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A relativistic formulation of the simple harmonic oscillator is discussed. It differs from
the customary formulation in that it is derivable from a Lorentz-invariant variational prin-
ciple. A consistent relativistic quantization procedure is thereby admitted.

I. INTRODUCTION II. EQUATIONS OF MOTION

The special relativistic harmonic oscillator has
a meager history; there has been only slight dis-
cussion' ' in recent years. This discussion does
not include a quantum theory. The customary
formulation is in terms of either the equation

The equations of motion take the form

mox
(I v2/c2)1/2

or the energy integral which it admits. The parti-
cle rest mass is considered to be constant. Appli-
cation of the identity U"dU„/d7 =0 yields the cus-
tomary result that E4, the timelike component of
the four-force, is justiy7 v/c where f and v are
the Newtonian three-force and velocity.

Equation (1) may be derived from a variational
principle, but not in an unambiguously I.orentz-
invariant fashion. This flaw is propagated to any
quantized version. It is the purpose of this paper
to present an alternative scheme which is possessed
of a I orentz-invariant variational principle and
thereby admits quantization via the concomitant
Hamilton- Jacobi and Klein-Gordon equations.

The procedure hinges essentially on relaxation
of the requirement that the rest mass be constant.
The theory thereby obtained is of the class, the
prototype of which is the I orentz-covariant theory
of gravitation introduced by Nordstrom, ' in which
the rest mass is potential-dependent.

The following notation is used:. m, is the rest
mass of the oscillating particle when its spatial
displacement from the attractive center is zero
and k is the spring constant. Both are phenomeno-
logical scalars. Greek indices run from 1 to 4
and x4=ict so that there is no distinction between
contr avariant and covariant indices. The sum-
mation convention is used, and U"=dx /dr,
d2. =dt(l -v'/c')' ' so that U"U~= —c' and

y (] v2/c2) -1/2

where m is not necessarily constant, x" are the
components of the displacement of the oscillating
particle, and g =2k' x . In its rest frame the
attractive center has z world line given by
(0, 0, 0, ict). Hence, in this frame r4=0 and r'
(i = I, 2, 3) is just x'.

Inasmuch as m is not a constant, it follows that

dU" ~ dm
m +U" „

The constraint U dU"/dr =0 yields

2 dm dQ
d7

which integrates immediately to

(4)

m2+mQ
C

(5)

Thus, m is potential-dependent.
By virtue of Eq. (4), Eq. (3) may be rewritten as

(6)

g me'-U~U '/2d~=O,

where m is given by Eq. (5).
It may be observed2 that Q is a solution of

6n8y

The expression in parentheses is the operator
which projects &p 8 parallel to dU"/d7. .

It is readily verified that Eq. (6) may be obtained
from the variational principle
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III. ENERGY INTEGRAL

Solutions of equations of the type of Eq. (6) were
first obtained by Behacker' in connection with
Nordstrom's gravitation theory. The general
techniques are applicable to any central potential.
For the particular case at hand the results are
as follows. For. simplicity the calculation is made
in the rest frame of the attractive center.

Because SL/Sx4 =0 there is an energy integral
which is independent of the dimensionality of the
oscillator and is readily obtained. For a =4, Eq.
(6) specializes to

d U4 U4US sf
d7 mc Bx

For small displacements, i.e., —,'ka'«moc',
Eq. (14) reduces to the classical limit

x = a sin[(k/mD)'/2t].

IV. QUANTIZATION

P p„+m'c4 = 0.
In one dimension this is

p, '+p42+(2kx'+ mDc'} =0.
The corresponding Klein-Gordon equation is

(16)

With the Lagrangian function, L = mc'(-U"U„}
the Hamilton-Jacobi equation is readily constructed
as

U4 dm
m d7'

This integrates immediately to

iE
lnU4 = -lnm+ln—

(8)

(9)

82( 82(
-il2C2 + 5' + (—,'kx'+m c2)2( =0.

8x 0

The usual substitution 4/r(x, t) = P(x) exp(-i Et/8) re-
duces this to

E =mc'y (10a)

where E is a constant and the factor ic is included
for later convenience. Now, U'=icy and Eq. (9)
may be written compactly as

-k 'c', —E2p + (-,k'x'+ kx'm, c' + mD2C4) p = 0 .
(19)

Introduction of the dimensionless parameter p
= (m, k/l2 '}'/'x further reduces Eq. (18) to

Q +m„c'
(1 ~2/C2)1/2

In anticipation of an oscillatory solution this
may be written as

E =2ka +moc

(lob) D 2 4
2 +~ 0 -p 0 - ~P 0 =0,

where

eD = (E2 —mDc2)/12(umDc2,

(u = (k/m )'/'

(20)

where a is the maximum excursion and corre-
sponds to v =0.

For the one-dimensional case it is particularly
simple to integrate Eq. (10b). Solve first for

( k„2+m c2)2y/2 (12)

=[(E+—' kx2+m c')(—'ka ——'kx')]' ', (l3)

This leads to an elliptic integral in the following
way. With the use of Eq. (11) this may be written
as

4M =A(V/4mDC

This is precisely the fo4m of the nonrelativistic,
biquadratic, anharmonic oscillator. The solutions
are well known.

For energies which are sufficiently small, i.e.,
2k' «moc', the p' term may be neglected and a
lowest (relativistic) approximation for the eigen-
values is obtained:

eo =2n+1

and

The exact solutions for the displacement and the
period are readily obtainable' in terms of the
Jacobian elliptic functions sd(ul m) and X(m):

S(d
ED„=+mDc2 1+2(n+-,')

0

=+[m,c'+ (n +-2)I~]. (21)

Z+m„c' '/'
/ kc' "' ka2}

x a 2E sdl @
i

4@

and the period is

(14)
In the regime where the binding energy is appre-

ciable compared to the rest energy, the correc-
tions to the energy levels are given by standard
Rayleigh-Schrodinger perturbation methods. In
the first order these are readily found to be

E„=+(mDc2+k(o[n+ —,'+-,' o.(n'+n+'2}]) . (22)
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V. DISCUSSION

The formulation presented constitutes a consis-
tent structure possessed of minimal assumptions.
It is of special interest because it can be cast in
the form of a variational principle. Being pos-
sessed of a Lagrangian function, the theory admits

straightforward quantization. The theory is of the
general class characterized by utilization of a
scalar field, the gradient of which provides the
four-force. In common with this class the mass
is dependent upon the potential as well as the
speed. The formulation may be of utility in the
construction of hadron models.
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We consider an example of the effects of massive bodies on static electromagnetic fields in
general relativity which yields considerable insight into the fadeaway of multipole moments in
nonspherical perturbations of gravitational collapse. We calculate the electromagnetic field of
an electrostatic or magnetostatic multipole of fixed strength placed at the center of a massive,
nonrotating, spherical shell. If we consider a sequence of static solutions in which the mas-
sive shell approaches its own Schwarzschild radius, we find that except in the monopole (l = 0)
case the value of the multipole moment measured by a distant observer goes to zero. Thus,
for an arbitrary (but finite) stationary charge and current distribution inside the shell, in the
limit as the shell approaches its Schwarzschild radius the only property of the distribution
which can be measured by an external observer is the total electric charge.

I. INTRODUCTION

In the Newtonian theory of gravitation, a massive
body can affect an electromagnetic field only by

acting as a source, j~, of charge or current.
Thus, a massive body with no electromagnetic
sources has no influence upon an electromagnetic
field. This statement is also true locally in gener-
al relativity. However, by curving the space-time
geometry, a massive body in general relativity can
have a significant effect upon an electromagnetic
field. Probably the most familiar example of such
an effect is the bending of light passing near a
massive body. An extreme example of this sort of
effect in a static problem occurs in the recently
analyzed problem of a point charge placed near the
horizon of a Schwarzschild black hole. ' Although
the charge is well "off center, " it is found that as
the charge approaches the horizon all the electro-

static multipole moments as measured at infinity
go to zero. (Thus, lowering a charge toward a
Schwarzschild black hole tends to produce a Reiss-
ner-Nordstrom black hole rather than a "naked
singularity. '") The effects of rotating masses on
electromagnetic fields have been treated by Cohen'
and by Ehlers and Rindler. 4

In this paper we investigate a further example of
the effects of massive bodies on static electromag-
netic fields by calculating the electromagnetic field
of an electrostatic or magnetostatic multipole of
fixed strength placed at the center of a massive
spherical shell. We make no approximation con-
cerning the strength of the gravitational field, but
the electromagnetic field is assumed to be suffi-
ciently weak that the effect of the electromagnetic
stress-energy on the background space-time geom-
etry is negligible (i.e., we consider test electro-
magnetic fields). An analogous dynamic problem


