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The differential cross sections for polarized electron-photon scattering are calculated to
order e and the unpolarized result of Brown and 'Feynman is rederived. The left-right asym-
metry is calculated for a polarized target electron in agreement with Miller and Wilcox. This
leaves the disagreement between theory and experiment unresolved. These results are ob-
tained by using the six invariant amplitudes in spectral form, which were calculated in the
preceding communication.

I. INTRODUCTION

The differential cross section for unpolarized
Compton scattering, to order e', was calculated
by Brown and Feynman' (hereafter we refer to
this paper as BF) about 20 years ago; their result
has not been independently confirmed. The left-
right asymmetry (for polarized target electron)
was computed a decade ago by Miller and Wilcox'
and by Frolov, ' who obtained different answers. 4

However, the general case has not previously been
calculated.

In the preceding paper ' (called paper I) the six
invariant amplitudes are obtained in spectral form
to order e4. Here, we will use those amplitudes
to evaluate the physically more interesting helic-
ity amplitudes, which contain all polarization in-
formation. As particular applications, the helicity
differential cross sections are calculated, and the
unpolarized cross section and the asymmetry pa-
rameter are rederived.

In Sec. II, we show how the helicity amplitudes
for the Compton processes are obtained from the
M,.'s of paper I. In Sec. III, the (polarized and un-
polarized) differential cross sections are calcu-
lated. The low-energy limit of the unpolarized
cross section (including the constant term) is pre-
sented. Also, there are some remarks on the
pair-creation case. The left-right asymmetry for
a polarized electron target is discussed in Sec. IV.
Appendixes A and B contain the integrals required
in Sec. III, while in Appendix C we list the M,. s in
integrated form.

II. HELICITY AMPLITUDES

In this section, we express the helicity ampli-
tudes for the Compton processes in terms of the
invariant amplitudes M j This can be done by ap-
plying Eq. (I52) (or its crossed version) to the ap-
propriate helicity states. (Here I refers to equa-
tions in paper I.)

For Compton scattering, we start from
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where 0 is the angle between p, and p, . Then, with
the help of the definitions

m's = —(p, + k, )', m't = —(p, —p, )',
m'u =-(p, -k,)', a =1 —s, v =1 —u,

and the identities

d =-1 —su =z'cos'(-,'0), -st =& sin'(-', 0),
0r rg =~rPy ~ ~jg =~ jg~~ ~

we obtain

f(o,z„o-,z, ), (1)

where o, (o,) and A,, (A.,) are the incoming (outgoing)
helicities of the electron and photon, respectively.
To find these helicity amplitudes in terms of the
M, 's, it is convenient to work in the center-of-
mass (c.m. ) system with p, in the z direction and

p, in the x-g plane, and to use the following explic-
it representations for the polarization vectors and
the Dirac spinors':
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d3/2

f(+-;+-)=- (2M, + M, +M,) .

In the total count of 16 amplitudes, these six occur
2, 4, 2, 2, 4, and 2 times, respectively (apart
from phase factors resulting from parity conserva-
tion and time-reversal invariance). ' As mentioned
in paper I, we see that M„M„and M, describe
photon helicity flip, and M4, M„and M, describe
photon helicity nonf lip amplitudes. These are the
same results given by Bardeen and Tung, ' except
for some sign errors in their paper.

For the pair-creation case, again it is conve-
nient to work in the c.m. system with k, in the z di-
rection and p, in the x-z plane, and to use the fol-
lowing explic it r'epresentations:

v& = v&rq = (-sln2&I&& cos2&I&)~

where g is the angle between k2 and p, . Then,

with the help of the definitions and identity,

m2s = -(p, —k2)', m.'t = —(p, + p', )',
m2M (p& -k2)', 2po =t '/n

2p = (t —4)&/2, u —s =4pp'cosg,

we obtain the pair-creation helicity amplitudes,
f'(A. X 2,;2o, o, , ):

f'(++; -&+) = ~t[ pM, + —p M2+ (p + p) cos( M3],

f'(-; ++) = ,'t[-PM, —-P'M, + (P'-P) cosy M,),
f'(++; +-) = ,'t sing M3-,

f'(+ —;++) = ,' pt si—n2—&tt(M4 ——,p'M, ),

f'(+ —;+-)= ,'pt sin((1+—cos&tI)(2p M~ -pM3),

f'(-+; + -) = —,'pt sing(1 ——cos()(2p'M4+pM3) .
l

By taking linear combinations of these amplitudes,
we reproduce Bardeen and Tung's set except,
again, for some sign errors.

III. DIFFERENTIAL CROSS SECTIONS

A. Helicity Cross Sections

From the probability amplitude, Eq. (I51), we obtain the expression for the helicity differential cross
section (in the c.m. system),

( =[64»2(I -K)m2] &[f(o2A2; o&A&)~2,
&2~2- &X~i

which yields, to order e, the differential cross section

=[64»2(1-K)m'] '([f1'&(o2k„o,A.,)]2+2f12&(o2A.„o,X, )Ref"&(o2A.„o,A.,)). (4

The second-order helicity amplitudes can be easily obtained from Eq. (2) by using the e part of M, [Eq.
(I53)], which only comes from the D; terms. They are

f (- —;++) = 8&/o1-(2&
(-t)'

t dc/2
f12& (++; + -) = 8&/n

K T

d j./2
f1'&(++; ++) = 8&/n(K2+ t)-

K 7

d/ t 1/2
f12&(-+ ++) =8&//&.

K T

d3/2
f"'(+ — + -) = 8&//2-

K 7

(5)

The fourth-order helicity amplitudes can be obtained from Eq. (2) by using the /22 part of Eq. (I53).
There, the M,.'s are given in spectral form so we have to carry out the spectral integration. The neces-
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sary integrals can be easily done (see Appendixes A and B), and the integrated form of the M, 's is given
in Appendix C. The final forms of the helicity amplitudes are (apart from a factor of c].')

4( t)3/2f"'(-- ++)=
K

f"'(++;+-)=—

t 4, 1 1 2(2«4-r 2) K —2——I(X) ——y' -1 -2 —+— +G, (K) —G (7')+ — y csch2y+ ln»K7 t K 7 K «(K —1)
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2
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1
+ —[-K'(T -2)-«'(r -1)(ST-2)-K(r—1)(ST'-4T -4)+r( r'+2r'+6r--4)]y csch2y

1
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2
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in h above, we have adopted BF's notation for the special functions and the parameter y (soi to be con
fused with the spectral variable y). We have

t =«+7', 4sinh'y =-(«+~), ln«=i~ n~ «i,7{-
1 1 2h (y) = ln(2 sinhy) --,'y +—[-', ~' —f(e -»)],

I(k) =2(1 —2y coth2y) ink —4y coth2y[2h(y) —h(2y)],

'--', m' —im ln(1-zj, z &0

(»)G= f»+ -,
' In'] ( —» I +

I

—', »',1-z
,+ ~m',

where f(x) is the Spence function '

|"dt
f(x) = —((

—in[1 —t
f .

I'

Q&g&1

Equations (4), (5), and (6)-(11)then give a complete description of the helicity cross sections. The infra-
red divergence is considered in part C of this section.

B. Unpolarized Cross Section

The unpolarized cross section can be calculated from the helicity cross sections by summing them with

the appropriate weight factors and dividing by 4 (thus averaging over initial helicities). For the fourth-
order cross section it is easy to show from Eqs. (4) and (5) that

(
(4) ~2

dQ „„„, 2(1 —«)nP

where

(13)
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(14)

For the sixth-order cross section it is straightforward but quite tedious to show that

T'+ 2T —24 K' —12 16 8(T —2)
+ 4K + 37 + 2 + + 2 +——

2 g csch2y
K i KT K

3 7 37+16 3T —16 2K —T —K T 1 2K +T
+ 1 + + +, +, ——

~ lnK+(K —T
T KT 2K 2K 2K T(K —1) 2T (K —1)

2(T —4) 2(K —4) 3T+22 3K+22 16
K 7 2K 2T K7

i+2 K+2
27'(K —1) 2K(T —1)

2~(1-K)m2 do &'& 1 ll T +2 K+2 8
=I(~)U 4 1---- lyta~y+2 4+ + yI (y)cothy+ 3 —+ — ——+4 y~

Q dQ gIIPO& K T ) K T T K KT

K +K —3 2 T T
+

7 K K' 2
+ —+—+K+ ——1 G (K)+(K T) (15)

where the real parts of InK and G, (K) are understood. Equation (15) is exactly the result given by BF ex-
cept that we have expressed it in explicitly symmetrized form.

C. Soft-Photon Processes

The cross sections given in parts A and B of this section are incomplete, for we must include the double
Compton effect, where an undetectably soft photon accompanies the usual final state Thi.s is indicated by
the appearance of Ink. . Here we will briefly sketch the calculation of these processes. (For further details
see the work cited in Ref. 10.)

The skeletal action term describing the interaction of three photons and two electrons is

W, ~
=—,'e p(x)y'qyA(x)G+(x -x')qyA(x')G (x'-x")qyA(x")p(x")(dx)(dx')(dx").

We now wish to apply this to the case where one of the photons is soft. .Since we are interested only in log-
arithmically singular terms, it suffices to replace either A(x) or A (x") by the soft-photon field. In this
way we obtain

(O, l0 ) =ie' id&@»id(d», id&a»g ——, e' J(- )I&g(i&)y'qe'»'yA(y)G, (y -y')yA(y')e'»' g(p')(dy)(dy'),
(e)

where k)' and e&' are the momentum and polarization of the soft photon. Then we have (apart from a phase
factor depending on the definition of in and out states)

(oui»elin) =e(dv, ,)"'(——, (out~ in),

so summing over the soft photon gives

(
do' dQ
dQ

(extra, soft photon) = J—(no extra photon),dQ

(16)

(17)

where

(18)

If the minimum detectable energy (in the lab frame). is mk';„, then J' is, in the Compton channel, "
CM 2I.O,„J = ——2(1 —2y coth2y) ln '" —— + 4y coth2y[I&(2y) —1]
7r 2

When the appropriate elastic and inelastic (extra soft photon) cross sections are added together, the de-
pendence on ink. disappears.
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D. Low-Energy Limit

The low-energy form of the unpolarized differential cross section was obtained by BF (the ~'In~ term,
where m ~ is the photon energy) and by Mitra" (including terms of order ~'). Since it is nontrivial to ob-
tain the v term, two methods were used to calculate this limit. They were carried out (i) by straight-
forward expansion of Eq. (15) and (ii) by using the low-energy approximation in the spectral forms before
integration. The former required the cancellation of terms independent of and linear in co, which compli-
cates the calculation. The latter is simpler since the ~ dependence comes out automatically from the ki-
nematical factors of the helicity amplitudes. We find (in the c.m. system)

Q CO

, [--', (1 —cos8)(1+cos'8) InA. +4(1+eos9+cos'8 --,' cos'8) In2~d0 UIIPo) 27t'Rl

——", (1 —2 cos8 + cos'8 --,' cos'8)],

which disagrees with the result of Ref. 12. It is noteworthy that, in the individual helicity cross sections,
lower powers of w would occur, but when they are summed, only terms of order ~' and higher remain.

At this point we remark on a slight test of consistency. The M,.'s can be calculated in terms of the basis
2,. mentioned in Ref. 11 of paper I. If the basis is in fact irrelevant, as long as certain basic conditions
(see paper I ) are satisfied, either should yield the same results. And as far as the low-energy limit is
concerned, we have verified that both give identical results.

Pinally, including the low-energy form of Eq. (17) we have for the physical cross section in this limit"
CY A

dQ „„„„2@m
— [-—'(1 —cos9)(1+cos'8)ln2k';„+4(1+ cos8 + eos'9 --' cos'8) In2~min

—
~ (23 —56 cos8+ 23 eos'9 —12 cos'8)]. (21)

E. Pair-Creation Process

All of the previous calculations can be carried
out for the pair-creation case by using the helicity
amplitudes given in Eq. (3). Essentially the same
integrals occur here as for the Compton case ex-
cept that the following crossed definitions are used:

m'Ic = m'+ (p, —k,')' & 0,
m'~ = m'+ (p, -k, )'&0,

m't = —(k, + k')' & 4m'

The functions G, (v) and In~ are now real while y,
2yk(y), and 4yk(2y) are complex. The integrals
presented in Appendixes A and 8 remain the same
except the definitions of y, k(y), and k(2y) are
now

(t)&/2+ (t 4)1/2
2 2 (t)1/2 (t 4)l/2 2

2yh(y) = y In~4sinh'y~-4y" --,'7/'

—-'f(e") 'f(e "), —-
where the form of 2yk(y) is written in such a fash-
ion that the function 4yk(2y) can be obtained from
it by letting y - 2y, y'- 2y'. Using the above in
the crossed version of Eq. (I53), the various heli-
city amplitudes can be calculated, which again
contain all the necessary polarization information.
The total unpolarized cross section is the crossed
version of Eq. (15).

The appearance of ink. in the various helicity
cross sections can be handled in exactly the same
manner as in part C of this section. There we did
not specify which process we were considering.
The calculation of J for this case requires the re-

placementt

4yk (2y) —4y - 4y k (2y) —4y + //',

in the expression given in Eq. (19). The imaginary
parts generated by these formal crossing opera-
tions are to be deleted.

The fact. that the soft-photon contribution de-
pends on ink. disagrees with a remark made in BF.
They state (in Ref. 13):"The two quantum pair
processes are symmetric with respect to inter-
change of p, and p, (in our notation p and p') so
that (37) [our Eq. (16)] vanishes. " They then at-
tribute the compensation of the infrared divergence
to "the effect of Coulomb interaction. " However,
the quantity which actually occurs is

Because the charge matrix is explicitly included,
we see this quantity is symmetric, and so pre-
serves the statistics. In fact, there is no real dif-
ference between the situation in the two channels.
Physically, the factor describing the additional
soft-photon radiation does not depend on the de-
tails of the charged particle process. It is sur-
prising that this misinterpretation by BF has re-
mained unchallenged for 20 years. "
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IV. LEFT-RIGHT ASYMMETRY

As another application of the amplitude, Eq. (2),
we consider the left-right asymmetry for brompton
scattering. This effect is well known in nuclear
scattering' and for e-e, e- p, scattering. " For
Compton scattering with polarized electron target,
the asymmetry was studied a decade ago" with
an experimental measurement carried out two

years ago." However, none agree with each other
and therefore we perform an independent calcula-
tion to check the theoretical result.

The calculation is quite easy if we use the two
basic equations "

In the rest frame of the target electron with the
scattering taking place in the x-z plane, and the
spin vector, s, oriented at an angle (t) with the y
axis, we have, for N,

N =2 TrSR"'(o, —& ) ImSR"' cos(t),

where

o, =-,' (o„+io,).

(25)

Imf (c) G f (2) f (2)g g

Equation (25) can be conveniently evaluated by-

using the helicity amplitudes, Eq. (2). With the
notation

P =Trllto sSR/TriltSR (22)

dri =(d )d0 IIIIPO(
(23)

where P is the polarization, s is the -spin direction
of the target electron, $ is the degree of polariza-
tion, and SR is the scattering amplitude, Eq. (I52).
From Eq. (22), to order o., we have

N =4cos(P[—g, (G, +G,)+ (g, +g,)G,

+ g, (G, + G, ) —(g, +g,)G,],
D = 8 (4z o.)2U,

(26)

where the lower index i, i = 1, . . . , 6, labels the
helicity amplitudes according to the order of ap-
pearance in Eq. (2), we obtain"

P=N/D,

where

(24) with U given in Eq. (14).
The G,.'s are easily extracted from Eqs. (6)—(11)

by noting that only ln)( and G, ()() have imaginary
parts, while the g,.'s are given in Eq. (5). We find"

2Q KP = — s k &&k [)((6)( —11K+6)—T(K —3)(+2)])(3rU 2 ) 2 ()( —1)2

K
+ [)( (3)(' ——14)(+12)+ (3)(' —8)(+ 12)T —27'] y csch2y

d

[)('(3)(' —8)( + 3—) )(T ()( —4)——T'()( —1)]ln ~1 —)(
~d (27)

The result of Ref. 2 is reproduced if we write the result in terms of N instead of P. (The apparent sign
difference may be due to the use of a different convention to describe the outgoing photon. ) Therefore,
there seems to be a real experimental-theoretical difference and it would be worthwhile redoing the ex-
periment.

Note addedin proof. After the completion of this work, three relevant references were brought to our
attention:

(1) W. A. Bardeen and Wu-Ki Tung [Phys. Rev. D 4, 3229 (1971)] have published an erratum in which
they note there are certain sign 'errors in the helicity amplitudes of Ref. 8. However, these are not the
sign errors we point out following Eqs. (2) and (3).

(2) I. Harris and l.. M. Brown [Phys. Rev. 105, 1656 (1957)] consider the annihilation channel explicitly.
Besides presenting the special functions for this case, they also correctly handle the infrared problem.

(3) G. V. Frolov [Sov. J. Nucl. Phys. 13, '731 (1971)]has recalculated the asymmetry, obtaining our re-
sult, Eq. (27), which, as noted, is opposite in sign to that of Ref. 2. Also, he has analyzed other types of
polarization coefficients.
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spin-0 Compton scattering problem is treated.

APPENDIX A: x INTEGRALS

Considering Eq. (153), we have one type of denominator structure for the M' integration with two possible
parameters, namely,

M2-m's = 221'(x+/~),

M2-m2u = m'(x+T)

Here we will give the answers with the ~ parameter and will ignore the imaginary part of the integrals.
Recalling that

D= ~13 y (y+4)(x' -x,'),

x0=2A, 1—

we have the following types of x integrals:

,

"" dx xl x I x
i x+~ (x2 x 2)1/2 t 5 t 62 62 2 52t 632 53

0 0

where

6 =x'+ (y + 4) (x + 1) .

Defining

(y + 4)1/2 + y
1/2

P(x) =/i' —(y+4)(~ —1), (y+4)"'-y'" '

we find

I 4 y+4
0

1 z2 y+ 4 —2z

1 1 4(y+4) y+4 '/'
F E

2 ( 4)
1 1

K2 = —, 28(y+2 —«)+y(y+4)ln —, )„,[2»' —2(y+4)» —(y+4)(y —2)]lni),
2P2y y+4 y+4 [y y+4

E, = ——E4+
I , -2(y+2) —(y -2) ln)+ylny +4 I/2 4(y + 4)

2/~y(y+4)2 x

2, —.. .(8[-(y«8=)»' ~ (2y'+15y+28)»' —(y+4)(y'+82+18)»+8(y+4)(y'+ty+4))2P'y'(y+4 '

[-2(y'+4y —3)/~2+2(y+4)(y'+4y 3)/~
P(y+4-2/~)
b (y +4)]"'

K
+ (y +4)(y'+2y' —8y+6)] 1ng+ y'(y+4)' ln y+4

E =-—E+I 1 y+4 '", 4(y+4)
4/iy2(y +4 ' -3(2y'+2y —8) -2(y' —2y+6) 1nt'+2y'ln

3' xQ

APPENDIX B: y INTEGRALS

Here we will make use of the special functions defined in Eq. (12). The following are then the integrals
that occur:
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I(A.) =-f «3 4 ln, -4yh(y) coth2y,dy 1 y+2 4(y+4)., y+4 —f y y+4 'i3 y+4 x,3

.. y+4-t [y(y+4)1'" 'O'P'

I"
~

= y csch2y,

2= —',y csc22y + 1n]1 —« I),
I K —I

K K —2

I I K —I K -2K+2 K K —I~ycsch2y+,
( 2) ( 2), +

d in~1 —K~- 3( 2),

-. y+4-t [y(y+4)]'" +4' 'O'O''P' y+4'

2 . I
G, = —[-yh(y)+ y lnK]csch2y + —(1 —lnK),

G, = 2[-yh (y) + y InK] csch2y,

2 K —I
G3= —[-yh(y) + y 1I1K]csch2y + [F (K) +KGB(K)] 2

G, = —,(-yhb)+y(n«]cs«222+, . + —(3(«)+«G.(«)I-„. 2. (»n« — —»I(-«I)

K —1 K' —4K'+10K' —12K + 6 K'(K' —2K+ 2)
G, =

3 [-yh(y)+ y InK] csch2y +,
) ), + ), +—, [Z(K)+KG, (K)]

K —1 2(K' —2K+2) 2K' K —2 SK3 —8K+8 2K' 1
dK (K —2)' (K —2)' d 2K (K —2)' d 2

dy I I I I
4 t 4ypyp2yp3

=22H, =-—y

IH3=- —[2y3-z(K)],

H = ——[2y' -E (K)]- in~1 -K~,I 2 I
d dK(K —2)I, I v' —2I(+ 2 2K' I

( 2) ( 2) d ~ ~+ 2d ( 2)

where

0, x&I
3 («) =-,' )n'] «' —1] +

I -pp, x&1.
Note that for the various helicity amplitudes, In~ 1 —K~ and F. (K) do not contribute.

One final note is necessary about the integrals with ~ instead of ~. If 7. & I, then there exists a value of
y (say y') such that P(~) =0. The Z, integrals are perfectly well defined at this point but the individual
pieces are not. The simplest method to handle the y integral for these individual pieces is to remove a
small neighborhood around y', i.e., y' —«y&y'+e. Then some of the above integrals will depend on &

'
but this dependence will cancel out in the final answer and so is ignored from the beginning.

APPENDIX C: INTEGRATED FORM OF Ng 's

In this appendix, we present the integrated form of the invariant amplitudes I,, Eq. (152). The neces-
sary integrals are given in Appendixes A and B. We obtain (apart from a factor of n')
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16 32 4(K+T) 16 1 4, 3» —4 8 K(K —2)
M2 = —I(A.) + —— + —+16 —+ —, y'+8 — + —+ ln»+(K —T) ycsch2y

KT KT KT t d t K(IC —1) Kt d(K —1)

4 I I I—8 —+ ln»+ (K —v') +4 —+ —, KGG(K)+ (K —7)Kt K(K —1) K J

16 48 4(Ic+T) 16 1, 4, i 1 8
M2 = —I(A. ) + —+ ———16 —coth'y+ —, y'+8 ——in»+ (K —T)t d t', K(K —1) Kt

I K —2 I 5» —4 16 (a —2)'—4 + 2 KG()(Ic) + (K T) +8 — + —— ln»+ (K '7) y csch2y,
K I{.

" a (IC —1) at d» (K —1)

4(K —T) 16(K —T) 2 1 2 1 1 2yM = — + y + 4 —————KG (Ic) —(K T) + 8 ——cothy lna —(K —T)td d d» a' ' K(a —1) d

16 16 I t —2 2
M, = ——I(A) ——,[2d + t(t —4)]y cathy —8 ——+

KT d d 2d (K —1)(T —1)
—+—

——,[2d'+ 2d (t —4) (t —1)+ t (t —2) (t —4)'] y'+ —,[2d' —2td (t —4) —t2 (t —4)'] yh (y) cothy

4 2»' —5K +4 (K —2)'(2»' —3» + 2) a'(Ic —2)
(K 1)' (K 1)'d d'(a 1)'

4 v —2 2a'(K -2)'
, (3»' —4a+4) — ln»+(» —T)d K(K —1)'

+ — —K (K —7» + 13» +4a' —21) —(T —1)(3a' —17» + 26» —5» —8)
8 4T'(T —2) 4 4 3 2

d K

—(T —1) K (4«' —15« +17) —(r —1)'(2«' —7« + 8)) )c« K (K —r ) y csch2y,

M, = — +, [3d + t(t —4)]yh(y) sinh2y —,[3d + t(t —4)]y'+ —,[2d + t(t —4)]y csch2y
32(K +7) 256 64 (t —2) 64

32 2 2 K 32 I+ —, [d —K' (K —2 )'] G, (K ) + (K —r ) + — [d + 2« (K —2 )] lc« + (K —r'))d' w —I d K —I

——3( [(K~ —4»'+ 2»'+ 4» —1)+ (T —1) (K —1)(K' —2» + 2) —(T —1)'] ln» + (a —7 )]y csch2y,

M = ——(a —T)t'(t -4)yk(y) cothy + —(a' —T)t(t —4)y csch2y — ——(K —T)[t(t —2)(t —4)+2d]y'
32 2 16 8(» —T ) 16

6 d3 d (» —1)(T —1) d'

+ —([—(»
' —5»'+ 3»' + 12a' —7» —6) —(T —1)(Sa' —13» '+ 14»' + K —10)

—{T —1) (2K —6K +V/c —2)+ (K —2)(T —1) ] ln» —(K T) Iy csch2y

d' (a —1)' [d' —«d(2«' —5«+5)+K'(K —2)*]KG (K) —(K T))0

[(3«' —8«+8)d —2«'(K —2)')Ic« —(K T)).d' (» —1)'
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Unsubtracted dispersion relations for t&(q, v) and t2(q, v) are proposed even in the case of
the AI =1 mass difference, with the requirement of the absence of divergences worse than
logarithmic ones. By the use of the experimental data on the inelastic nucleon structure func-
tions, the possibility is shown that the deep-inelastic effect leads to the correct sign of the
observed n -p mass difference, under the condition that

p'2 N
lim I (1 —2q R/e )G2dcu & 0,

q2 —moo ()

where + = q /v, R =0&/0& is the ratio of virtual-photon cross sections, and G2 stands for
v W&(q, v) in the Bjorken limit. The sufficient condition is then found to be either R = k ~ /q
(k &2) or R cr. 1/q2+ ~

(5 & 0), as q ~. In consideration of the experimental fact that the ratio
of structure functions, W2 „/8& &, in the range where the greater part of the contribution to
the relevant integral results is not far away from the threshold value as e/2M- 1 predicted
by Bloom and Gilman, the deep-inelastic part of the n —,p mass difference is effectively
written in the form of the magnetic-moment-type self-energy. It is also shown that if this is
similarly applicable to other baryons, and if the SU(3) magnetic-moment relations hold, the
correct signs and right orders of magnitude of the mass differences Z -Z+, " —", as
well as ~ @++Z ) -Z, are reproduced by the theory with no adjustable parameter except an
input of the observed n —p mass difference.

I. INTRODUCTION

It was first pointed out by the author' in 1953
that the observed n —P mass difference might be
explained in terms of the predominance of the mag-
netic-moment self -energy over the electric-charge
self-energy. The mass difference was given by

b M (n —P) = 4(Q') (e'/r) —A( p')(( e/2M )'./r'),

where Q is the electric charge of the nucleon in
units of the elementary charge e, p, is the magnet-
ic moment of the nucleon in units of the nucleon
magneton e/2M, M is the nucleon mass, and then
&(Q') = Q„'—Q~' = -1, A(p, ') = p, „'-p, ~' = -4.14 for the
n —P mass difference. The field-theoretic calcu-
lation of the mass difference at an early stage"
seemed to support the above possibility, because
cutoff factors could at that time be suitably chosen
to make the magnetic self-energy dominant. After—


