) exp[ir(k =k’ cosb)]
+7 (k' +kcosb) f*(E’, 6) exp[ir(kcosg ~Fk')|
+(R+Rk)f(E, ) f*(E’, 0)exp[i(k —Fk")7]}. (26)
We now employ the well-known formula®®

exp(ikr cosh) = exp(iﬁ0 *F)==(27i/kr)[6(R = Q,) exp(ikr) = 6(Q, +R,) exp(—ikr)] +Or~3), 7 - (27

where k=2, and Q, and ©, denote the directions of Ko and ¥, respectively. Substituting in (26) and evalu-
ating the d-function contributions (coming from =0 and 9=17), we get

F[P(T7 t) ‘Po("’, t)]=—2‘ﬂ'fwdEk‘A(E)l2{fdﬂ‘f(E, 9)‘2'{“ gg—z[f(E; 0) _f*(Ey 0)]}

—i(PJ:dEj: dE' A(E) AXE") exp[ -i(E - E')t]

- %(ﬂf—;”) expli(k+#) 7]+ LT exp i+ k)] )} . (28

The optical theorem

0u®)= [ 1/, OPan="F 1m0, (29)
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where o, is the total cross section, implies that the first integral vanishes identically and that the integrand
of the second integral is regular at E=E’, so that the principal value sign may be removed. Integrating
both sides of the resulting expression over ¢ from —w~to «, and taking into account (5), (6), and (13), we

get

f(E,0)

FAt(r)=4m'f dEklA(E)F{BE,[ F(B, 6) f*(E’, 9)‘1‘“2’”( k' f*(lfe”O))]}Er-E

- 21r2fw %EE' | A(E) B[ f(E, m) exp(2ikv) + fX(E, 1) exp(=2ik7)], (30)

where the 6-function contribution in the first integral has been evaluated by 1’Hospital’s rule. Carrying out
the differentiation and symmetrizing® the result with respect to E and E’, we obtain

FAHr)=2mi f CAER| AB)P f 4o [f(E, e)a—{E—* (E, 0) - fX(E, e)% E, 9)]

+872 f” 9 4\ AE)P ——[kRef(E 0]

P f | AE) P (E, 7) exp(2ikr) + £ ¥(E, 1) exp(-2ik7)] (31)

The last term in (31) (backscattering contribution) has an oscillatory » dependence that corresponds pre-
cisely to the terms in sin(2k») and sin(2k# +27,) obtained’*!° in a partial-wave analysis for angular momen-
tum I. Just as was done for (7), we dispose of this term by averaging over a distance of the order of a

de Broglie wavelength in ».
Taking into account (11) and the relation

3

H(r G - 5L )l re parer, (32)
we obtain the final expression for the average time delay in the scattering process

(ALr)) = T(E))sy (33)
where

r(E)= ( /B, OF 5= are (5, a0+ 22 L [kRe £(e, 0)]> (34)
and V. DISCUSSION

b klA®) PF(E)E
(F(E)), = (35) The first term in (34), when substituted in (33),

i k| A(E) PdE
denotes an average over the energy spectrum of
the incident wave train, similar to that employed®
in the derivation of (7).

In terms of the partial-wave expansion

f(E, 6)= 2(21+1){exp[21n,(E)] 1}P,(cos#),
(36)

the result (34) may be rewritten as

nv?7,(E) = EHE (21+1)2dn,/dE . 37
1

The inverse »2 dependence of { A¢(r)) arises from

the scattering probability and may be removed by

a suitable normalization (cf. Sec. V).

corresponds to a double average of the Froissart-
Goldberger-Watson time delay (2), involving both
the energy averaging (35) and an average over
directions. The latter also has a simple interpre-
tation. Since we are considering a single scatterer
at the center of a sphere of radius 7, the probabil-
ity of scattering into an element of solid angle dQ
in the direction 6 is given by
2
(do/dﬂ)dﬂ | f(E, 9)1 (38)

dP, = daQ
s T2 Tr? ’

which is the weight function in the first integral of
(34). In this sense, therefore, we can say that the
“time delay at energy E in the direction 6” (6+0),
insofar as such a quantity can be defined, is given
by 8 argf(E, 6)/9E, in agreement with (2). How-
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ever, the physical interpretation of the time delay
corresponds to (6), and it is not necessarily re-
lated to the position of the center of the scattered
wave packet.

The total probability of scattering for incident
beam particles with energy E that hit the sphere is
dps . _0:(E)

a 5 (39)

P(E,7)= an T

The quantity

(Atlr)) _ 77X 17(E) )in
(P(E,7))  (0y(E))in

is independent of » and provides a different mea-
sure of the time delay (corresponding to a condi-
tional probability) that may be more convenient for
some purposes.

The second term in (34) corresponds to the time
delay in the forward direction. This is different
from all other directions because of the interfer-
ence between the incident and scattered beams for
6=0. In the case of light propagation in a medium
containing many scatterers, this forward time de-
lay gives rise to the change in the phase velocity,
corresponding to the well-known relation!® between
the real refractive index and the real part of the
forward scattering amplitude. Both this result and
its counterpart, the optical theorem (29), arise
from the subtle interference effects that take place
in the forward direction.

The partial-wave expansion (37) also has a sim-
ple interpretation. As is well known,?? the factor
(21+1)7/E may be interpreted as the area of a
circular zone associated with the /th partial wave
in the incident beam, so that (21+1)7/(n72E) is the
corresponding fraction of the incident beam area
hitting a sphere of radius ». Taking into account
('7) and (33), we see that the time delay for the
plane wave train may be regarded as the resultant
of the time delays for all its partial-wave compo-
nents.

The remarks made in Sec. II about the advantages
and the domain of applicability of (7) may be re-
peated here. The result (33) is not restricted to
nearly monoenergetic and specially shaped wave
packets. It also includes the contribution from the
forward time delay. Finally, it is valid at realistic
distances from the scatterer, where (24) may be
applied. This requires, in particular, that k»>1
for all values of k that are significantly represented
in the incident wave train.

(40)

VI. APPLICATIONS

It is well known® that the second virial coefficient
of a system is related to the corresponding two-
particle collision lifetime.?* The results of Sec. IV

allow us to exhibit this relationship in a particu-
larly transparent form.
The second virial coefficient B(7) is defined by
the Kammerlingh Onnes virial expansion
pV=RT(1+§—(‘—}2+ > (a1)
It was shown by Beth and Uhlenbeck? that, for

Boltzmann statistics,
B=By +B (42)

where By, the contribution from discrete energy
levels, is given by

con ?

By = =V2 NN} (21+1)7 exp(-E, ;) , (43)
1 n
and the continuum contribution B, is given by
Beon == ENA3Z)(2I+1)j exp(—kz/kf)—dﬂ’- dk .
m 4 0 dk
(44)

In the above expressions, N is the number of par-
ticles, B=1/K,T, r=V4nB =27 /k, is the thermal
wavelength (in our units), and E,, is the energy of
the nth bound state with angular momentum I. For
Bose-Einstein or Fermi-Dirac statistics, the
sums over [ are extended only to even or odd [ val-
ues, respectively, and there are additional contri-
butions® representing the effects of the statistics
for an ideal gas.

Comparing (44) with (37), we see that

N3

Bun== 7557 [ HA®PTEE, @)

where
| A(E) P =k exp(~k*/k.?) = VE exp(-E/ky?) . (46)
Thus, taking into account (33) and (35),

B, =-VZN 22 a1)), (a7)

where the energy spectrum of the incident wave
packet is given by (45).

We conclude that the continuum contribution to
the second virial coefficient is proportional to the
average time delay for a representative incident
wave packet with an energy spectrum given by the
Boltzmann distribution®® (corresponding to the
canonical ensemble). The physical interpretation
of this result is obtained by regarding contribu-
tions to the partition function from each region of
phase space as being weighted by the time the sys-
tem spends in that region.?+??

We finally apply the above results to the evalua-
tion of the dominant term in the high-temperature
second virial coefficient of a hard-sphere gas.
According to (45) and (46),



K=z}

B=- \/% Nk3vfzf k31,(k) exp(=k%/kE)dk,  (48)
0]

where the subscript has been omitted because there
are no bound states in this case. Let a be the
diameter of the spheres, which is also the radius
of the equivalent hard-sphere interaction in rela-
tive coordinates. The high-temperature assump-

tion means that kya> 1.
1
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Under these conditions, both the domains 0 < ka
<1 and 1< ka<kya contribute to the integral (48),
but the factor 2® damps the low-frequency contri-
butions and enhances the high-frequency ones, so
that the dominant contribution comes from the
high-frequency domain ka>1, as can readily be
shown by simple estimates. Thus, we have to
evaluate the time delay (34) for high-frequency
scattering by a hard sphere.

The high-frequency scattering amplitude for a hard sphere is given by different expressions?’ in different
angular regions. There are three different regions to be considered. In the geometrical reflection region

(ka)~Y*« 6< 7, we have

i

__1 9 sl —
f(k, 6) =—3aexp(~2ika s1n29)<1 + oka sin3(§0)+

. ) , (ka) P« o< (49)

neglecting exponentially small surface-wave contributions. In the diffraction peak region 0< §< (ka)~1/3,

we have

Jl(ka()) +

_1l. 3
f(k, 6)=3ika {2 a0

where the first term represents the forward dif-
fraction peak. Finally, in the transition region be-
tween the above two regions, f(k, 6) is given by a
more complicated expression®® that interpolates
smoothly between the values (49) and (50).

Splitting the angular integration in (34) in terms
of the above-defined regions, we get, together with
the last term of (34), a sum of four different con-
tributions. It is convenient to employ the normali-
zation (40) for the results. The total probability
of scattering in this case is

P.(E,r)=2ma?/nr?=2a%/v?, ka>1. (51)

It follows from (34) and (49) that the contribu-
tion from the geometrical reflection region is

r(reflecti
Ty{reflection) (1;: (];"7;0“) = =2 [1+0((ka)>") | : (52)

From (50) and from the expression for f(&, ) in
the transition region,?® we get

7.(diffraction) + 7.(transition)
7,(reflection)

=0((ka)™!). (53)

The forward time delay [last term of (34)] follows
from (50) for 6=0:
1.9923 a

2V3 E(ka)‘5’3[1 +0((ka)~-2%)] .

Tr(forward) _
P(E,7)

(54)
Putting together all these results, we finally get

' "%(ka)~%/°[1.9923 J,(ka6) +0.6706(ka)'/*J, (kab) + « + - ]} » 0<0<(Ra)™/?

(50)

P:%%L) =- -3-% [1+0((ka)Y)], ka>1. (55)
Since the particle velocity is v=2Fk in our units,
we see that (55) corresponds to a time advance of
the expected order of magnitude for direct reflec-
tion at the surface of the sphere.

Substituting (55) and (51) in (48) and performing
the integration, we finally get

By =37Na’[1+0(\/a)], Na<1 (56)

where the subscript indicates that this is the “di-
rect” contribution to the high-temperature second
virial coefficient of a hard-sphere gas. It has been
shown®® that the “exchange” contribution, arising
from the Bose or Fermi statistics, is exponential-
ly small at high temperatures.

The dominant term in (56) is just the total ex-
cluded volume, and it is identical with the classi-
cal result for the second virial coefficient of a
hard-sphere gas. The first quantum correction is
of order \/a; both this term and higher-order
quantum corrections have been previously evalu-
ated®® by a different method, involving the solution
of a boundary-value problem for the diffusion
Green’s function. The present derivation relates
the results with the average time delay. It is in-
teresting to note that, while the forward diffrac-
tion peak is responsible for half the total cross
section at high frequencies, it contributes only
toward the quantum correction terms in the second
virial coefficient.
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