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Unsubtracted dispersion relations for #;(g2,v) and tg(qz, v) are proposed even in the case of
the AI =1 mass difference, with the requirement of the absence of divergences worse than
logarithmic ones. By the use of the experimental data on the inelastic nucleon structure func-
tions, the possibility is shown that the deep-inelastic effect leads to the correct sign of the
observed n —p mass difference, under the condition that

2M
lim (1 =2¢’R /0?)Gydw > 0,
0

Q4 —>w

where w = q?/v, R =0;/0, is the ratio of virtual-photon cross sections, and G, stands for
vW,(q?,v) in the Bjorken limit. The sufficient condition is then found to be either R = kw?/q?
(k<%) or Rx1/q**% (5>0), as gq°—». In consideration of the experimental fact that the ratio
of structure functions, W, , / W,p, in the range where the greater part of the contribution to
the relevant integral results is not far away from the threshold value as w/2M— 1 predicted
by Bloom and Gilman, the deep-inelastic part of the » — p mass difference is effectively
written in the form of the magnetic-moment-type self-energy. It is also shown that if this is
similarly applicable to other baryons, and if the SU(3) magnetic-moment relations hold, the
correct signs and right orders of magnitude of the mass differences =~ —2*, - - &’ as
well as £+ +27) =20, are reproduced by the theory with no adjustable parameter except an

input of the observed » —p mass difference.

I. INTRODUCTION

It was first pointed out by the author! in 1953
that the observed # — p mass difference might be
explained in terms of the predominance of the mag-
netic-moment self-energy over the electric-charge
self-energy. The mass difference was given by

“AM(n - p)=~ AQ*)e®/r) - A(p*K(e/2M ) /7*),
(1.1)

where @ is the electric charge of the nucleon in
units of the elementary charge e, u is the magnet-
ic moment of the nucleon in units of the nucleon
magneton ¢/2M, M is the nucleon mass, and then
AQ)=Q.2-Q7=-1, A(u?)=p,2- 2= -4.14 for the
n — p mass difference. The field-theoretic calcu-
lation of the mass difference at an early stage®?
seemed to support the above possibility, because
cutoff factors could at that time be suitably chosen
to make the magnetic self-energy dominant. After-
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wards, however, as the experimental data on the
nucleon structure were accumulated, the nucleon
elastic form factors turned out to fall off very
rapidly with the momentum transfer squared, ¢*.?
By the use of empirical form factors such as the
dipole -fit form factors, the contribution to the
magnetic self-energy at large ¢* was strongly sup-
pressed, so the notorious wrong sign for the n —p
mass difference was obtained.* It was also made
clear that analogous attempts to explain the T -2
and Z--Z° mass differences resulted in discour-
agingly small values compared with the observed
ones owing to the same situation as in the n - p
mass difference, while only for the 3(Z*+Z7)-Z°
mass difference was the result satisfactory.® Al-
though many interesting attempts have successively
been made to overcome the difficulty, the conclu-
sions obtained so far do not appear promising.®

It has been noted,” however, that when we once
have a dominant contribution to the # — p mass dif-
ference with the correct sign in the form of the
magnetic self-energy [like the second term of
(1.1)], we may easily explain the correct signs and
right orders of magnitude of the Z°-Z" and =~

- Z°%mass differences by the use of the SU(3) mag-
netic-moment relations,®

Pp=2pp = =20 50= timo= —(2/V3) Lo,
(1.2)

Bp=Hs+, HptHp=—Hp-=—H=--.

The main purpose of the present work is to in-
vestigate whether the deep-inelastic effect on the
electromagnetic self-energy can give the correct
sign of the observed » — p mass difference under
certain conditions, with the aid of recent experi-
mental data on the inelastic electron-nucleon scat-
tering. To carry out the calculation, we make
assumptions concerning the validity of the Cotting-
ham formula® and the nontrivial Bjorken limit.'°
Unlike Harari’s proposal’ or Pagels’s treatment,™
we propose unsubtracted dispersion relations®® for
both the functions #,(¢% v) and £,(¢% v) even in case
of the AI=1 mass difference, with the requirement
of the absence of divergences worse than logarith-
mic ones. Thanks to the experimental fact that the
difference of the inelastic structure functions of
the proton and neutron, vW, ,-vW, ,,'*'* is clear-
ly positive in the whole range of w(=¢*/v), 0
sw/2M= 1, the sufficient condition leading to the
correct sign of the n —p mass difference is found
to be either R~ kw?/q® (k< 1) or R 1/¢4**® (6> 0)
as ¢°—, where R=0,/0, is the ratio of virtual
photon cross sections.

Furthermore, considering that the experimental
ratio W, ,/W, , in the region'*'* 0.2 S w/2M < 0.7
(where the greater part of the contribution to the
relevant integral comes in) may be approximately

equal to the threshold value (as w/2M ~1) predicted
by Bloom and Gilman,'® we can effectively write
the deep-inelastic part of the » — p mass difference
in the form of a magnetic-moment-type self-en-
ergy like the second term of (1.1). It is also
shown that if such an approximation is similarly
good for other baryons, and if the baryon magnetic
moment relations in the SU(3) symmetric limit
(1.2) hold, the correct signs and right orders

of magnitude of the observed hyperon mass differ-
ences can be explained without any adjustable pa-
rameter except an input of the observed # — p mass
difference. Here the input means that the calcu-
lated mass difference containing a logarithmic di-
vergence is identified with the corresponding ob-
served quantity by analogy with the conventional
renormalization.

Section II is devoted to discussion of a logarith-
mic divergence and unsubtracted dispersion rela-
tions. In Sec. III we calculate the deep-inelastic
contribution under the prescribed conditions and
describe how the magnetic -moment-type self-en-
ergy arises. In Sec. IV, we numerically estimate
the hyperon mass differences T~ - =%, $(Z*+Z"7)
-x°% E™ - E° We close with a few concluding re-
marks in Sec. V.

II. LOGARITHMIC DIVERGENCE AND UNSUBTRACTED
DISPERSION RELATIONS

We will first require that the electromagnetic
self-energy of the baryon must be at most loga-
rithmically divergent, and that any logarithmically
divergent self-energy (if it arises) must not be elim-
inated simply because it is unwanted but must be
adequately renormalized in terms of the observed
quantities such as the n —p mass difference. The
requirement seems plausible, insofar as we rely
on the conventional field theory. Let us imagine a
fictitious world where all the strong interactions
are switched off. The (charged) physical baryon
would then become a Dirac core, which would be -
have just as a positive or negative electron in the
theory of quantum electrodynamics apart from the
bare mass. That is, only the minimal electromag-
netic interaction would. work, and hence the loga-
rithmically divergent self-mass M being treated
by means of the mass-renormalization procedure
would occur. Now we return to the real world
where the strong interactions are switched on.
Since the physical baryon thus gets hadronic radia-
tive reaction effects due to virtual emission and
absorption of various hadrons, it must have the
spread -out distribution of charge and magnetic
moment. Consequently it appears difficult to ad-
mit that the physical baryon could have a stronger
singular distribution than the original Dirac core,



1440 HIROSHI KATSUMORI

even if it may maintain a part of the original sin-
gularity. This is the reason why we want to re-
quire the absence of divergences worse than the
logarithmic one.

o

Next we will assume unsubtracted dispersion
relations for both the functions ¢,(¢?, v) and £,(q%, v)
which are related to the forward Compton ampli-
tude,

Ty (%, v) = t,(@% V(@28 = 4udv) + to(@%, V)[V2guw + @by b/ M? +V(by g+ p,q,) /M ], (2.1)

where —¢? is the virtual photon mass squared, v=-p+q/M is the photon laboratory energy, p is the baryon
momentum, and M is the baryon mass. According to Cottingham’s work,® the electromagnetic mass of a

baryon is written in terms of these functions:

1 ~dg® (°
M= —— izf du( @ - )Y ¥ [3¢t (g%, iv) - (% +21°)4,(4% iv)] . (2.2)
4r Jo q¢° J_,
The unsubtracted dispersion relations which the functions #,(¢% v), i=1, 2 obey are
4 M * Im#(q% v')2v'dv’
___L_________
t:(qz; V)= - 4M2v2 f{(qz) 5 2 (2.3)

where v,=(2Mm +m,*+q¢°)/2M, m, is the pion
mass, and f;(¢?) are related to the Sachs form fac-
tors,
f, (qz) e GMz(qz)_ G (q?)
! 7 AM2?[1+(qg?/4M?) ]’

(2.4)
a (42/4M2)GM2(q ) +GE2(g?)
¢*[1+(4*/4M?)]

The reasons we assume the unsubtracted disper -
sion relations are as follows. We are concerned
about the order of divergences, so we wish to
avoid not only an ambiguous subtraction constant
but any technique which is in danger of making
the order of intrinsic divergence obscure. In addi-
tion, since we are looking for the deep-inelastic
contribution as ¢> -, v-, ¢?/v fixed, we are
not necessarily bound to Harari’s argument'' based
on the Regge -pole theory, in which he has asserted
the necessity of a subtraction in order that the
fixed-q* dispersion integral in v may converge as
V - OO

Before discussing the deep-inelastic contribu-
tion, we make a remark on the elastic contribution
to the self-energy 6MF at large ¢®>. By the use of
unsubtracted dispersion relations, we obtain the
leading term at large ¢?,

JAUSE

3a ~dg®
om=32 M [ CL{6AP)-364),  (29)
=0 4

where « is the fine-structure constant, and G,
and Gy are the Sachs form factors. The require-
ment of the absence of divergences worse than
logarithmic ones thus implies that both G z(¢?) and
G,{(¢?®) may be constant or zero as g*—«."" The
desirable signs and approximate ratios of all the
baryon mass differences immediately follow from
(2.5), in the event of G(¢?) at large ¢* dominating
the integral. A function G(¢°) common to all the
baryons is defined by the scaling relations,®

Gi(d*)=Q,6(a"), Gulg®)=1,G(q"), (2.6)

where ¢ refers to a member of the octet baryons
or represents the AZ° transition. The rapid fall-
off of the elastic form factors is experimentally
known up to the available ¢° and so even a very
small constant core in G(q?) at large ¢° is unlikely
to exist. However, such a possibility could not be
excluded,” because we are not sure whether the
available experimental data have already disclosed
the entire asymptotic characteristics. As for the
Dirac and Pauli form factors F, F,, the require-
ment means that F,(¢°) approaches a constant or
zero in any way, while Fz(qz) tends to zero not
slower than 1/¢%, as ¢*~=.

III. DEEP-INELASTIC CONTRIBUTION

Let us now consider the deep-inelastic contribution to the baryon self-energy. Assuming unsubtracted
dispersion relations, we have the inelastic part of the self-energy,®

J’ qu lel{—- [<l+j>l/2—1]lmtl(q2, V)+[(1+Z—Z>l/2<1—22—2>+2;—2:|lmt2(q2, u)}. (3.1)

The usual structure functions W (g% v) and W,(¢% v) are related to the functions ¢, and ¢, as follows:

Imé(g% v)=—5 [W (¢ v)- —Wz(q V)]

ImZ,(q% v) =aWy(d? v)/¢, (3.2)



6 DEEP-INELASTIC CONTRIBUTION TO BARYON... 1441

and the ratio W,/W, is bounded,

W, _1+0*/¢%)
W,  1+R

(3.3)

where R=0,/0,, the ratio of the absorption cross sections for longitudinal and transverse photons. Bjork-
en'® has suggested that the structure functions should scale for large ¢2 and v with w=¢2/v fixed,

Jm W, 0)= 6y,

q2/v fixed

q
q2/v fixed

%im VW (4%, v) = Gy(w) . (3.4)

Experiments’® have shown the remarkable fact that the Bjorken scaling takes place with reasonable accu-
racy even for small g2 and v. Thus we may approximately estimate the main inelastic contribution by as-
suming a nontrivial Bjorken limit in the deep-inelastic region.

Introducing the variable w into (3.1) instead of v, and combining the relation (3.3) with the Bjorken limit

(3.4), we have

© 2 2M 2 2
5M1§_3££f dizf dw[z<1—R—Z—>(1+R)'1<1-L
81 Juo 4 Jo w q

The condition for the absence of divergences worse
than a logarithmic one is seen to be that the ratio
R tends to zero not slower than 1/¢® as ¢*—«.?°

In order to obtain a dominant 6M’ with the nega-
tive sign, however, the somewhat stronger condi-
tion is necessary:

2M
lim (1-2 ?R/w?)Gy(w)dw>0. (3.8)
a2 Jo
Some parametrizations of R which are consistent
with the measurements over the measured range
have been reported'*:!*:

R=0.18+0.10,

R=0.031¢%/M?, (3.7

R=q*/v(=u*/q%).
Neither the first choice nor the second is compati-
ble with (3.6). The third choice satisfies the in-
equality (3.6) only in the case of a coefficient less

than 3. We thus find the sufficient condition to be
either

R= kw®/q* (k<3) (3.8)
or

Rx1/¢""° (6>0) (3.9)
as ¢ —~.

The experimental data for the inelastic electron-
nucleon scattering™®''® indicate that the difference
of the structure functions vW, ,—vW, ,is evidently
positive in the whole range of w. From the visual-
fit curve through the experimental points of vW, ,
- VvW, , versus 2M /w,?! we may roughly estimate

1 2M
mf (VW p= VW, )dw=0.05>0. (3.10)
(1]

Putting the condition (3.8) or (3.9) into the formula

+...>_(1_6w_q22+...>}02(w)_ (3.5)

r

(3.5), and using the numerical value (3.10), we
have the deep-inelastic part of the n— p mass dif-
ference

o 2
AM'(n—p)zo.osf %%—(in MeV)>0,  (3.11)
#0

where an additional factor (1-2k) is needed in the
case of (3.8).

Bloom and Gilman!® have derived relations be-
tween the elastic and inelastic form factors and
have predicted that the threshold value of the ra-
tio

2
Woun _Bn_ 0.47 (3.12)
Wap Hyp

as w/2M~ 1 for large ¢°. The extrapolation inter-
cept at w/2M=1 obtained from the visual-fit curve
of the data points W, ,/W, ,versus (w/2M)~! has
appeared to be consistent with the threshold value
of (3.12).'* Very recent experiments'® suggest not
only the presence of an isospin-dependent part of
the photan-nucleon amplitude but the unexpected
possibility that the neutron’s scattering may van-
ish in the limit w/2M - 1. In spite of such unex-
pected circumstances, ‘we want to pay attention to
the following. The major contribution to the n—p
mass difference integral with respect to w comes
out in the intermediate range 0.2<w/2M < 0.7
where the experimental value of the ratio W, ,/W, ,
decreases slowly from ~0.6 to ~0.4, nainely it
deviates a little from the threshold value of (3.12);
the contribution to the mass difference in the re-
gion 0 < w/2M<< 1 becomes very small because

W, ./W, ,=1; the contribution in the region w/2M
~1 also becomes negligible owing to vanishingly
small W, ,and W, ,. We may therefore effectively
estimate the integral with respect to w by assum-
ing
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Gy(w)= p2g(x), xpsx=w/2M =1, (3.13)

where x,=w;, /2M and g(x) is a certain common
function determined experimentally. The lower
limit wmin OT X, should be defined by

1 1 MW, ,—W, )dw
x)dx~ — A2, T2.n/
%o ) 2M J, ﬂpz—linz
=~ 0.012, (3.14)

but the numerical value of the integral is not very
sensitive to x,.

Hoping that the above situation for the nucleon
may similarly be realized for other baryons, we
assume that (3.13) gives a fairly good approxima -
tion to estimate the analogous integral for all the
baryons, though we have neither experimental nor
theoretical basis for this assumption at the pres-
ent time. We then obtain the result

AM; 3a “dq® (!
— i~ A(.2 —_ .
M, yp (1 )LO 7 J;Oig(x)dx (3.15)
o 7.2
z—(o.21x1o-‘*)A(ui2)f da (3.16)
0 d

where the subscript ¢ refers to a certain isomulti-
plet within which we are considering the mass dif-
ference, and the lower limit x,; may be approxi-
mated to x,. The expression (3.15) or (3.16) is
obviously in the form of a magnetic-moment-type
self-energy like the second term of (1.1).

IV. NUMERICAL ESTIMATE OF MASS DIFFERENCES

As stated in Sec. II, the appearance of a logarith-
mic divergence in (3.11) or (3.16) should be as-
cribed to the same origin as in quantum electro-
dynamics. We may expect that the logarithmic di-
vergence difficulty here inherited from recent
field theory should be solved by future theory
which could essentially remove the existing diver-
gences contained in the renormalization constants
in quantum electrodynamics.

Extending the idea of the conventional renormal-
ization to the difference of self-energies, AM (n—p)
=0M, — dM,, we will identify the divergent n—p
mass difference with the observed quantity
AM°®® (n—p)=1.29 MeV. Now we postulate that the
deep-inelastic contribution AM (n— p) given by
(3.11) together with the usual elastic contribution
AME(n-p)=-0.79 MeV constitutes the major part
of the observed n—p mass difference. In other
words, we may replace the divergent integral
f:;dq"‘/q2 by the numerical value (AM°* - AM%)/
0.08= 26 as an input for evaluating the other bar-
yon mass differences. Here we understand that
in the case of (3.8) an additional factor (1-2%)7!

is included. Assuming that the divergent integral
in (3.16) is common to all the baryon octet mem -
bers, we can estimate the deep-inelastic contri-
bution to the 2~ -7, 3(Z*+Z7)-2° and £~ - E°
mass differences with no adjustable parameter.

The deep-inelastic part is now combined with the
elastic one, so that the resultant figures are to be
compared with the experimental data. Table I
shows how our result improves the situation. In
particular, for the 2~ -Z" and &~ - £° mass dif-
ferences, the agreement between the calculated
and observed values is considerably improved. In
evaluating AM® and AM’ in Table I, the SU(3)
magnetic moment relations (1.4) have been as-
sumed, taking into account the strong mass-split-
ting effect. For these mass differences, we have
used the numerical values of A(u?):

Bpi= = —4.14,

Py-?=pys?=-11.35 (-7.03),

3B p+® + 15 -") = (U 5o®+ paze®) = 1.01 (0.63),
pz-2—p=o®= —5.69 (~2.89).

The numbers in parentheses above as well as
those in Table I indicate the corresponding values
if we ignore the difference between the nucleon

and hyperon magnetons.?® The dipole form factor
adopted to evaluate AMZ has been assumed univer -
sal with respect to a nondimensional variable
q/2M,;,% i.e.,

G(g*)=1/11+(4M,*/0.71)(q/2M,)*F (4.1)

with My =0.939 in units of GeV. It should be noted
in Table I that the Coleman-Glashow electromag-
netic mass relation® still holds fairly well, though
the strong mass-splitting effect is taken into ac-
count.

We make a comment on the above prescription
which has let the logarithmically divergent integral
be identified with the observed quantity. Let us
now look back on Bethe’s original work about the

TABLE I. The elastic and deep-inelastic parts of the
calculated mass difference AME, AM? are listed in units
of MeV. The sum AME + AMY =AM®* is compared with
the observed mass difference AM°®, The numerical
figures in parentheses indicate the corresponding values
in case one ignores the difference between the nucleon
and hyperon magnetons.

AME AV AMIe  Apgobs
(MeV) (MeV) (MeV) (MeV)
n—p -0.8 2.1(input) 1.3 1.3+ 0.0

Z7 -zt
it +2T) =30

=0
ONECH

0.6(0.4) 7.3(4.5) 17.94.9) 7.9+0.1
1.2(1.2) -0.6(—0.4) 0.6(0.8) 0.9+0.1
1.7(1.5) 4.0(2.0) 5.7(3.5) 6.6%0.7
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Lamb shift,? which may give us a typical and heu-
ristic example. In his calculation, he encountered
a logarithmic divergence owing to the nonrela-
tivistic treatment, but the result evaluated by
means of a suitable cutoff was in remarkably good
agreement with experiment. Furthermore the log-
arithmic divergence that appeared in his work was
completely settled by the renormalization theory
of quantum electrodynamics. Can we expect to
solve analogously our divergence difficulty in the
future? We should remember, of course, that
“good luck does not always repeat itself.” Yet we
are tempted to conjecture that our logarithmic di-
vergence also has an appropriate physical mean-
ing when a suitable cutoff is made, if one hopes
that the divergence difficulty will be solved by the
future field theory.

We will roughly estimate the size of cutoff mo-
mentum which provides an adequate value to the
logarithmically divergent integral. Let the upper
and lower limits of the integration variable g in
(3.11) be A and A, then we have

A/A =~ e~ exp[(f2/41)7"], (4.2)

where f is the strong pseudovector coupling con-
stant between pion and nucleon. It seems quite
interesting to compare (4.2) with a similar formula
in quantum electrodynamics. As is well known, if
we ascribe most of the mass of an electron to its
electromagnetic self-energy, we obtain®®

A/m,= &7~ expl(e?/4m) 7] . (4.3)

V. CONCLUDING REMARKS

We have shown in this paper that the deep-inelas-
tic effect leads to a corelike self-energy with the
negative sign which implies a kind of magnetic
self-energy, under some prescribed conditions.
As was emphasized in a previous paper,’ the exis-
tence of such a corelike magnetic self-energy
seems favorable for the understanding of the elec-
tromagnetic mass differences of all the baryons.

It appears unlikely, however, that the necessary
core arises from the elastic contribution alone, in
view of the rapid falloff of the elastic form factors.
Thanks to the nontrivial Bjorken limit, we have
been able to obtain the corelike contribution from
the deep-inelastic effect.

Among several assumptions proposed or condi-
tions prescribed in the present work, the crucial
ones seem to be

(i) an unsubtracted dispersion relation for
t,(¢% v) in the case of the AI=1 mass difference;

(ii) an asymptotic behavior of R in the limit
q°~;

(iii) an approximation (3.13) for the structure
function of all the baryons.

The unsubtracted dispersion relation has been
proposed from a plausible but rather speculative
conjecture, so we need some justifiable basis.
The argumert given by Jackiw and others® seems
to be in favor of our proposal. As for the asymp-
totic behavior of R, the sufficient condition (3.8)
or (3.9) has been presented to guarantee the nega-
tive 6M7. Although the condition does not seem to
be incompatible with the available measurements,
the justifiable asymptotic behavior should be de-
termined by the future experiments. The effective
approximation (3.13) has been assumed in consid-
eration of recent experimental data.'*'® This
approximation is not always needed to explain the
correct sign of the n—p mass difference. It has
been used not only to express the mass difference
in the form of the magnetic-moment-type self-en-
ergy, but to connect the n-p mass difference with
all the hyperon mass differences through the SU(3)
magnetic moment relations. According to Kendall’s
report,'® the threshold value of W, /W, ,as ¢°*—=,
w — 2M appears to be smaller than the prediction by
Bloom and Gilman.'®* However, as far as the inte-
gral of the structure function difference is con-
cerned, the main contribution comes from the re-
gion where the approximation is good enough.
Whether a similar relation holds for all the bar-
yons must be controversial, of course. If this is
not the case, the content of this paper following
(3.13) is empty.

Even if our crude result is not far from reality
at least semiquantitatively, we should also take
into account every possible contribution ignored
in this work which might come out constructively.
There have been several investigations about the
low-energy resonance contribution®® and the Regge-
pole contribution,?” both of which have turned out
to be small.
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