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The possibility of exploiting the unique features of the two-photon process ee- eenTf in col-
liding-beam experiments to measure the even partial-wave 7t-~ phase shifts is examined in
detail. The commonly used Weizsacker-Williams approximation is shown to be inadequate.
An exact procedure of phenomenological analysis for extracting the relevant phase shifts is
formulated. Dynamical (model-dependent) calculations are performed separately to study the
expected effects due to the final-state pion-pion interaction. The sensitivity of the measured
cross sections to various prominent features of the s-wave ~-~ phase shifts (scattering
length, existence of the scalar-meson resonance) is investigated.

I. INTRODUCTION

It has been generally recognized by now that in
the forthcoming generation of e'e and e e col-
liding-beam experiments at energies of 3 GeV or
higher, the two-photon processes will play a domi-
nant role. Calculations based on quantum electro-
dynamics indicate that the cross section for this
new type of process becomes larger than that of the
single-photon annihilation processes (which has
dominated colliding-beam physics up to now) at
about 1.5-2.0 GeV energy per beam. ' ' Motivated
by these developments, we studied, in a previous
paper' (hereafter referred to as I), the general
features of two-photon processes in colliding-beam
experiments for arbitrary hadronic final states'
and investigated the new possibilities offered by
this type of process in studying hadron physics.
We pointed out the possibility of probing the con-
stituents of a near-mass-shell photon by the other
one in the deep-inelastic region. This was also
done by other groups and, in particular, in some
detail by Brodsky et al. We also emphasized the
unique possibilities for studying the s-wave m-w

interaction in the kinematically most favored ex-
clusive channel, the two-pion production channel, '
i.e., ee- eery. It is toward a detailed study of this
latter problem that this paper is devoted.

The uniqueness of this reaction (essentially yy
—vv) lies in two facts: (i) There is no other final-
state hadron except the two pions (in contrast to all
studies of the zz system in pure hadronic reactions
where a baryon is always present in the final state);
(ii} because the initial state has positive charge
conjugation, the two pions must have

J =0', 2', . . . and I =0', 2'

(in contrast to the corresponding one-photon an-
nihilation process where J =I, I = I'). The ad-
vantages are obvious: Because of (i), no theoreti-
cally ambiguous final-state correction effects (e.g. ,
between the outgoing nucleon and pions) have to be
taken into account in order to extract information
on the v-v interaction; because of (ii}, the domi-
nant p-wave interaction (p meson) is absent, allow-
ing an ideal chance to study the s-wave m-7i inter-
action cleanly over a large energy range. In our
previous work' (I), we outlined a phenomenological
procedure to extract the s-wave p-m phase shifts
5p and proposed a model to calculate the yy
amplitude when 5,' are given. Some related works'
have also appeared in the last year. In all these
works (including I) one assumes the standard
equivalent-photon or Weizsacker-Wiuiams (WW)
approximation formula which reduces the ee - eever
process to that of yy- mm for on-shell photons. It
is not hard to see, however, that although the WW
approximation is appropriate for order-of-magni-
tude calculations (which were what the original in-
vestigations intended}, it can induce errors of up
to 50%%up in the differential cross section. This is
comparable to, or, in certain regions, bigger than
the effects due to m-m interactions which one tries
to isolate in the present case. In order to extract
useful information from this process one clearly
needs to improve the approximation scheme.

In this paper we do three things: (i) We investi-
gate the range of validity of the WW approximation
and propose substitutes for it which are appropri-
ate for the purpose of extracting information on
v-v interactions; (ii) we propose phenomenological
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FIG. 1. The two-pion production process via two-pho-
ton exchange in e-e collision. The dashed lines are elec-
trons, wavy lines are virtual photons, and solid lines are
pion s.
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procedures for extracting z-p phase shifts which
are as model-independent as possible and discuss
built-in checks; (iii) we present model calculations
which illustrate the effects of the m-m interaction
on the measured cross sections and test the sen-
sitivity of the latter to certain qualitative features
of the s-wave z-z phase shifts, for instance the
value of the scattering length and the existence of
the o resonance.

An attempt is made to make this paper reason-
ably self-contained. We try to make the procedure
and reasoning clear and the results explicit with-
out giving too many details which either can be
found in I or are relegated to the Appendixes.

II. EXACT FORMULATION OF THE SCATTERING
AMPLITUDES AND CROSS SECTION

Consider the process

e+e- e+e+m+m

via the two-photon-exchange mechanism. This is
depicted in Fig. 1, which also specifies our mo-
mentum variables. The kinematics of this process
is fully specified by 8 independent variables. In the
laboratory (the c.m. system of the incoming lep-
tons) these can be chosen as E, the incoming ener-
gy; c, 6, P, ~', 6', p', the energy and angles of two
outgoing particles, say the two leptons; and 6" the

FIG. 2. (a) Kinematics of process (1) defined in the
laboratory frame. The particle momenta correspond to
those of Fig. 1 ~ The quantities in parentheses after the
momentum labels are the associated energy variables in
the lab. (b) Kinematics of process (1) defined in the c.m.
frame of the two outgoing pions. The pion momenta P~
and p& are in the x-z plane and are not shown in the fig-
ure to avoid confusion. y and y' are the respective azi-
muthal angles of the planes of scattering for the two pairs
of leptons. The variables g and fc)' cannot be given a sim-
ple geometrical interpretation in this figure (see Ref. 9).

scattering angle of a third particle, say a pion,
which also defines the x-z plane [Fig. 2(a}]. For
calculational purposes, it is more convenient to
choose as independent variables k' and q' (the two
virtual-photon masses); the "hadronic variables"
s (the total c,m. energy squared) and 8, (the scat-
tering angle) for the process yy- wv in its c.m.
frame; and "lepton variables" (g, lf} and (g', y')
which specify, respectively, the configuration of
each of the two pairs of lepton momenta in the
"rest frame" of the corresponding virtual photon
[i.e., the frame in which the photon 4-momentum
has only one nonvanishing component, Fig. 2(b)].
These two sets of variables are defined in Fig. 2
and in I; the relations between them are given in
Appendix A of I. We shall write out these relations
explicitly when needed in subsequent discussions.

The exact amplitude for the above process cor-
responding to Fig. 1 can be written as

2 2f =(k, l j„lk) —, ' d'xe"*(p&p2) T(Z"(x)&"(0))I0) —2(q, l j, l q, ) .
4

Decomposing the virtual photons into their helicity components, each of the two vector products can be
written as

f gp p j( )J —p(j. &( )s)(& . J)
m m

(2)

where eI' &(k), m=1, 0, -1, are the helicity polarization vectors associated with the virtual photon k. Substi-
tuting into (2), we obtain the following physically transparent expression for the scattering amplitude:

f =(k2) jl ~) k, ) —2 T „(k,q, s, 8„)+ (q, l
j~"~

l q, ),
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where

T „= dxe'' P, P2 T J„xJ, O) 0 c&" &km&„&q

is clearly the helicity amplitude for the "hadronic process":

y(k, m) + y(q, n) - v(p, ) + a( p, ) .
The cross section for ee- eewm is

~4 2 1/2

2~ dpd Q, L' (g, lL) W, , „(k,q, s, eos8, )L~"(g', y'),

(6}

(7)

where the same factorized form as in Eq. (4) is explicitly displayed. We have

+g, j;m, n
= Tg,j Tnt, n y

L' (q, q)= „,Q &k,X, [
j~"[k,~,)*&k,X,[f' ')kP, ),

XgX2

L'"(O', X')= . Z &q2~21 j"'lq, ~&)*&q2~, li '"'lq, ~,&,
X,j kp

d p = (d'k, /k,')(d'q, /q,')

= invariant phase-space element for the outgoing leptons,

d 0, = solid angle element in c.m. system of zn .
In Eq. (7), the leptonic matrix elements which are known functions of the leptonic variables are completely
factored from the hadron amplitudes which are unknown functions of k', q', and the other hadron variables.
This formula gives the exact connection between the measured ee- eenm cross section and the "density ma-
trix" TV„ for the yy- mm process. The diagonal elements of this matrix 8' „„areclearly just propor-
tional to the cross section for yy- va, Eq. (6).

In principle, by measuring the distributions in the pure lepton variables (g, g, g', y' or their laboratory
equivalents) one can isolate a,ll the elements W„„andfrom them determine the scattering amplitudes T

„

for yy- mm. We emphasized in I that because the kinematics favor the low-energy region and because of the
exclusion of the strong p wave by charge conjugation, the s partial wave plays the dominating role for this
process. Since in the elastic unitary region the phases of the partial-wave amplitudes are just those of the
m-z scattering, "one should be able to get very interesting information on the s-wave m-z phase shifts.

The exact relation Eq. (7) contains 20 distinct terms as given in (A9) of I. In practice, one needs to sim-
plify the expression in order to make the problem more tractable, both experimentally and theoretically.
One way is to average over the azimuthal angles y and y'. [These are the azimuthal angles of the scatter-
ing planes of the two pairs of leptons with respect to the scattering plane of the strong process yy- v~ in
the c.m. frame of the latter, Fig. 2(b).] We get

~4 4p 2 1/2

26 .~2mE s kq» d p'dO,

x[(cosh2$+1)(cosh2('+1) 2(W»»+W, »,)+(cosh2$+1)(cosh2$' —1)W»,o

+ (cosh't( —I)(cosh'g'+ 1)W„„+(cosh'g —1)(cosh'g' —1)W««], (9)

where

dp'=dp/ y dy'd,

cosh&= -q ~ (k, +k,)/[(k q)' —k'q')'",
cosh'(' = -k (q + q )/[(k q)' —k'q']'" .

Equation (9), which is still an exact expression
for our process [Eq. (1}and Fig. 1], serves as the
basis for our subsequent discussions.

So far, we have discussed only one diagram (i.e.,

Fig. 1) contributing to process (1). In principle
there are other diagrams of the same order in Q.

which could also contribute to this process, e.g. ,
Figs. 3(a) and 3(b). It is clear, however, that dia-
grams of the type Fig. 3(a) are a factor o down
from the single-photon annihilation processes
which themselves are insignificant at high ener-
gies. Dia.grams of the type Fig. 3(b) have been
studied by several groups' "and shown to be neg-
ligible as compared to the main diagram, Fig. 1,
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(a) (a) (b) (0)
FIG. 3. Additional diagrams of the same order in u as

Fig. 1 which may contribute to process (1).
FIG. 4. Gauge-invariant "Born diagrams" for pointlike

pions.

as long as one does not restrict oneself to the large
k', q' region. None of these should create a seri-
ous background problem for process (1) for ener-
gies of the order E~ 3 GeV.

d~'"'
dsd(cos8„)

, pI([L (L, —2) —L,'( ,L, —~)-—3 LL, ]A
III. THE VAV APPROXIMATION AND ITS

RANGE OF VALIDITY

It is customary to approximate Eq. (9) by noting
that the small virtual-photon mass region k» = 0,
q =0 is most important. Setting k'=0, q'=0 in
the square bracket in Eq. (9), two significant sim-
plifications occur: (i) The hadron amplitudes in-
volving longitudinal photons vanish, thus only the
first term survives; (ii) the kinematics simplify,
thus the lepton lab scattering angles 6) = 6)' =0, and
one can show

cosh/ = (E + e)/(E —e),
cosh'(' = (E+ e')/(E —e') .

where

+ gLL, B))

p' = 1 —4g'/s,

L = ln(4E'/m, ),
L, = ln(4E'/s),

(4u'/s)'+ P' sin'8„
(1 —p' cos'8, )'

16' /s 2p sin 28,B=1+» +
1 —P'cos'8„(1—P'cos'8„)' '

p = pion mass .

(13)

(14)

After integrating over all the lepton variables, one
gets the standard formula' ' ":

(12}

where (ix'»'/d(cos8, ) is just the on-shell yy- vv
differential cross section. The great majority of
recent works on process (1}are based on the use
of (12), which allows one to concentrate on the
simpler process yy- nm with on-shell photons.

What is the range of validity of Eq. (12)? To
answer this question, we have studied in some de-
tail the case of pointlike pions, for which one
knows the exact form of the matrix elements T

„

(and thus W„. „)." One can then calculate the
cross section from the exact formula, Eq. (9). The
relevant Feynman diagrams are given in Fig. 4.
The calculations are quite involved. We relegate
the details to Appendix A and only discuss the re-
sults here.

Making use of some previous results of Baier and
Fadin, "our detailed calculations yield

Equation (13}is accurate up to terms which are
quadratic in the large logarithmic factors L and
L, . Terms linear in these as well as terms of the
form (s/4E')L' or (s/4E')LL, which are small in
the energy range we consider are neglected. The
standard WW formula, Eq. (12), corresponds to
keeping only the term L'(L, ——,')A on the right-hand
side of Eq. (13) and approximating L' by

L =4ln'(E/m) .
To get some feeling about Eq. (13), let us sub-

stitute some typical values of the variables. Thus,
for E =3 GeV, W=vs =2.25i), we get

s/4E = 2.7 x 10

L =18.7,

L, =5.8.

The coefficient of the A term in (13) comes out to
be -880 while the corresponding number obtained
from the WW formula, Eq. (12), is -1300. The
difference is -50'Pp of the true answer. The main
correction effect comes from the ——", LL, term.
The second term ip the square brackets and the B
term make relatively small corrections.

Previously, Brodsky et al. ' investigated the val-
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idity of the WW approximation for the simpler case
of single m production. They found the exact re-
sult to be about 25% higher than that given by Eq.
(12) and the effect is reduced by inserting a form
factor for the m' vertex. The fact that the correc-
tions to Eq. (12) in these two cases occur in op-
posite directions can be readily understood. This
is explained in a footnote. " We shall show later on
that strong-interaction effects are not likely to re-
duce the size of the corrections to Eq. (12) for our
case.

Clearly, if one hopes to extract useful informa-
tion from the two-photon process ee- eever, 50%
inaccuracy can not be tolerated and Eq. (12), as it
stands, is useless. One must go back to the exact
formula, Eq. (9}.

This is not necessarily a setback as it might ap-
pear to be. A moment's reflection will reveal that
the simple formula Eq. (12) cannot be used even if
it were accurate. The reason is that to make
certain that one is indeed measuring the ee- eery
process, one has to tag one of the outgoing elec-
trons in addition to detecting the pions. Only in
this way can one exclude the one-photon annihila-
tion background as well as eliminate the possibility
of producing additional neutral particles. The WW
approximation formula, Eq. (12), having integrated
over all lepton variables, does not describe this
situation. One will have to go back to the complete
differential formula Eq. (7), or the partially inte-
grated formula Eq. (9). We believe the latter is a
more practical choice.

Two additional points are worth mentioning:
(i) The deviation from the WW approximation

mainly comes from the large k2 and/or q' region.
Therefore, the equivalent photon approximation
can be used with good success if one only integrates
over the small k', q' region. A very interesting
study in this respect is given by Kessler et al. in
the last paper of Ref. 2.

(ii) Equation (9), which will be the basis of much
of the subsequent discussions, is obtained by aver-
aging over the azimuthal angles y and y' which are
defined in the c.m. frame of the two outgoing pions.
These variables are not to be confused with the lab
azimuthal angles p, P' which most authors use.
(The la,tter cannot be varied independently from s
for fixed E, E'. Thus averaging over (II), p' for fixed
s and other variables as is implicitly done in most
papers is not always a meaningful operation. ) Our
averaging procedure is done after the transforma-
tion to the w-m c.m. frame is carried out and for
each fixed value of s. We note that for this collid-
ing process, the lab and pion c.m. frames are not
very much different, the transformation from the
former to the latter does not significantly distort
the kinematics of the individual events.

IV. EXTRACTION OF m-m PHASE SHIFTS-

PHENOMENOLOGICAL ANALYSIS

We begin our phenomenological analysis by as-
suming the ideal situation where measurements of
the process can be done with great accuracy and
outline the model-independent procedure to ex-
tract the m-z phase shifts. Later on, we introduce
the usual plausible dynamical assumptions which
simplify the analysis with less than perfect data.

Consider the helicity amplitudes T „(k',q', s,
cos8, ) introduced earlier [Eq. (5)] for the process
yy- vv [Eq. (6)]. We shall take the variables ki,
q', and s to be fixed and only explicitly display the
6), dependence. Each of the helicity amplitudes has
the partial-wave expansion

T „(8,) = g (2 l + 1)a('„)d(')„o(8,),
g even

(15)

where d(')(8, ) are the usual rotational matrices.
The important features to notice are: (i) Because
the charge-conjugation quantum number for the yy
state is +, the two pions can only be in states with
even isospin and even angular momentum; (ii) to
lowest order in n, the unitarity condition demands
that the phase of each partial-wave amplitude a~'„'
(for given isospin I =0, 2) is the same as the cor-
responding partial-wave amplitude for p -m scat-
tering, at least when s is below the inelastic
threshold, i.e.,

(l)l
)

(l)l( ib)a~„—a~ e (16)

&ii, ii =
~
&ii'~'+»

~ &ii' ~ ~ n[i'~ cos(6o —52)d",o(8.)
+25[g(')[ [d( )(8 )]'y. . .

K 1,1 1=25~el", 'i~'[d(', )(8,}]'+ (17)

with similar expressions for lVjp yp and TVpp pp If
one can separate the various terms in the above
formulas (by mea, suring the distributions in g and
8, for fixed k', q', and s) one can eliminate the
unknowns

~

a(')
~

and solve for cos(6, —6, ,), l, /'

=even integers. A very important feature of this
type of phase-shift analysis is the fact that the
factors cos(6, —6, ,} enter linearly in the cross-
section formula. Consequently, the well-known
ambiguities associated with phase-shift analysis in
hadron-hadron scattering do not arise at all in this

where 5, is the m-n phase shift for isospin I and
angular momentum l.

Substituting (15) and (16) into Eq. (7) or (9) we
get the connection between the measured cross sec-
tion and the g-n phase shifts. To be more explicit,
let us consider Eq. (9). The W„which enter into
this formula, can be written out (we omit the isospin
index)
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case.
To simplify the parametrization, one can invoke

the argument of angular momentum barriers for
higher partial waves and assume that the final-
state interaction is negligible except in the lowest
angular momentum states. Further, since higher
angular momentum corresponds to larger impact
parameter where the interaction is dominated by
the exchange of the least massive particles, one
expects the higher partial waves to be dominated
by the single-pion-exchange Born diagram, Fig.
4(a). Gauge invariance demands that the crossed
Born diagram and seagull diagram, Figs. 4(b} and
4(c) be also included. One can, therefore, set in
Eq. (17)

for l&L, (18)

where a '„'( ) are the partial-wave amplitudes cal-
culated from the Born diagrams of Fig. 4 and l, is
some small even integer.

More directly, one can write

1 =0

x d" &„,(8,)

(19)

and substitute into Eq. (9) or Eq. ("I). The phase
shifts 5, can then be extracted from data by sys-
tematically eliminating the unknowns

~

a~'~ [,
L=O, . . . , lo. For energies not too far from the
threshold, one can simply take l0=0 (we remind
the reader again that the p wave is absent) and the
procedure outlined above then reduces to that of I.
The validity of the assumptions which go into this
phenomenological procedure can, of course, be
directly checked by experiment. As the quality of
the data improves, one can increase the value of l,
and see if the approximation (18) is valid or not.
A similar procedure is known to be very useful in
N-N phase-shift analysis" (where the situation is
more complex due to nonlinear unitarity).

Except for Eq. (16), we have not included the
isospin in our discussion. In principle, the only
model-independent way of disentangling the I =0
and I =2 amplitudes is to measure both the p'p
and w'n' final states. However, there are both
theoretical reasons and experimental evidence""
that the I =2 final-state interaction is not impor-
tant in the low-energy region. Therefore, as a
first approximation, one can again use the gauge-
invariant Born diagram result for the 1 =2 part.
As the range and quality of data improve, this ap-
proximation can be removed.

In an actual experiment, one may not be able to

completely average over the two variables y and
y' as proposed. In that case, Eq. (I) still applies.
With incomplete integration over X and X', some
terms in addition to those in Eq. (9) will survive.
They can be treated in the same manner as outlined
in the above. An important point to bear in mind is
that most additional amplitudes involve one or
more longitudinal photons (helicity index 0) and
give small contributions to the cross section.

In addition to the phenomenological analysis, dis-
cussed above, one can make dynamical assurnp-
tions which allow one to "calculate" the unknowns

) a~'„') and 6, in the formulas given. One can then
"predict" the measured ee- eeet cross sections
through Eq. ('I) or (9). In particular, dispersion
relations (which connect the real and imaginary
parts of an analytic function) can be used to relate
)
a~"

[ to 6, provided the latter is known for all en-
ergies. On the other hand, some predictions on 5,
itself can be made if one imposes some combina-
tions of constraints due to crossing symmetry,
analyticity, unitarity, partial conservation of axial-
vector current (PCAC}, and current algebra -to
the best of one's ability. The dynamical theories
involved, however, are far from perfected. A di-
rect comparison of experimental data with such
"predictions'* which are obtained after a long chain
of model-dependent calculations probably will not
be particularly revealing. Since theoretically the
mg phase shifts 5, are much more interesting than
the absolute values of the partial-wave amplitudes
) a~'„~(, it is clearly desirable to extract 6, from the
data in as model-independent a way as possible and
then compare the results with theoretical models
for m-g scattering. This is the approach advocated
here.

V. MODEL CALCULATIONS —SENSITIVITY OF
MEASURED CROSS SECTION TO QUALITATIVE
FEATURES OF THE s-WAVE w-x PHASE SHIFT

In spite of our caution against making theoretical
predictions, if one wants to get some feeling of the
effectiveness of extracting the w-m phase shifts
from e+ e- e+e+m+ w, it is useful to estimate the
order of magnitude of correction effects due to
~-n interaction on the measured cross section.
Such studies could be useful in providing a guide
for the planning of relevant experiments. The pre-
cise results may be somewhat model-dependent,
but the qualitative features should be instructive if
the dynamical assumptions made are reasonable.

Our model consists of using dispersion relations
to calculate [

a~~~
) from assumed phenomenological

test phase shifts 50. We then test the sensitivity
of the measured ee- eeet cross section to varia-
tions of some important qualitative features of the
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s-wave m-m phase shifts, such as the magnitude of
the scattering length and the existence of the sca-
lar meson around 700 MeV.

As mentioned before, in an actual experiment it
is probably necessary to tag one or both of the
outgoing electrons, thus specifying the full kine-
matics of ee- ee~m. However, in order to under-
stand the qualitative features, it is more trans-
parent to present results for the case where the
lepton variables are integrated. This we shall do
in what follows. Our basic formula is therefore
Eq. (9) with fixed s and cos8, but all remaining
lepton variables integrated over. We have dis-
cussed in some detail the results of such a calcu-
lation for the case of pointlike pions (Born approx-
imation) in Sec. III and Appendix A. For the pres-

ent case, we perform the same calculation with
only one modification, namely, the s-wave Born
amplitudes a '„arereplaced by the unitarity-cor-
rected ~a&'„&ie'". [See Eq. (19}with I, =O.]

The essential features of our model were de-
scribed in our previous paper. ' We shall outline
them here.

(1) From our experience in Sec. III and Appendix
A, we know that W00 „,being proportional to k q',
does not contribute significantly to the cross sec-
tion. [This is because the factor k'q' cancels the
denominator (1/k'q2) from the virtual-photon prop-
agator, so the integrated cross section then loses
two powers of I.= In(4E'/m, ') which is the dominat-
ing factor. ] We can write therefore

z4 4&»s' 1
1 — dp" »[(cosh /+1)(cosh'l('+1)~(W»»+W, », )

+ (cosh2$+ I)(cos h2$' —I)W», 0 + (cosh2l( —1)(cosh~&I&' + I)Wo, „],
(20)

where d p" = dp/d&fd&I'ds and cosh& and cosh&' are
given by (10).

(2) Now, we apply Eq. (19}, which reads in this
case

mn rnn
=

I mnl

T =T~ [&a+ie' 0 —a11 ll 11 11 (21)

as(s, k', q') = » as(s, 0, 0) +
s 2(k' + q')

s+k +q ' ' s+k +q

where

(22)

as(s, 0, 0) =
2

ln, P'=1 —4p /s. (23)
1 —P' 1+p

2p 1-p '

The corresponding amplitudes for m'w' production
are obviously zero.

The amplitudes with definite isospin are related
to the charged (c) and neutral (n) amplitudes by

(24)

or

T' = T«& ~(I/~2)T~'&

T"=-T( )+W2 T( ) .
(25)

T„„=T't& for (m, n}=(1,-1), (0, 1), and (1,0).
The amplitudes T( ' for charged pions are given in
Appendix A. The only s-wave partial-wave ampli-
tude [for (m, n}=(1,1)] is

W&"& =i y&"&('=i -g&'&+»2 g&'&i'
(26)

Now', we have everything expressed in terms of
6,(s). We can therefore perform the calculation by
assuming various possible sets of phenomenologi-
cal phase shifts. Since we are interested only in
the qualitative features of our model calculations,
we choose simple analytic forms for the phase
shifts which possess the desired properties. In
choosing these phase shifts we obviously also bear

(3) The unitarized s-wave amplitude a(s) in Eq.
(21) is calculated from the dispersion relation for
the partial-wave amplitude. Assuming elastic uni-
tarity, this dispersion relation becomes a standard
Qmnes-type integral equation. This equation can
be solved in a standard way for any given set of
z-z phase shifts. The form of this integral equa-
tion and explicit expressions for the solution are
given in Appendix B. We only make two relevant
remarks here:

(i) Strictly speaking, the solution to the Omnes
equation is not unique; possible polynomial terms
could be added. The arbitrariness can be fixed by
additional physical requirements on the asymptotic
behavior of the amplitude. In obtaining our solu-
tion, we have assumed that the s-wave partial wave
does not rise linearly in s as s -~.

(ii) In this model, the»'»' production proceeds
entirely through the s-wave partial amplitude and
is isotropic in the m-m c.m. frame. The cross
section for ee- eel z can be obtained from Eq.
(20) by setting
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FIG. 5. Four sets of phase shifts used in the calculation
of the magnitude of the s-wave amplitude for yy —7rx.

in mind the available experimental information as
well as theoretical models for 6,(s). There are
three features of the phase shift which determine
its qualitative behavior over the elastic scattering
region. These are (i) the scattering length; (ii)
possible resonances (6 = v/2); (iii) asymptotic be-
havior (6 increases to nv or decreases to zero).
We have chosen many sets of phase shifts which
exhibit different types of behavior under these
three categories and tested the effects on the mea-
sured cross section.

We present here results obtained from four sets
of such phase shifts which illustrate the qualitative
features of our model calculations. One of these is
chosen to agree qualitatively with the phase shifts
calculated by Kang and Lee" or Brown and Goble"
using current algebra, unitarity, dispersion the-
ory, and crossing symmetry. The features of this
phase shift are its small scattering length, reso-
nant behavior near ~s= VOO MeV, and asymptotic
return to zero. Each of the other three phase
shifts differs from the first qualitatively in one re-
spect, that is, one has no v resonance, one has a
large scattering length, and one approaches the
value m as s-~. These phase shifts, as functions
of the pion c.m. momentum are depicted in Fig. 5.
Analytic forms for these test phase shifts and the
corresponding Qmnes functions are given in Ap-
pendix B.

Some typical results are presented in Figs. 6
and 7. In Fig. 6, the integrated cross section do/
ds is plotted as a function of the pion momentum.
The incident electron energy is taken to be 3 GeV.

FIG. 6. Integrated cross section for process (1),
da./ds, as a function of p, the magnitude of pion rnornen-
tum in the dipion c.m. frame. The solid line is the cross
section for pointlike pions. The other lines are unitarity-
corrected using the 4 sets of phase shifts given in Fig. 5.
The incident electron energy is E = 3 GeV.

The solid curve is the cross section due to the
Born diagrams without m-m interaction. The other
curves are the unitarity-corrected cross sections
with the 4 different sets of phase shifts mentioned
previously. Note that (i) the v-v interaction can
produce a very significant effect on the measured
cross section; (ii) the cross section is concentrat-
ed in the near-threshold region, it becomes quite
small beyond 200-MeV/c pion e.m. momentum.

In Fig. 7 we plot the differential cross section
do/dsd(cos8, ) as a function of the pion e.m. scat-
tering angle 8, for four different values of s. The
various lines have the same significance as in
Fig. 6.

From these curves we can see that the measured
cross section for ee-cern should be quite sensi-
tive to the m-z interaction effect. In particular,
the set of phase shift with scattering length of or-
der unity gives rise to cross sections which are
significantly different from the others. The other
sets, all taken to have zero scattering lengths, tend
to behave in qualitatively similar ways with 10-20%
differences in the actual cross sections. Other
phase shifts with small but nonzero scattering
length give similar results. Stated explicitly, in
the region near the threshold where our model
should be fairly reliable (and where the bulk of the
cross section lies) we see great sensitivity to the
scattering length. We might point out that the ab-
solute normalization for this process can be mea-
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sured by comparing with the pure quantum-electro-
dynamic (QED) process ee-eepM, .

In contrast, the model calculation yields small
cross section and relative insensitivity to the vari-
ous phase shifts in the 700-MeV region where the
suspected scalar meson o lies. In fact, the one
phase shift which does not rise above 48' through-
out yields cross sections almost indistinguishable
from those from the other sets which do go through
90' near 700 MeV. In the context of our model,
this happens because the unitarity-corrected s-

wave amplitude becomes small as compared to the
remaining Born amplitudes and the distinction be-
tween various phase shifts becomes insignificant.
This fact is in turn related to the assumed asymp-
totic behaviors of the phase shifts and the s-wave
amplitude. The predictions in this region can be
easily changed by modifying these two factors. We
see, therefore, in our model, the cross section has
little sensitivity to the existence or nonexistence of
the o meson. Its effect is mixed up with the asymp-
totic behavior of the phase shift wherein lies the
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most ambiguous aspect of this model.
The failure of the model to demonstrate a clear

signal for the v meson does not mean, however,
that this very interesting subject can not be studied
in this reaction. The model is simply not reliable
in this respect. This circumstance only underlines
the need of pursuing a model inde-pendent proce
dure of extracting the s-v phase shifts as outlined
in Sec. IV. There exist in the literature other mod-
el calculations on this process either using a pro-
cedure similar to ours or involving some form of
resonance parametrization for the relevant ampli-
tudes. So far as we can tell, all suffer from am-
biguities in this respect not less severe than those
we explicitly spelled out.

After completing this work we received a revised
version of the work by Goble and Rosner, ' as well
as the Cornell conference proceedings, ' in which
similar results obtained previously by the same
authors were discussed. Since these results have
considerable overlap with the present investiga-
tion, and since the conclusions with regard to the
o meson seem, on the surface, to differ, some
specific comments are called for. The overlap is
in their section on yy- mz and our Sec. V on the
model calculations. The two models are essential-
ly equivalent. Given the same z-71 interaction as
input, the solutions are also the same. The dif-
ferences lie in emphasis and interpretation. Spe-
cifically:

(i) In Ref. 8, the input information on s-w scat-
tering amplitudes is taken from model calculations
based on current algebra while attention is focused
on the effects of the v meson in the process yy- nw.

In the present investigation, the g-g phase shifts
are treated as phenomenological quantities to be
extracted from the experiment; the current-alge-
bra solution to the g-p phase shift is selected as
one of several representative test phase shifts. It
seems desirable that the results from this type of
experiments are used both to extract the p-p
scattering length, as an important test of current
algebra ideas, and to investigate the 0 meson
problem.

(ii) Because of this difference in emphasis, the
curves of Ref. 9 are plotted against the variable P,
the pion c.m. velocity, which emphasizes the high-
momentum region. The most striking feature is
the appearance of a wiggle or shoulder around P
= 0.8-0.9 in &/dP for ee- eever which is attributed
to the existence of the v meson. We have per-
formed similar calculations using the variable P in
our model. The results are almost the same as
given in Ref. 8-, if the phase shift corresponding to
the current-algebra solution (6, in Fig. 5) is used.
However, the nonresonating phase shift (for in-
stance, 6, of Fig. 5) also gives qualitatively simi-

lar results except the wiggle is less pronounced.
In view of this fact and the inherent ambiguities of
these model calculations in this energy region
(stressed both in Ref. 8 and the present work), it
should be clear that the interpretation of such a
structure, if it were indeed found experimentally,
must be treated with great care. We also note that
the same curve when plotted versus the variable p
(as is done in our Fig. 6) does not show such a
structure at all.

APPENDIX A

Here we outline the calculation of the differential
cross section ebs+ „,+, /dsd(cos&, ) for the case
of pointlike pions. The result is used in the text
both in Sec. III where the validity of the WW ap-
proximation is discussed and in Sec. V where the
model calculation including unitarity corrections
is reduced to a form similar to the present case.

For pointlike pions, the scattering amplitudes
are given by the gauge-invariant Feynman dia-
grams, Figs. 4(a)-4(c}. By neglecting terms pro-
portional to (k q') (justification of this approxima-
tion is given later in this appendix), we get

2 4p 2
T(&)— +~k2+ 2~( q l

2s P2 sin2 8&
1,-1 s + k2 + q2 1 P2cos2

&s&=-(2 g}'"s k +q' p sin2tj,
s+k'+q 1 —p'cos'8, '

T(s) (2 k,)„,s+k' —q' p'sin26„
s+k'+q' 1 —P'cos'8, '

(Al)

where p = (1 —4p'/s)'" is the velocity of the pions
in their c.m. frame. In the same approximation
the remaining lepton variables g, tt' in Eq. (9) are
given by

cosh/ = 8E(E —e') —s —k +q2
s+k +q

cosh/' = 8E(E —e) —s + km —q2

S+k2+ q2

(A2)

Substituting (A1) and (A2) into Eq. (9) and inte-
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grating over all variables except s and cos8„we
get Z, (s, cos8, ) = (1 —P')'+ P'sin'8,

p2COS2g„2

where

, ppz;(s)Z, (s, cos8,), (AS) Z, (s, cosg, ) = 2(1 - p')
1 —P'cos'0

Z, (s, cos8, ) = 1,
p4sin228,

Z4(s, Cosg~) =
(1 ~ 2 )z,

(A4)

s " dp" 8E(E —s') —s —k +q 8E(E —e) —s+k +q'

z, = s /(s + k + qz), z2 = s(k2+ q )/(s + k2+ q )z, 2, = (k + q ) /(s + k + q ) (A5)

( )
s', dp" SE(E —z') —s —k'+q' ' 8E(E —c) —s+k' —q' ' sq'(s+k' —q')'

S, =
2 2 +1 —14i i 8g2 g p2 2 S+p2+ ~2 S+p2+ q2 (s+ k'+ q')'

and

d'k2 d'q2

The integrals involved in evaluating z, (s), Eqs.
(A5), a.re threefold integrals over, say, k', q', and
e (or e'). Although very complicated, these inte-
grals can be in principle done exactly. For dimen-
sional reasons, the result can only involve quanti-
ties like P and

x = s/4E',

4@2
L = ln

me

4@2
L =ln =-lnx.s S

For all practical purposes, it suffices to obtain re-
sults which are at least quadratic in the large
logarithmic factors L, L, and these only with con-
stant coefficients (i.e. , one can neglect terms like
x "L, x "LL„.. . , n=1, 2, . . . ). The task then be-
comes considerably simpler. For instance, one
immediately recognizes that the L factor can only
come from the lower limit of the k2 (or q2) integral
with the photon propagator factor 1/k' in the inte-
grand. Thus, if the propagator factor I/kzq' is
canceled by other factors in the integrand, then
the result can, at most, be of order L, (from the

z, (s) =I, (L, ——,') —L, (,'L, —z)—

zz(s) = ', L(L, —'6'), —

z, (s) = ,'L(L, — ), —

(A6)

z,(s) = ', L(L, - '-„').-

If one only retains terms quadratic in L and L„
then z„z„andz, become proportional. The cor-
responding terms in (AS) can be combined and we
get the result quoted in Sec. III, Eq. (1S). In our
direct calculations of the integrals z;(s), Eqs.
(A5), we have checked all the coefficients except
those of LL, and L, .

I

s integration). Thus we are justified in neglecting
terms proportional to kzq in our calculation.
Using similar arguments, one can easily isolate
the coefficients of the leading terms proportional
to L'L„L,', LL,', . . . , etc.

Similar calculations for the cross section inte-
grated over cosg„ i.e., do,'s'„„/ds,have been
done by Baier and Fadin" up to terms linear in the
logarithmic factors. The integrals z;(s) can also
be inferred from their results by integrating our
Eq. (AS) over cos 8, and comparing the results.
One then obtains

APPENDIX B

In this appendix we show some of the formulas relevant to our dispersion (Omnes equation) treatment of
the s-wave strong-interaction modified amplitude, including a list of the test phase shifts that we employed.

In writing down the dispersion relation for a (s) (we shall omit the angular momentum and helicity labels
i, m, n), we assume that the right-hand cut is dominated by elastic unitarity and that the only important
contribution to the left-hand cut comes from the Born term. The relation is

oo u2 ' si e' -"oIi( ka 2) r(s)( k2 g) s, a (si k i q ) sm60e
(Bl)

W 4 p2 s s —s
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This standard Omnes equation has the solution

(s) t l(B)(si k2 2) sin5l e-Red {s')
a'(s, k', q') =a'( )(s, k', q')+ ds' (a2)

with

(B3)
2 s)J2 S (S —S)

For the test phase shifts we use, the ambiguity associated with the Qmnes solution is fixed by requiring the
s-wave amplitude not to rise linearly in energy as s-~.

The Born amplitude over the elastic unitarity region can be well approximated by one or two poles on the
left-hand cut. For example, for the charged amplitude

1427 p,aB(s, 0, 0}= (B4)

is accurate to 4% over the range 4(l. 2 & s & 16)l2, and

)
'l.05)l2 9.15 I(),

2

s+1.66)l2 s+66.4)l, 2 (B5)

is accurate to 1% for 4p, ' ~ s ~ 100 p, '. If the pole approximation is made, the Qmnes solution can be inte-
grated analytically.

Thus, writing

s k +al(B)( k2 g) r(B)( } l(B)
s+k +q s+k'+ q'

yra'( '(s) =a (s 0 0) =P0 S+Ci i

al(B) = '-, for 1=0 and (2&2/3) for I =2,

(B6)

we get

k2
a'(s, k', q') = » a,'(s)+» a', (s),S +k2+ A/2

0 s+ k2+ g2

where

I sI
2( ) = &'&xg —'

& — e- &-'&),
g C~ S+C]

a, (s) =e~ (') a, [1 —sd' (0)]++ ' [1+c,n' (0) —e ( " ]

(a'I)

In obtaining (BV) we have again neglected terms of higher order in k2 and q2 for reasons already mentioned.
The most important feature of E(I. (BV) is that al(s, k', q') is written in the same form as the Born ampli-
tude, with only the substitutions al '(s)-a,'(s) and a,' '- a', (s}. Since the integration involved in evaluating
Eq. (20) is done for fixed s, there are no changes in any of the integrals that one needs to evaluate Thus.
one needs only to isolate the s-wave part of the Born calculation discussed in Appendix A, make the appro-
priate substitutions of a (s, k', q') for a ( )(s, k, q'), and then one can write down the integrated answer di-
rectly. The substitutions affect only the Z, of Appendix A, and we shall give just the modified forms of
these g, here:

2

g~ g~ g Re -a +g + ~ Qo + g —Qo +&0++0D

Z2- ~Re 2 —a, +a, +
2 ao a, + a,

1 —p (a) 0 1 2 0 1

z, —s II a;+ (I/~2)a', ll',

+4 +4 y

(as)
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with D=1 —P'cos'0„. We would like to call the reader's attention to the fact that the large corrections to
the WW approximation exhibited in E(l. (13) remain also in this case. This is important because these cor-
rections are in the opposite direction to the unitarity corrections and of comparable magnitude in a wide

region of the variables.
For completeness, we give the analytic forms for the test phase shifts and the corresponding Omnes

functions. The isospin-zero phase shifts are

6,(s) =67.6s(s —4)/(s+28)2,

6,(s) = 26,(s),

6,(s) = —,
'

v 5 s(s —4)'"/(s + 26),

6,(s) = s(s - 4)/(s + 16) .

Three of these phase shifts, 5„5„and54, pass through 90' at s =24. The Omnes functions are

s s+ 252 s —4 1 s 16,( )=6766 ), 1632 —
), 16( —4) —— — 1 4I,

(B9)

&,(s) = 2&,(s),

5 s s —4
&,(s) =- ln20 — ln(s —4) ——, ln44 s+16 s+16 (B10)

)
6&3

(
736)

For the isospin-2 corrections, which are small, we always took the 1=2 phase shift to be -&6,(s).
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From the energy dependence of the pp and pn inelastic cross sections we deduce an upper
limit to the resonant contribution in pp backward scattering for c.m. energies between 1915
and 1950 MeV. This limit is smaller than the expected contribution from diffraction scatter-
ing. The energy dependence of the 180 pp elastic cross section in this energy range cannot
therefore be directly related to the formation of s-channel resonances.

I. INTRODUCTION

The observation with the CERN missing-mass
spectrometer of a very narrow resonance (1' & 35
MeV) at a mass of 1929 Me V' has stimulated the
search for its possible coupling to the pp system.
However, the low-energy pp elastic scattering
cross section is dominated by a conspicuous for-
ward peak apparently due to diffraction, and con-
sequently the detection of a highly inelastic reso-
nance from the energy dependence of the total
elastic cross section appears very difficult. It
has since been pointed out by Cline et al.' that a
better sensitivity to a possible resonant pp inter-
action could be achieved by looking at the energy
dependence of the backward scattering cross sec-
tion, away from the forward diffraction peak.

It is the purpose of this paper to show that pub-
lished data on the pp cross section, together with
new data on the pn annihilation cross section in
the momentum range 350-580 MeV/c, allow one
to place a significant upper limit on the possible
contribution of a single resonant interaction to the

backward pp elastic cross section if the resonance
has a mass between 1915 and 1945 MeV and a
width between 10 and 40 MeV. At the same time
we will point out that at these low momenta, even
in the backward direction, diffraction scattering
is capable of masking possible effects of s-channel
resonances.

II. DATA

The values of the Pp and pn inelastic cross sec-
tions in this energy interval are shown in Fig. 1.
The pp data are those of Loken and Derrick' and
Amaldi et al.' The Pn data are new and we shall
briefly describe how they have been obtained.

The experiment is very similar to that of Ref. 4.
The deuterium-filled 81-cm Saclay bubble cham-
ber has been exposed to a separated antiproton
beam from the CERN proton synchrotron. Three
exposures at beam momenta of 467, 549, and 612
MeV/c (at the entrance of the illuminated region
of the chamber} have been made. All p interac-
tions have been measured if they occur in a re-


