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The radiation from an electron driven by an intense circularly polarized electromagnetic
wave of finite duration and smoothly varying intensity is analyzed. The effect of radiative re-
action on the electron orbit is accounted for self-consistently. Expressions are derived for
the total scattering cross section, the angular and spectral distributions, and the polarization.
tensor of the scattered radiation. The results are relativistically correct, and exhibit the de-
pendence of the characteristics of the scattered radiation on the intensity profile of the inci-
dent radiation.

In the present communication we analyze the
properties of the radiation emitted by a free elec-
tron interacting with an intense circularly polar-
ized electromagnetic wave of finite duration.
First we derive relativistically correct expres-
sions for the total cross section associated with
the scattering of the incident wave by the moving
electron. We then calculate the angular and spec-
tral distributions of the scattered radiation and
discuss the polarization of its spectral components.

Sarachik and Schappert' have dealt with essen-
tially all of these characteristics of the scattered
radiation for the case of an elliptically polarized
incident wave. Although radiation damping is
neglected in their calculations, they point out that
for a sufficiently long pulse it may induce a signifi-
cant modification of the electron motion and con-
sequently of the emitted radiation. Several au-
thors' ' have discussed such a modification of the
particle motion. For a linearly polarized incident
wave, Sen Gupta' has employed an expansion tech-
nique valid for pulses of short duration to calculate
the modified electron orbit and the associated
change of the spectrum of the scattered radiation.

The analysis we are presenting is applicable to
pulses of arbitrary duration. We assume the
pulse of the incident electromagnetic radiation to
be characterized by the vector potential

X(q) = Re[go(q) e '"(e, +ice,)],

where A. denotes the helicity, the (real) amplitude
A, (q) is a smooth function of the phase

q = grot —koz,

and where the propagation vector %, = k,e, lies
along the z axis of the Cartesian coordinate sys-
tem (x, y, e). The amplitude A, (q) is different from
zero only in the given interval 0 & q & q&. Since
the electric field associated with the vector poten-
tial (1) is

( )
1 sA(q)
C

(o dX(q)
C

it follows that
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dA, (q)E (q) =—Re iA, (q) — ' e '"(6, +iA.0,)

The amplitude of the elec'tric field is therefore

and Eq. (3) can be replaced by

E(q) =Re[E,(q)e ' " ' ' " (e, +iA 8)],

(4)

(5)

(13)

In a system of cylindrical coordinates (8, y-, z) the
relation between the azimuthal coordinate P, of
the electron and the phase g, is'

(14)

where

e =tan '

is the phase by which the electric vector E lags
behind the vector potential X.

In a previous paper' we show that, for smoothly
varying pulses for which

where m is the angle between the vector potential
A and the radial coordinate vector p, e~; it is also
the angle between the azimuthal component of the
particle velocity and the electric vector E. Thus
the orbit of the electron is described by the posi-
tion vector

r, (q, ) =p(q, )(0, sin7}, —A. 6, cosrl, )+ z(q, )6, , (15)

where

(16)

an electron initially at rest acquires the longitudi-
nal velocity cP, determined by the relations

(6)

The radial and azimuthal velocity components c(8~
and cP& may be derived from the relations

cP = . '=&@ (1 —P )
d d
dt ' ' dq,

and

and

P (0)4'
0 By virtue of the relations (6), (13), and (14) we

obtain

(8)

where

q, = coot —koz,

is the value of the phase at the coordinate z, of
the electron, .

is a dimensionless parameter relating to the ra-
diative reaction,

is the Thomson cross section, and

(12)

and

2xp, (q.)[I+e(q, )]
[1+e(q, )]'[I+p, '(q, )]+1

(18)

The instantaneous rate at which the electron
scatters radiation from the incident wave and the
spectral characteristics of the emitted radiation
depend on the phase q„which is a measure of how

far the electron lags behind the leading edge of
the pulse. To proceed with the calculations we
must choose a particular phase q„ for the spectral
analysis, and express the electron orbit in a some-
what simpler form, which is valid for a complete
azimuthal cycle q, -q„= 2m, and which retains all
of the essential features of the motion. We first
note that for optical frequencies

is the intensity of the incident radiation. The
. orbit of the electron is a helical curve of slowly
varying slope and slowly varying radius, . is of the order 10 ', while p.

' is of order 10' for



1470 A. D. STEIGER AND C. H. WOODS

a radiation intensity of 10"W/cm'. Thus the
term 2e, p,

' in the numerator of expression (17) is
of order 10-'. Furthermore, for the radiation
intensity 10"W/cm' and for a pulse duration of
1 nsec e(q) does not exceed unity. Since our anal-
ysis of the electron orbit pertains to smoothly
varying pulses for which dp, (q)/dq « I, the radial
component cP& of the velocity is much less than
the components cP~ and cP„and may be neglected
in calculating the radiation emitted by the electron.
Next, we express the longitudinal position of the
electron as the linear approximation

z, (q, ) = e,()I„)+ cP,(q„)(t—t, )

zs=e„+
( )(q, —q„),

where we have used the relation g„=~pf, kpz„
and the definitions P„=P,(q„), z„=z,(q„). With
these substitutions we may now express the posi-
tion vector as

r, ()I,) = p„(e, sing, —A0, cosy, )

dp" =
4 C dt

in which

(24)

with y = 1/(1 —P')~', and P given by Eq. (21). By
virtue of the connection

(26)

Eq. (24) may be written as

in (n )'..(n'(n. ))(( n ( )).

(26)

By substituting in Eq. (26) the expression (21) for
P, we obtain

cP„+e, n„* „,, (n, —n„)).

The corresponding velocity is cTI, with

P(q, ) = P &,(A0, cosy, + e, sin q, ) + P„0, .

(20)

(21)

~'(n, ) ~.' Pe(n..)[I —P.(n, )1
c' c' 1 —[Py'(q„)+P, '(q„)J

u(7)..)
c' 1+e(q„) (27)

In these expressions p„, e„, P&„and P„are to
be regarded as constants, whose values are all
affected by the radiative reaction.

We now determine the rate of radiation of energy
dh*' /dt and momentum dP

'
/dt by the electron.

Since (1/c)dh™d is the time component of the differ-
ential four-momentum we utilize the well-known
expressions [Ref. 7, Eq. (73.3)]

and the radiated power becomes

dh"'()I„) 2e', p ()I.,)
dt 3c ' 1+e(q„)

(28)

dP (q„)= [(dP„'"(q„))'+(dP*„"(()„))']

By decomposing the vector equation (23) into a
perpendicular part

(22) and a longitudinal part dP;*~(q„), we arrive at
the relations for the momentum radiated per unit
time,

dP™d(g..) 4, ~ ' [V(n..)1'
dt 3 ([I+e(n,)]'[I+~'(n,))+1][1+e(n..))

dP, '(q,.) 2, ~(u
' p(q. ,) ' [1+e(q„))'[I+p, '(q.,)] —1

dt 3 c 1+e(q„) [1+e(q„)]'[1+t(, '(q„)]+1
' (3o)

The total cross section for the radiation scattered by the moving electron,

( )
1 dS" (q„)
I dtp

where I, denotes the incident flux defined by Eq. (12), is then,

(31)
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where o, is the Thomson cross section, given in Eq. (11). This equation shows that the effect of radiative reaction
is to reduce the cross section for the scattering of the incident radiation by the factor [1+e()]„)]-. If ra-
diative reaction is neglected, the longitudinal motion of the electron has no effect on the total cross sec-
tion. Similarly, the ratio of the momentum radiated per unit time to the momentum per unit area per unit
time of the incident wave is given by

= 2oo«(«()]„)[1+e()7„)] '([I+e()]„)]2[1+««2()]„)]+I] '1 dP,"'()],.)
and

(33)
d&* ()]..) [ ]-. [1+~(n, ) '[1+« '(n, )] —I')

I,/c dt ' "" [1+a()]„)'[1+ p, '()]„)]+1 ~

for the perpendicular and longitudinal components, respectively.
The angular distribution of the scattered radiation intensity may be calculated from the equation [Ref. 7,

Eq. (73.[])]

e 5x][k—p(t)] x[dp(t)/dt]]
c R(t)[1 —5 P(t)]' (34)

for the electric vector of the wave field generated by the moving electron. Here R(t) is the distance be-
tween the particle and the observer, k denotes the unit vector in the direction of propagation of the ra-
diated wave, and cP(t) is the velocity of the electron at the time t which is retarded with respect to the
observer. .time t+R/c. As standard approximations for radiation in the wave zone we replace R by r, and

gaby

9„, where

6„=«), sin8 cos Q+ 0, sin 8 sing+ 6, cos 8. (35)

If the election is at the phase q, =q„, we then obtain for the differential power radiated into the solid angle
d 0 = sin 8 d8d&f&

d W(8, Q, t+R/c, )]„)=—[E '"'(r, 8, P}]'r' d 0

[p @()]„)]'[1—p, ()]„)]'[I —cos 8 p, ()]„)—)(.sin8 cos(x)]„—y) ]
-'

7T C

x(sin'(&)]„—Q)[cos8 —p,()]„)]'+(Xcos()))]„—p) [1 —cos8 p, ()]„)]—sin8 p&()]„))')dg .

We now proceed to the spectral resolution of the radiation emitted by the electron. The Fourier com-
ponents of the vector potential in the wave zone are given by'

grad &«(rv„/c)r e
P e«[&u„« (&u„/c)a ~ r~(-qa)] d

where the integration is over one azimuthal period of the electron motion. If we substitute for r, and P
the expressions (20) and (21}, and if ~„assumes certain discrete values to be determined, the integrand
in Eq. (37} is periodic. The corresponding Fourier components of the electric field are

E„"'= t —««k x (A„x k)

= «', ~[A„—k(X„~k)],

and therefore

Eaal «(~„/a)r a
p ( ) e«[v„« (w„/a)a ~ r~(-q )] d~a

27TCf'
Res

where cp, ()),) is the component of the electron velocity perpendicular to the direction of propagatio».
Since k = 9„[see Eq. (35)], we may write

(38)

(39)
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From Eq. (21) and the transformation' between the Cartesian unit vectors 0„0„0sand the unit vectors
0„,0e, 0& for the spherical coordinate system (r, 8, ~ti), we find

T],(i],) = ee []iP@,cos 8 cos(Ai], —p) —P„sin8] + 0 & A p&, sin(Xq, —p) .

By virtue of Eqs. (9), (19), and (20) the argument of the exponential in the integrand of Eq. (38) may be
written as

(40)

u„A. 1 —P„cos8 co(u„&-~ & ~ r, = " " (]ii], —P)-~ ]ip„sin8sin(]ii], —y)+6„,
0 ss

(41)

where

&u„(1 —cos8) &si„P (1 —cos8) isi„]i(1 —p„cos8)
(1-p ) "" (1-p )

By utilizing the expansions

(42)

e iQ sin-g g J (Q) e-i ms' (43)

and

ising]e 'o'-""= g J„'(Q)e '
m= -~

(44)

i Q cosy e 'o*'"'i= g im J„(Q)e'"",

Eq. (38) may be brought to the form

+ oo

Ers& i[(ru„/ ]r+c6„] n g P
P4s J (Q ) P P

~ 8J (Q )+P iP J I(Q )~t" i[. ~&~di]
7tcf m= -~ n 30

in which
(46)

CO

Q, =~ p„sin8, (47)

&u 1 —P„cos8
~0 1 Pcs

(48)

and where J'(Q) =d J(Q)/dQ. The period of the integrand in Eq. (46) equals 2w (and integral multiples of
2v) only if n, as given by Eq. (48), is an integer, and in this case the integral equals 2iT5„„. Thus the fre-
quency of the radiation from the electron assumes the discrete set of values

~n= ~n(Rss)

(49)

and the Fourier components of the electric field

E'"(~, 8, y, t, ~.,)= P E„"'(q„)e-'"'

become

Ess&(& ) P[(ru„lc)r+ 6„]e~n i" c~P(bs cos
P sin8 J (Q ) P J y(Q )cx zee

p sin& „sn „„—e~ ~s
nf es

(50)

Equations (49) and (50) show that in the direction of propagation of the incident wave (cos8= 1) the spectrum
of the emitted radiation contains only one component, whose frequency is v, = +0. In the opposite direction
(cos8 = -1) the single component which is present has the frequency v, = u, (1 —P„)/(1+P„). For all other
directions the frequency co, lies between the two values given above, and in general all the higher harmon-
ics are present.

We now utilize Eq. (50) to discuss the characteristics of the spectral components of the emitted radiation.
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The differential power radiated into the element of solid angle dQ is given for the nth spectral component
by

dW„(8, Q, q„)=
2

E„"(q„) ~ E„(q„)d0

cAnP cos8 2

(d ~ s sing

The polarization properties of the scattered radiation are represented by the tensor"

~(n, q„) =—E„*"(q„)e E„"'*(q„). (52)

and

~4B ~B@ TBQ ~

2 2

~ye(n, q„)=2 ", pe'[J„'(q„)]'.

In accordance with Eq. (50) the components of this tensor are

An 8 2

~ee(n i7. )=2 " '
8

—p,.si 8 [z„(q„)]',
277cJ co„p~~ sin0

&ey(n, q„) = i-", ' . —p„sin8 p&, Z„(q„)J„'(Q„),. e'&u„' cAnPq, cos8
27Tc'v (d „P sl110

(53)

(54)

(55)

(56)

The normalization of r(n, q„) has been so chosen that the intensity of the nth spectral component radiated
in the direction 8, Q is given by

I'„' (8, y, q„)=tr~(n, q„)
e m 2 cAnp cos0 2

8 [~„(e.)]"p&.'[~.'(e. )]' .
+n ~es Sln8 J

In order to determine the degree of circular polarization of the nth harrrionic we introduce the scalar

C (n, q„)= i[trv(n, q„)] '[Te(n, q„)—v&e(n, q„)]
2&e„p„sin8(cAnp~, cos8 —ie„p„p„sin 8)pq, &„(Q„)~„'(q„)

(cAnpe, cos8 —&u„p„p„sin'8)'[Z„(g„)]'+[&u„p„sin8 p~, J„'(Q„)]' '

(57)

(58)

The range of C(n, q„) is -1 & C(n, q„) &+ 1, with + 1, -1, and 0 corresponding to right circular, left circu-
lar, and linear polarization, respectively. It is straightforward to show that C(n, q„)=+A. if 8=0 and
C(n, q„)=-A if 8=ii.
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