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The previously found bounds on the K&3 form factors have been improved without assuming
the validity of unsubtracted dispersion relations for two-point functions and without assuming
specific SW{3)-symmetry-breaking Hamiltonians. As a price which we pay for this generality,
it is necessary to assume a weak form of t& dominance for the two-point function {but not for
the three-point functions). Under this assumption the two-point function may still have a non-
zero and sizable contribution from the high-energy region. The derived bounds still give re-
sults inconsistent with the present experiments if we utilize the soft-pion theorem as input
inf ormation.

I. INTRODUCTION AND SUMMARY OF RESULTS where the spectral weight p(t) is given by

Li and Pagels have derived' a rigorous bound for
a derivative of the scalar K„ form factor D(t), de-
fined by

D(t) =(m»' —m, ')f, (t)+tf (t).

[ t) (0)]"'~ ~ (m» f» —m „f„). (1.2)

Let V„"(x) (n = 1, 2, . . . , 8) be the octet of weak
vector currents. Then 4(t) is defined by

«(&) = li J u'x «.
"*-'

t=-q .2

x &0I(s„v'„' "'(x), s, v~"")(y)), Io&,

(1.3)

Now, condition (ii) is equivalent to the assumption
that we can write

, p t')t (t) = dt' , , t, = (m» + m„)',
0

(1.4)

Since then, their method has been considerably re-
fined" to obtain better bounds for D(t) and D'(t);
these techniques have been applied to the K„prob-
lem" as well as to some other problems. " In
particular, it now appears" that the theoretical
bounds for D(t) and D'(t) disagree with the present
experimental data. Therefore, it is interesting to
investigate the validity of the theoretical assump-
tions used to derive these bounds. Apart from
standard Ans'atone such as analyticity, unitarity,
and crossing symmetry, the most crucial assump-
tions are the following three:

(i) exact validity of the K„soft-pion theorem',
(ii) validity of the unsubtracted spectral repre-

sentation for t (t) (see below);
(iii) an estimate of 6(0),'

p(t) = (»)'2 I&ol'), vp" "'(0)l~&
I

6"'(P.-v)
n

t q. (1.5)

In particular, the validity of Eq. (1.4) implies

~(0)=
I

«Pp t)

t0

On the basis of Eq. (1.5), Li and Pagels' derived
the inequality

(1.6)

(1.7)

on the cut t ~ t„where t, and t, are given by

t, = (m»+ m, )', t, = (m» —m,)'. (1.8)

Therefore, we find

] oo

—
JI dt &(t) ID(t) I'- ~(0),

77
0

3 (t t,)'"(t —t, )"—'

which was the starting point of the previous analy-
ses.

It should be remarked' that Eqs. (1.6) and (1.7)
do necessarily imply" that D(t) satisfies an un-
subtracted disper sion relation.

Finally, the estimate (1.2) is obtained on the
basis of the chiral model" of Gell-Mann, Oakes,
and Renner and of Glashow and Weinberg
(GMORGW), together with some technical assump-
tions which will not be specified here. However,
there is good reason to believe' that assumption
(iii) is reasonable within the framework of the
GMORGW model.

Now, as we remarked already, the present ex-
perimental situation appears to be in conflict with
the theoretical prediction; therefore, we have to
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1394 I-F. SHIH AND S. OKUBO

give up some of the assumptions made above.
First, if we give up the soft-pion theorem, we can
still derive an exact bound for D'(0), which is
barely compatible'4 with the present experimental
value. However, the far weaker assumptions are
(ii) and (iii), and it is the purpose of this note to
investigate the problem without making these last
two Ansatze.

To achieve that, we first observe the following
point. Suppose that p(t) or its upper bound is
somehow known on the cut. Then we can rewrite
Eq. (1.7) as

ID(&) I
~ ~(t) (1.9)

on the cut t ~ t, . Then it is known that we must
have rigorous inequalities' "such as

lnID(0) I
~ e, (1.10)

D'(0) —
(n

— B(0) - [e' —e 'ID(0)I'],
2tp 4t

D(6) f»
D(0) f,(0)f,

where 6 is given by

(1.13)

5=m~ —m2 2

Thus, the problem is reduced to estimating p(t)
or its upper bound on the cut without using A.nsatze
(ii) and (iii). Unfortunately this is not so easy; we
must assume here a weak form of z dominance for
the spectral weight p(t). To explain the precise
meaning of this assumption, we note that p(t) will
have a kind of Breit-Wigner shape around t= m, 2

where m, is the mass of the g meson. First we
tentatively assume that p([)) satisfies

tp(t)- p(t)= N, -t't- rn, j + 4m, 1" (1.14)

for t ~ tp where N and n are some positive num-
bers. If we choose n =0, then Eq. (1.14) repro-
ducea the usual I( dominance result. However, for
a large positive value of n (say n = 2), p(t) will be-
come constant instead of zero as t-~. In that
case, Eq. (1.14) describes a possible violation of

where c and g are given by

t 1/2 1dt, „„ln2()(t),
f0 t(t tp) (1.12)

1T

Therefore, we can obtain bounds for D'(0) if I/(t) is
given. As we shall show in Sec. II, we can also
derive a better bound for D'(0), if we use the soft-
pion theorem8

Ansatz (ii); i.e., we can have, for p(t) =p(t),

II. WEAK v. DOMINANCE

We assume here the inequality (1.14). Then,
w(t) given in Eq. (1.9) is chosen to be

2 64 2 t
( 1 2 (f g )1/2(t g ))./2

0 1
(2.1)

(t —m, 2)2+ -'m, 'I"'(tl =~— (2.2)

in view of Eqs. (1.7) and (1.14). To evaluate the un-
known multiplicative constant N, we first note that
in the zero-width limit I'-0 the spectral weight
p(t) has the form

where f„ is defined by

,

""
d, [o(

when n~ 2. Roughly speaking we may say that the
spectral representation for 4(t) will require one
or two subtractions for n =2 and n =3, respectively.
In Eq. (1.14), the constant N can be computed as
follows. It is related to the coupling parameter f,
which is the analog of f, and f». For a reasonable
range of f, with I f„/f, I

~ 2.0, we will show in Sec.
II that we still have results inconsistent with ex-
periments provided that we use Eq. (1.14) and the
soft-pion theorem. In Sec. III, we relax our re-
quirement Eq. (1.14); instead, we assume the
existence of a broad Breit-Wigner form for p(t)
only around t = m, ', without specifying its explicit
behavior at infinity. Nevertheless we find that the
inconsistency still persists, even though it be-
comes somewhat less blatant. At any rate, we do
not believe that the source of the trouble is easily
removed if we relax our assumptions (ii) and (iii).
Unless f„ is unreasonably large or the soft-pion
theorem is incorrect, the present conflict appears
to be avoidable only if there are many low-lying 0'
resonance states (other than the single» meson
we are discussing) in the K-v scattering channel.

It should be emphasized that our weak form of a
dominance does not necessarily imply a similar
pole dominance of D(t). Notice that b, (t) is a two-
point function while D(t) is a. three-point function.
It is possible that some kind of pole dominance ap-
proximation is better for two-point functions than
for three-point functions.

Finally, a similar method has been used to de-
rive a bound for A.„and we find

A.,~ 0.059

by means of weak forms of K* dominance.
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&o I
v~'-'"(0)

I ~'(p)) =
2 v,.p, f,

po

Therefore, it is natural to define the effective f,
for the case of nonzero width I by

0

-(t)
dt '~ =-'(m ')'- f ' (2.3)

If.I-~2. of„, (2.4)

in view of the standard analysis which gives I f„I

& 0.60f, for most models. " Notice that in the ex-
act SU(3) limit we expect to have f„=o; therefore,
we feel that our estimate Eq. (2.4) is reasonable.

Also, throughout this paper, we assume

0.9~ f, (0) ~1.0 (2.5)

in conformity to the Ademollo-Gatto theorem. '~

Then

for some non-negative integer m (provided that
the integral exists). Of course, this definition of
f, is not unambiguous and may not correspond ex-
actly to the standard f„since it depends upon the
value of the integer m and also upon the asymp-
totic form of P(t) as t-~. However, once we fix
the value of f„ then N is calculable by means of
Eqs. (2.2} and (2.3). Hereafter, we assume that
the value of f, is limited to the range

~i' d P(t)
t0

is divergent [thus violating the assumption (ii) of
the Introduction]. However, for the sake of com-
pleteness, we have also computed bounds for n =0
and 1. Even in these cases we see from Table I
that the small value f„=0.3f„ leads to a contra-
diction with inequality (1.10). Also, the values of
A, are mostly positive even for f„=0.5f„contra-
dicting the present experimental value" of

A0 = -0.11+0.03. (2.8)

G(t) =exp

1
J (tl t)(tl t )I/2

(2 9)

Then G(t) is a real analytic function of t with a cut
at t, - t&~; on the boundary it satisfies

We see from Table I that only the cases n =2 or 3
with large f„=2.0f, can give negative values of A,
which is consistent with Eq. (2.8}.

In the above discussion, we did not exploit the
validity of the soft-pion theorem Eq. (1.13). As is
expected, the use of Eq. (1.13) makes the situation
even worse. To derive the improved bound, we
follow the method of Ref. 12 and set

D(0) = (m+2 —m, ')f, (0) (2.6)
I G (t) I

= u (t) (t - t, ) . (2.10)

3
+— ++ 2

K
(2.V)

First, we remark that the interesting cases are
n =2 and 3, since then the integral

is a known quantity. Now, the value of the integer
m in the integral of Eq. (2.3) must be taken as
n = m by the following reasoning. First, we notice
that the integral Eq. (2.3} is convergent only for
m~ n. Then the inequality (1.10), i.e.,

lnID(0) I~ e

gives a constraint. We can easily check that, for
values of f„and f, (0) given by Eqs. (2.4) and (2.5),
this constraint is satisfied only for nz=n, for in-
teger values of m and n. Therefore, hereafter we
set m=n. Then, Eq. (1.11) leads to a bound for
D'(0), if we specify the values of n, m„, f„, and
I'. We have calculated these bounds for the cases
f,/f, =0.3, 0.5, 1.0, and 2.0; m„=1000, 1100,
1200 MeV and I'=300, 400, 500 MeV with n
= 0, 1, 2, 3. The results are tabulated in Table I,
where A, is defined by

D'(0)
w D(0)

Since G(t) has no zero point in the cut plane, the
function given by

(2.11)

is also a real analytic function of t with a cut at
t, & t&~. Moreover, because of Eqs. (1.9) and
(2.10), it satisfies

IR(t) I
~1 (2.12)

on the cut t~ t, . Now ur(t) behaves as some power
of t as t-~. Therefore, G(t) behaves as a power
of t as t approaches the infinite point in the com-
plex t plane. Hence, if we assume polynomial
boundedness of ID(t) I at infinity, then IR(t) I is also
polynomially bounded" at infinity. Then, the
Phragmen-Lindelof theorem" demands the validity
of Eq. (2.12) also at the infinite point in the com-
plex t plane. Thus by the maximum modulus the-
orem, we conclude that R(t) must satisfy Eq. (2.12)
in the entire complex t plane. In particular, set-
ting t=o, this gives Eq. (1.10}.

To derive a bound for D'(0), we map the cut t
plane into the interior of the unit circle I z I

=1 by
the conformal mapping
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(g f)l/2 i 1/2 (2.13) IB(~)I-1 (2.15)

Now, if we set

Z(t) -=B(~), (2.14)

B(z) is a real analytic function of z for )z i&1 and

satisfies

inside the unit circle. Define another function A(z)
byi8

1 —X*z B(z) —B(X)
A(z) =

1 —B+(~)B(~)
(2.16)

for X satisfying i A.
i
& 1. From Eqs. (2.15) and (2.16)

TABLE I. Bounds for Ap without the soft-pion theorem. The four pairs of numbers for each m, and 1 correspond to
the four choices f /f „=0.3, 0.5, 1.0, and 2.0, respectively. The blank items indicated by three dots imply that there is
no solution at all consistent with our inequalities.

1000 MeV
(a) n=Q

1100 MeV 1200 MeV

300 MeV

400 MeV

500 MeV

0.0232
0.0058

-0.0203

0.0209
0.0028

—0.0255

0.0193
0.0006

-0.0293

0.0236
0.0410
0.0672

0.0258
0.0439
0.0722

0.0272
0.0459
0.0758

0.0186
0.0007

—Q.Q271

0.0162
-0.0026
-0.0330

0.0144
-0.0051
-0.0374

(A (
0.0224
0.0403
0.0681

0.0250
0.0438
0.0741

0.0268
0.0463
0.0786

0.0149
—0.0035
—0.0328

0.0123
-0,0071
-0.0393

0.0105
-0.0099
-0.0444

p

0.0216
0.0400
0.0692

0.0244
0.0439
0.0761

0.0264
0.0468
0.0813

1000 MeV
(b) n =1

1100 MeV 1200 MeV

30Q MeV

400 MeV

500 MeV

0.0083
-0.0106
-0.0410

0.0059
-0.0140
-0.0471

0.0041
-0.0165
-0.0516

0.0173
0.0361
0.0666

0.0196
0.0394
0.0726

0.0211
0.0417
0.0768

0.0059
-0.0128
—0.0427

0.0034
—0.0163
—0.0491

0.0016
-0.0190
—0.0540

(Ap(
0.0139
0.0326
0.0625

0.0165
0.0362
0.0691

0.0184
0.0389
0.0740

0.0041
—0.0143
—0.0436

0.0016
—0.0179
-0.0502

—0.0003
—0.0207
—0.0554

(Ap(
0.0111
0.0295
0.0588

0.0139
0.0334
0.0657

0.0159
0.0363
0.0710

1000 MeV
(c) n =2

1100 MeV 1200 MeV

300 MeV

400 MeV

500 MeV

—0.0069
—0.0278
-0.0636

—0.0094
—0.0317
—0.0709

0.0012
-0.0113
-0.0346
—0.0762

(Ap(
0.0112
0.0321
0.0679

0.0136
0.0359
0.0750

0.0027
0.0152
0.0385
0.0801

-0.0069
—0.0265
—0.0588

-0.0095
-0.0303
—0.0658

—0.0113
-0.0331
-0.0711

0.0055
0.0250
0.0574

-0.0081
0.0289
0.0645

0.0100
0.0318
0.0698

—0.0066
—0.0251
—0.0545

-0.0092
-0.0287
—0.0611

—0.0110
-0.0315
—0.0663

0.0005
0.0190
0.0484

0.0033
0.0229
0.0553

0.0054
0.0258
0.0606
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1000 MeV

TABLE I (Continu ed)

(d) N =3
1100 MeV 1200 MeV

300 MeV

400 MeV

500 MeV

-0.0098
—0.0223
—0.0460
-0.0885

-0.0122
-0.0251
—0.0506
—0.0971

—0.0138
-0.0271
-0.0540
-0.1035

-0.0072
0.0053
0.0290
0.0715

-0.0050
0.0080
0.0335
0.0800

—0.0035
0.0098
0.0366
0.0861

—0.0198
—0.0404
-0.0754

-0,0224
—0.0445
—0.0831

—0.0119
-0.0243
-0.0475
—0.0888

-0.0030
0.0176
0.0527

-0.0002
0.0218
0.0604

-0.0107
0.0017
0.0249
0.0662

-0.0173
-0.0358
-0.0654

-0.0200
-0.0395
-0.0721

-0.0218
-0.0423
-0.0772

—0.0100
0.0085
0.0380

-0.0072
0.0124
0.0449

-0.0052
0.0154
0.0503

IA(z) I&1 for IzI&1. (2.17)

it is easy to check that on the boundary, A(z) satis-
fies

I&(e") I
&1.

Since A(z) is constructed to be analytic for Iz I
& 1,

the maximum modulus theorem demands that

(2.23)

is calculable with the aid of the soft-pion theorem
Eq. (1.13); then, by means of Eqs. (2.19) and
(2.21), we can find a stronger bound on D'(0),
which now takes into account the soft-pion theorem.
Before going into details, we remark that for z =0,
Eq. (2.17) gives the constraint

IB (0) I
«1 —IB(0)I'. (2.18)

In particular, if we set z =0 = A. , then Eq. (2.17)
leads to B(0) —

I X i B(0)+ I
X

I

1 —IA. IB(0) 1+ IA. IB(0) ' (2.24)

Noting that

B(z) -=B(t) =
G(t) ' (2.19)

Eq. (2.18) reproduces the inequality (1.11).
Now repeating the same argument for A(z) in-

stead of B(z), we must also have

I & '(0) I'- 1 -
I &(0) I',

which can be rewritten as

(2.20)

B'(0) B'(0)B*(X) 1 —
I A I2

B(0) -B(A) 1 —B*(X)B(0)

X[1 —B*(A.)B(0)]
B(0) —B(X)

We choose A. to be

B(0) —B(X)
~ [1-B*(~)B(0)]

(2.21)

1+X to-~ '"
1 —A,

(2.22)

so that the corresponding value of t is exactly the
soft-pion point 5 = m~' —m„'. In this case,

assuming that A., B(0), and B(A) are real. Equa-
tion (2.24) is an improvement over the bound

IB(~) I
- 1.

Now, we again compute the bounds for A, under
the same assumptions as before, and the results
are tabulated in Table II for various parameter
choices. We notice from the table that the con-
straint Eq. (2.24) together with Eq. (1.10) is very
strong and that it is not possible to find any solu-
tion at all unless the soft-pion theorem is badly
violated or unless f„ is very large. Even assuming
a 10%%uo error for the soft-pion theorem with D(5)/
D(0) = 1.15 with f„=1.0f„ the value of A, is still
positive in contradiction to the experimental value

Eq. (2.8). Only for f„=2.0f„, D(5)/D(0) =1.15, A,
can be negative, but still too small as we see, for
example, A, ~ -0.0096 even for n = 3.

In conclusion, we find that our bounds for Ao with

f, & 2.0f„are incompatible with the present ex-
perimental data, unless we give up the soft-pion
theorem.

Ending this section, we briefly remark that a
similar technique is applicable to the evaluation of

In this case, we work with f, (t) instead of D(t).
Then, the vector spectral weight factor pi'&(t) is
defined by
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TABLE II. The same calculation with the soft-pion theorem. Also, the values for D(5)/D(0) are a test of the soft-
pion theorem on the basis of Eq. (2.24). ~ ~ ~ and xxx indicate violation of the constraints Eq. (1.10) and Eq. (2.24), re-
spectively.

(a) n =0

300 MeV

400 MeV

1.45
0.94
0.25

0.0141
0.0082

1.38
0.86
0.11

1000 MeV

»D(6) /D(0) «
1.46
1.87
2.54

0

0.0205
0.0260

—D(6) /D(0) — ~ ~ ~

1.50
1.94
2.67

1.33
0.84
0.14

0.0126
0.0066

1.26
0.76

-0.01

1100 MeV

—D(&) /D(0)—

«Ao»

D«)/D{0)

1.43
1.84
2.52

0.0205
0.0263

1.48
1.92
2.67

1.24
0.76
0.05

0.0157
0.0115
0.0054

1.17
0.67

-0.11

1200 MeV

=D(&)/D(0)= "
1.41
1.82
2.51

»Ao«

0.0166
0.0204
0.0265

D(6) /D(0)

1.47
1.91
2.68

500 MeV

300 MeV

0.0133
0.0070

1.33
0.81
0.02

0.0127
0.0061

1.10
0.66

-0.01

0.0095
0.0050

—0.0014

0.0210
0.0270

—D«)/D(0) — ~ ~ ~

1.54
2.00
2.77

0.0213
0.0277

1000 MeV

—D«) /D(0)—
1.30
1.69
2.35

»A b«
0.0106
0.0146
0.0209

0.0166
0.0118
0.0053

1.21
0.69

—P.12

0.0159
Q.pill
0.0043

(b) n =1

1.06
0.64
0.01

0.0085
0.0046

-0.0017

—D(&) /D(p)—

1100 MeV

—D(&) /D(0)—

0.0171
0.0211
0.0275

1.53
1.99
2.79

0.0174
0.0216
0.0283

1.24
1.60
2.22

0.0101
0.0140
0.0202

0.0150
0.0107
0.0039

1.12
0.61

-0.23

0.0145
0.0100
0.0028

1.04
0.64
0.04

0.0084
0.0044

-0.0017

0.0171
0.0212
0.0279

=D(~)/D(0) = ~ "
1.51
1.98
2.81

»Ao«

0.0175
0.0217
0.0281

1200 MeV

—D(6) /D(0) ~ ~ ~

1.18
1.53
2.11

«Ao«
0.0096
0.0134
0.0195

400 MeV

500 MeV

1.04
0.59

—0.15

0.0087
0.0042

-0.0028

1.00
0.53

-0.24

0.0081
0.0036

-0.0038

—D(&) /D(0)—

D(6) /D(0)

1.35
1.76
2.48

0.0110
0.0151
0.0221

1.38
1.82
2.58

0.0112
0.0155
0.0229

1.00
0.57

—0.12

0.0079
0.0037

—0.0031

0.96
0.51

-P.23

0.0074
0.0031

-0.0042

—D(&) /D (0)—

«Ao»

—D(&) /D(0)—

«Ap»

1.29
1.68
2.36

0.0106
0.0147
0.0215

1.32
1.74
2.47

0.0109
0.0151
0.0224

0.98
0.56

—0.10

0.0076
0.0036

-0.0032

0.94
0.50

-0.20

0.0071
0.0029

-0.0044

=D«)/D(0) = ~ ~ ~

1.23
1.61
2.25

»A»
0.0101
0.0142
0.0209

=D(~)/D(0) = ~ ~ ~

1.27
1.67
2.37

0.0105
0.0147
0.0219
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300 MeV
0.83
0.43

-Q.23

0.0093
0.0030

—0.0048

1000 MeV

—D(~) /D(0)—

0
»p b»

1.17
1.54
2.19

0.0103
0.0148
0.0223

0.85
0.49

-0.09

—D(&) /D(0)—

0.0046
—0.0029

TABLE II (Continued)

(c) n =2
1100 MeV

1.07
1.39
1.96

0.0136
0.0205

0.87
0.53
0.03

0.0065
-0.0013

1200 MeV

(Q) /D (Q)» ~ ~ ~

0.99
1.28
1.78

0.0126
0.0190

400 MeV
0.78
0.36

-0.36

(D(5) /D(0)—
1.21
1.61
2.33

0.80
0.42

-0.21

»D(6) /D(0)—
1.11
1.46
2.09

0.82
0.47

-0.09

»D(Q) /D(P) & ~ ~ ~

1.04
1.35
1.90

0.0078
0.0020

-0.0064

o
~ ~ ~

0.0107
0.0155
0,0237

0.0034
-0.0046

0.0144
0,0219

0.0050
-0.0029

0.0133
0.0203

500 MeV 1.01
0.75
0.31

—0.46

—D(6) /D(0) 1.p4
1.24
1.66
2.42

0.76
0.37

—0.30

»D(6) /D(p) «
1.15
1.52
2.18

0.78
0.42

-0.17

(&) /D(0) = ~ ~ ~

1.07
1.40
1.99

m

0.0071
0.0012

-0.0076

1000 MeV

0.0110
0.0159
0.0247

0.0026
—0.0058

(d) n =3
1100 MeV

0.0149
0.0230

0.0040
-0.0042

1200 MeV

0.0139
0,0214

300 Me V 0.83 «D(6) /D(0) «p.88
Q.62 1,05
0.24 1.41

-0.41 2.06

0
»A b»

0.67
0.36

-0.16

0.93
1.22
1.73

0.73
0.45
0.02

«D(g) /D(Q)» ~ ~ ~

0.83
1.08
1.49

0.0046
—0.0060

0.0161
0.0255

0.0100
-0.0012

0.0141
0.0222 0.0032 0.0195

400 Me V 0.79
0.57
0.17

-0.55

0.0030
-0.0081

—D(6) /D(0) 0.91
1.p9
1.48
2.19

0.0170
0.0272

0.63
0.30

-0.27

0.0078
-0.0033

0.97
1.28
1.85

0.0150
0.0238

0.69
0.39

—0.08

0.0010

«D(6) /D(0)» s ~ ~

0.87
1.14
1.60

«Ap»

0.0209

500 MeV 0.76
0.54
0.12

—0.64

=D (~) /D(o) = 0.93
1.12
1.53
2.29

0.81
0.60
0.25

-0.36

D(6) /D(0) 0.83
1.00
1.33
1.94

0.66
0.35

—0.15

«D(6) /D(0)»
0.90
1.20
1,67

0.0020
-0.0096

0.0176
0.0284

0.0064
—0.0048

0.0156
0.0249

0.0118
—0.0005

0.0138
0.0220

With D(6) /D(P) = 1.28. b With D(6)/D(0) = 1.15.



1400 I-F. SHIH AND S. OKUBO

~(2&&)'Q (01 Vq
" (0) In)

x(n I V,"+"&(0) I0) 6t'&(p„- q)

so that we need subtractions in the Kamefuchi-
Umezawa-Lehmann-Kallen representations of two-
point functions.

m. WEAKER tc DOMINANCE MODEL

t = -q'. (2.25)

The positivity of the Hilbert space demands that

t2

(t ~ to) . (2.26)

Now we assume a weak form of K* dominance,
l.e.)

tn

In Sec. II we encountered difficulty when we as-
sumed the specific bound Eq. (1.14) for p(t) (t o t,).
So it is desirable to relax this condition a little
more. Here we will not assume Eq. (1.14). The
only thing we will need is the assumption that p(t)
may have a large Breit-Wigner form around t
= m, ' due to z dominance. The asymptotic be-
havior of p(t) as t-~ need not be specified. To
achieve this end, we follow the method utilized by
Mathura' for the evaluation of ».+. Let k(t) be an
arbitrary non-negative function defined on the cut
t~ t, . Then, multiplying k(t) by both sides of Eq.
(1.7) and integrating with respect to t, we find

Again the constant K is calculable by

(&&(t) ]
m z 2xm GK+

t0
t ~SEE g

(2.28)

co

dtk(t)ID(t)P- I',
0

(3.1)

where

(oI l"„' "'(o) II~'*'(P)) = ~2G *(2P.B "'&„(0)

(2.29)

in the narrow-width limit. As before, only the
assignment m=n for the integer m in the integrand
of Eq. (2.28) leads to a consistent result, if we
evaluate Q~~ by Weinberg's first sum rule":

I'= ', 64m
I

—dt— „. )„.p(t)k(t) . (3.2)

Suppose for a moment that I' is known. Then we
know" that Eq. (3.1) leads to the inequalities

1
I D(0) I' & —I' exp(-r),4t,

ID(0)P+ I(2+v-2t, &i)D(0) -4t~'(0)P

Gz* Gp =f.
IC* p

(2.30)

1 I' exp(-e), (3.4)
0

Then A.+ can be found from an equation analogous
to Eq. (1.11). The results are

n =0, 0.044 & X, & 0.059,

n = 1, 0.026 & A., & 0.056,

n =2, 0.006& x, & 0.055,

n =3, -0.016 & X, & 0.055.

It is interesting to note that the upper bounds for
A., are relatively insensitive to the specific be-
havior of p~'&(t) at high energy. A similar phe-
nomenon has also been observed in the evaluation
of the electromagnetic radius of the pion." Per-
haps, the upper bound A,, & 0.059 is trustworthy in
view of this fact. We remark that for the case
n=2, 3 the integral

where e and q are defined by Eq. (1.12) [replacing
nr(t) there by k(t)].

Since e, &&, and I' are functions of the k(t), the
best bound for D(0) and D'(0), given p(t), can be
achieved by suitably choosing an explicit form of
k(t). As we shall prove in the Appendix, this pro-
cedure indeed reproduces Eqs. (1.10) and (1.11),
with (1.12). However, the spirit of this section is
different from that of the above remarks. We do
not choose k(t) to be the optimal function, since
we don't demand exact knowledge of p(t). Now, if
the a meson exists, then p(t) will be peaked around
t= m„'. Hence, if we choose k(t) to be a similarly
peaked function of t around t = m, ', then we may
replace p(t) by its resonant part without introducing
much error. Thus we can set

—
t&&(t)p
tt0

(r/4~)f„'m„'
(t —m ')'+-m 'r' 'p(t) = (3.5)
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if we choose, for example,

x [(t —m, ')'+ —,
' m„'r ']-'t -' . (3.6)

Since k(t) is peaked around t = m, ' for positive in-
teger values of p, we expect that using Eq. (3.5)
introduces only a small error in I'. As we noted
already, this choice will give bounds worse than
those given in the previous sections. However, an
advantage of this approach is that we need not know
the precise form of p(t) at infinity. At any rate, I2
is now evaluated as

(3.7)

and we can find bounds for D'(0) from Eq. (3.4).
The results are tabulated in Table III for various
choices of p and q as well as of f„. So far, we
have not utilized the soft-pion theorem. However,
it is possible to exploit the information of the soft-
pion theorem.

The explicit analytical results have been given
elsewhere, ' and we will not reproduce them here.
The corresponding numerical results are tabulated
in Table III. As is expected, the value of A, can
be negative if we don't take into account the soft-
pion theorem. However, if we utilize the latter
information, then A, is in general positive. Even
in those cases in which A, becomes negative, its
magnitude is not large enough to be consistent with
the experiment. We remark that perhaps the best
ehoiees for P and q are p =1 and q=0 or I. The
reason is that the value p =1 produces the same
resonant behavior in k(t) and p(t) around t= m, ';
therefore, the replacement of p(t) by the form in
Eq. (3.5) is reasonable. The large value of q is

perhaps unphysical since it suppresses the contri-
bution from high t values and emphasizes the con-
tribution from the low-energy t region. However,
for the sake of comparison, we computed the
bounds for various choices of p and q.

This method has been used by Mathur" for the
evaluation of A.„he obtains

& 0.084

by using K*-dominated form factors for k(t).
In conclusion, it appears that our results do not

agree with the present experimental value of Ap
= -0.11+0.03. However, it should be kept in mind
that various experimental values of A, are mutual-
ly conflicting. For example, a recent Rochester
experiment" gives

o
= 0.004 + 0.035

which can be consistent even with a positive A, .
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APPENDIX

Here we shall prove that Eqs. (1.10) and (1.11)
can be obtained from Eq. (3.1) if we choose a suit-
able form for k(t). More generally, let us suppose
that a real analytic function D(t) with a cut at t,
& t&~ satisfies

(Al)

on the cut, where ge(t) is a given non-negative func-
tion. Let k(t) be an arbitrary non-negative function
defined on the cut. Then from Eq. (Al) we obtain

TABLE III. Bounds for Ap with and without the soft-pion theorem when we assume the weaker v -dominance model
described in Sec. III, with m =1100 MeV and I'=400 MeV.

Without soft-pion theorem With soft-pion theorem

0.3

0 4

0.5

(» 0)
(1, 1)
(» 2)
(1 3)

(1, 0)
(1, 1)
(1 2)
(» 3)

(1 0)
(1, I)
(1~ 2)
(1 3)

—0.0603
-0.0822
-0.1063
—0.1329

—0.0858
—0.1112
-0.1394
—0.1710

—0.1113
—0.1401
-0.1724
—0.2089

0.0900
0.0889
0.0898
0.0933

0.1156
0.1179
0.1229
0.1314

0,1411
0.1468
0.1560
0.1693

-0.0045
-0.0079
-0.0092
—0.0081

—0.0098
-0.0139
-0.0162
—0.0163

—0.0151
—0.0199
-0,0231
—0.0244

—Ao— 0.0267
0.0276
0.0308
0.0367

0.0320
0.0336
0.0377
0.0449

0.0373
0.0396
0.0447
0.0530
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(A2)

(A3)

oo

dtkt Dt '~I',
7T Jg

j oo

12= — dtk(t) [w(t)]'.
1T

The validity of Eq. (A2) implies that we have"

Then the constraint equation (A3) is written as

t,'" "", «(t)
m J,, t(t —t,)'" (A11)

Now, after some calculation, we can rewrite Eq.
(A5) as

(D(0) P ~ —I'e-',1
4t (A4)

2

Irr(0)I'r I4r, (rr
—

2
-&I0(0)-4r,0'(o) -e" ",

0

ID(0)P+ I(2+~ —2t01})D(0)-4t, D'(o)P-
4

12e ')1

0 where A and K are given by

(A12)

where e and q are given by

(A5)

t 1/2~
E ~~ 0

t ~~ ~ ~ t ~
~
a I2 t

t 1/2 1

Now we shall first prove that Eq. (A4) leads to Eq.
(1.10) if we choose a suitable k(t).

In fact the correct choice is

(A6)

1 1
t(t —t,)"' [~(t)]' ' (A7)

We notice that Eq. (A3) is identically satisfied by
this choice. Also, Eq. (A4) leads to the result

lnlD(0) l~ e, (AB)

where e is given by Eq. (1.12). This can be seen
if we use the integral formula

(4 —t)"' I'", Inst'-n i

J (tr t)(tz t )1/2

k(t)[~(t}]'=I't,'".. . „,«(t).
0

(A10)

=2 ln[(t, —t) '+(t0 —o.)'"] (A9)

for real values of n satisfying n ~ t, . Actually the
method of Lagrange multipliers can be used to
prove that the choice equation (A7} gives the opti-
mal value of the upper bound on ) D(0) ) .

Next we shall prove that Eq. (A5) leads to Eq.
(1.11) if we choose a suitable k(t). This case is a
bit more complicated. First, let us define «(t) by

(2t, —t)
Tt' t t (t —to)

t 1/2 1
A = ' dt, „„ln«(t),

(A13)

and e and g are the same quantities as in the text.
Equation (A12) is now rewritten as

4t g ——D0 -4t D'0
0

& =&D(0) -[e" "-ID(o)I']'",

0 =&D(0)+[e" "-ID(0)I']"'.

(A14)

(A15)

Now suppose that D(0) is known. Then we want to
find the best bounds on D'(0) by varying the arbi-
trary function «(t) subject to the subsidiary con-
straints Eqs. (All} and (A13). By using the La-
grange multiplier technique, the solution is easily
found to be

1
t«(t)=1 (1~2t }

(t-r) (A16)

for some constant y. Then A and K are given by

z t."'—(t. —r)'"
1/2 + (t y)1/2

e

"= 4t,
2t [t '"+ (t — )"']'

(A17)

Inserting these expressions in Eq. (A15) and opti-
mizing n and P by a suitable choice of y, we find
that Eq. (A14) reduces to

2

4to q-& Do -4t, D'o ~e' —e ' Do
2to

This last result is the same as Eq. (1.11).
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