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Three-body resonances are studied within the framework of a relativistic version of the
Faddeev equations, in which the input two-body amplitudes are assumed to be separable.
A first discussion concerns the simplest z7t7t and KK7t. systems in which only the p(765 MeV)
or the E*(890 MeV) resonance is taken into account. Compared to preceding works on a sim-
ilar subject, more flexible parametrizations are used, allowing us to consider a larger class
of two-body interactions and to better understand the influence of the main parameters in-
volved in the model. A more satisfactory agreement with experiment is also found in the
three-pion case and this for more realistic two-body amplitudes. The success is less con-
vincing for the KEz. case, but this might be due to the neglect of the two-body EE interaction.
Finally the study of the Kx~ case gives an insight into the constructive and destructive inter-
ference effects which can be observed when more than one two-body resonance is taken into
account. We add in the Appendix some comments about the properties one can reasonably
require for the input separable two-body amplitudes owing to potential theory or its relativis-
tic generalizations.

I. INTRODUCTION

In the nonrelativistic case, the Faddeev equa-
tions' provide a useful tool for investigating three-
particle problems. Several groups have tried to
make relativistic generalizations with possible ap-
plications to higher -energy processes. They usu-
ally start from the three-particle analogs of the
Bethe-Salpeter equation' which may be written in
the Faddeev form after some transformations. '
When the particles are assumed to interact through
two-body forces only, this yields

T,. =t, +g t, G,'T,. , . .
jAi

where T =Q, T, stands fo.r t. he three-body T matrix,
t,. describes the scattering of the particles j and 0,
and G',. is the free Green's function.

A peculiar difficulty of Eg. (1.1) compared to the
nonrelativistic case comes from the presence of
extra. variab]. es of integration —the fourth compon-
ents of the off-shell intermediate particles momen-
ta -which must be eliminated if the equations are
to be tractable numerically. A method for doing so
was first given by Blankenbecler and Sugar' for
two-particle scattering. Different procedures have
been proposed for the three-body case. 4 ' They
lead to equations still having the form of (1.1) but
with only the total energy as an off-shell variable
and a modified propagator, F,' say, in place of G',

A further simplification occurs when the input two-

body amplitudes can be approximated by separable
forms as might be expected when these amplitudes
are dominated by bound states or resonances. ' The
T, matrix elements between states of given angular
momenta then satisfy one-dimensional integral
equations which may be amenable to practical com-
putations.

In the present work, we restrict ourselves to
three-meson systems AA.B or AAB in which two
particles at least are identical or charge conju-
gates. Previous numerical results have already
been obtained in the men case. ' ' However, addi-
tional investigations, both theoretical and numeri-
cal, would be useful to understand their deep sig-
nificance and reliability. One purpose of this paper
is to contribute to this task by looking at the three-
body resonances in the three simple mn7t, EKn,
and Kwm (or E7wn) systems.

Section II is devoted to a general treatment of
the basic integral equations. After the partial-
wave decomposition, these are written in a one-
dimensional form by assuming the two-body ampli-
tudes to be separable with respect to the initial
and final off-shell momenta.

In Sec. III we examine a rather simplified ap-
proach to the nnm and KK~ cases where either the

p or the K*(I7*) resonance is taken into account
(Sec. III A). All the parametrizations given in Sec.
III B for the input two-body amplitudes are chosen
in order to ensure two-body unitarity (and thus
three-body unitarity)' ' and to represent reason-
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ably well the phase shift in the neighborhood of the
two-body resonance. Other constraints are de-
duced by extrapolating results obtained within the
framework of potential theory. These are re-
viewed in a. shortened way in the Appendix, on the
basis of a preceding work by one of us." Once the
two-body amplitude is chosen, the three-body inte-
gral equations are solved by techniques which are
explained in Sec. III C. On the other hand, Secs.
IIID and III F a.re devoted to a discussion about the
influence of the parameters involved in the model
on the three-body results. The latter are com-
pared with experiment in Sec. III E."

Section IV is devoted to the more complicated
Knm case,"in which both the p and K* resonances
are assumed to contribute. This gives an insight
into the constructive and destructive interference
effects which can be observed where more than
one two-body resonance is taken into account in
the problem.

A general discussion about the reliability of the
results obtained in the present work and a short
comparison with those observed in a dispersive
model for the three-pion case are inserted in the
Conclusion.

II. BASIC INTEGRAL EQUATIONS

In explicit form, our starting equations read

&qq q r r.r. IT (s)I&

=(q,q,q, r„r„r„It;(o;) I )

+ p g f (t)

iraq,

~„~.~.
~l

t (~)l i)lqlql&l. &l.&l.)
T IzT2z T3z

3 t 3 ))' 3 f

xz,.(s, &u,', &u,', cu,')& q,'q,'q,'r,', r,', r', I T, (s)l& t)' Z q'; —p q
2(dI 2&d2 2(d3

(2 1)

where the three-meson states (q,q,q, r„r„r„I are labeled by the momenta q; and the third isospin com-
ponents r, , of each particle (we omit the initial state which plays no essential role in the present investi-
gations). These states are normalized according to

(q)q2q3r) r2 r~ Iq&~q2q3r&, r2, r,', ) = g 2&@;5'(q, —q,')5„
i=l, 2, 3

Correspondingly, we have

&q,q q, r„r„r„It(o;)Iq'q,'q,'r,', r,', r,', )=2(u;5'(q, —q,")f),. , &q j,r, ,r„It (o;)Iq'j,'r,', r„',&,

(2.2)

(2.2)

where ( I t; ()r;) I) is the usual two-body amplitude. &u; = (q, '+m, ')'" is the energy of the particle i and o; is
the squared invariant energy of the (j, k} subsystem. In the three-body c.m. system, these two variables
are related to the three-body invariant s through

lr; = s+m) —2(v;4 s

We choose for the propagator E,. the expression

2
E;(s, K), M2, K3) = Q (d)

i=1, 2, 3 i=1,2, 3

(2 4)

(2.5)

(2.6)

which indeed does not depend upon the index i. With these conventions, the three-body unitarity relations
for T =+. .. ,T,. read

T —7' = 2XTT' = 2sT'T

provided that

t; —t; = 2it;ti = 2it; t; (2.6 )

for any t;.
Now, from Eq. (2.1) we can derive equations for the matrix elements of the T; between states of definite

total angular momentum and isospin. To define such states, we let one of the three particles play a priv-
ileged role, e.g. , particle i. In the three-body c.m. system, convenient labels are the following-

(1) The three lengths q„q„q, of the momenta q, , which we denote more concisely as {q).
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(2) J, the length of the total angular momentum; M, its projection along the z axis of a space-fixed
frame; A;, its projection along the z axis of a body-fixed frame. To define the latter, we use the helicity
convention, ""i.e., the z axis is chosen in the direction of -q; =q +q, . The corresponding y axis lies in
the direction of q; &q, with (i, j, k) cyclic. A; is then nothing but the helicity of the ( j, 0) subsystem.

(3) The parity P. The appropriate eigenstates of parity P are"

I JMA;P& = l[I JMA;& +n(-)""
I
JM —A;&], (2.7)

where q is the product of P and of the intrinsic parities of the three particles.
(4) I„ the isospin of the pair (j, 0), and 8 and 8, , the total isospin and its third component.
Passing from the basis (q,q,q, v„7„~„Iof the Hilbert space to the basis ((q'IJMA;PI; 88, I

is completely
determined by Eq. (2.7) and the relation

(q,q,q, ~„~„r,.I
= p (2J+1)'~2n~, (8,)(r(7,.II,.I

88.)(r, ~,.r, r„,II I,,)((qIJMA, I, 88.
I (2.8)

JN AiI i ~~

with (i, j, k) cyclic. h; stands for the three Euler angles of the rotation which transforms the space-fixed
frame into the helicity frame having -q; as the z axis. Correspondingly, if we introduce the usual two-body
amplitude t;& of definite two b-ody angular momentum l; and isospin I;, we can expand (2.3) as

(qiqaqs'ri~r2s'r3 It&(&~) lqIq2qI~i r28'rs &

JA; A,'. I,l,. gf
(2 +1)n', *., (6,' '8, ) ~-(~, ——~,')~, , ~, ,. (~, 7,,I I,, I 88.&(7,r, ,r„r„,II I„&

x Y, ~(g;, 0)t;,'(p;, &r;, p )F, '(0,', 0)(I I gI r, 7,', v~x„', & (88, I r;7,I I;,) (2.9)

with (i,, j, k) cyclic. p; (p;) is the common value of the lengths of the (j) and (k) initial (final) momenta in
the (j, k) c.m. system. 8, (8,') is the angle between the moments, of the particles (i) and (j) in the same
c.m. system.

The preceding relations allow one to write two-dimensional integral equations for the matrix elements
((q'tJMA, PI; 88, I T; I & . These equations reduce to one dimension when the input two-body off-shell ampli-
tudes tz~ (p;, o;,p,') are assumed separable in p; and p,'.

In fact, we restrict ourselves in this work to the use of separable forms of the type

8g', (P~)gg~;(Pl)
t'ai' P s ~ &s, P;

D;i, (o;)
(2.10)

because of their simplicity and for comparison with preceding works. The condition of unitarity for such
representations is fulfilled by imposing

(2.11)

where P(&x) stands for an arbitrary polynomial of o and p; for the phase-space factor

p;(o) = ~p;(o)/~~,

with

g —rn, . —m„' o —nz &+I„

(2.12)

(2.12')

The particular form of (2.9) and (2.10) then suggests the change of function

((q) JMAPI, 88. I T,. I& =((q&IJMAPI, «, I t, I) +Q g„,'(p, )y,', *(e,, o)B',,,
' '(.q;). (2.13)

A;I;
As one can check, the functions of a single variable Bz (q, ) possess we. ll-defined symmetry properties

in the change A; —-A;, which follow from the corresponding properties of the parity eigenstates' and of
the spherical harmonics. More explicitly, we have
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(2.14)(~;)=n(-)'B;i, (e;).
This makes it sufficient to consider only amplitudes Bz ''(q.;) having A; -0 [indeed, from Eq. (2.14), some
of them for which A; =0 vanish identically]. The reduced set of amplitudes B~zt '(q;) satisfy integral equa-
tions which read finally

A)IB„''(q. , )=.Boi (q ).+g g g C, ~;, I dq', , ', 'K„' '(q, , q', )B,', .'(q') .
i 'I.' A!~ of f f

(2.15)

(2.16)

The detailed expression of the inhomogeneous term Bo of this equation is irrelevant for the present pur-
pose, i.e. , the study of three-body resonances but not the Dalitz-plot distributions: This requires only the
properties of the kernel CK/D. The general form of the kernel K is

I'
~q d A +p ( )

1 2 (d + (d;+ (d„gt(p '(o 'y)) 'Ail'(p (o'y))

with

g = cosXI, ,

&o,
' = (q,"+m, ')'", &;~=(&,+&l) —e;';

(2.1'/)

„F,, =2w'eA [p, (o,',)]'[p, (o,'„)]' I';(e,', 0)I'A(e, , 0)-,'Idp~ (y, )+q(-) '
dA q (y, )],

eA = I (2) if A'=0 (~I).
(2.18)

In the expression for F, the two d functions are nothing but recoupling coefficients between the different i
and j angular momentum bases. The coefficients C~, in (2.15) play the same role for the isospin.

i j
The coupled system (2.15) can be further reduced, if we take into account the fact that two particles at

least are identical or charge conjugates. In the men and K~m cases, Bose-Einstein statistics. impose the
full amplitude (q,q,q, 7„r„7„~T ~) to be invariant in the exchange of two pions. In the KKm case, similar
symmetry properties occur with respect to the exchange of the K and the K if the initial state is an eigen-
state of G parity. Relations (2.8) and (2.13) imply correspondingly well-defined relations between the B
amplitudes, which are specified below for each system separately. When these relations are inserted in
Eq. (2.15), we find that different equations become equivalent, thus enabling one to consider only a, re-
stricted number of them. In fact, we can always completely remove the coupling by channel indices j, but
this sometimes requires one iteration as done in Sec. IV for the Kmz case. Finally, when only one type of
resonance is retained in each two-body system, "only a coupling by helicity indices A; (or, equivalently, a
coupling between resonance+particle states of different angular momenta) remains.

B,'&'(e) = B,'&'(C) = B. (q), (3.1)

with l +I even.
Less experimental information has been collect-

ed as regards the KKm system. There are, never-

III. DISCUSSION ON THE xmm AND EEvr CASES

A. Reduction of the Equations

For several reasons, the mwm system provides
a convenient field for testing the reliability of the
approximations introduced in the preceding sec-
tion. First, there is the large amount of experi-
mental information, especially as concerns the
three-body resonances. Next, there is the simplic-
ity, resulting largely from the identity of the
three particles. Indeed in this case, Bose-Ein-
stein statistics impose relations between the ampli-
tudes B; of Eq. (2.13). These read explicitly

and

BA I( ) G( )
l +I-1 T~BA l(q)-

B„',"(q,) = 0 unless G= (—)'& "3 ' .

(3.2)

(3.2')

(The index 3 refers to the KK channel. ")
As pointed out above, the symmetry conditions

(3.1), (3.2), and'(3. 2') enable on'e to remove the
coupling through the channel indices i of Eqs.
(2.15). However, these equations still remain

theless, numerous studies about the so-called D
and F- mesons and about Dalitz-plot distributions. "
This time again, symmetry relations are imposed
on the amplitudes B;. They are obtained by ob-
serving that the KKn states of given G parity G

have well-defined symmetry properties in the ex-
change of the K and K doublets. More explicitly,
we must have
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coupled through A, l, and I. A great simplification
occurs when only one type of two-body resonance
(i.e., one value of I and I) is kept in the problem.

Here, the two-body mm and Kn amplitudes are
assumed to be determined only by the p(/ = 1, I= 1)
and K*(I=1, I=2) resonances, respectively. A

reasonable representation of the three-pion sys-
tern can be expected in this way in the 1.0-1.5-GeV
region where the three-body resonances —and in
particular the so-called A mesons —decay essen-
tially through np states. As concerns the KKm sys-
tem, the approximation seems less reasonable
since in many Dalitz-plot distributions, not only
the K* but also an I= 1 enhancement in the KK
subsystem appear important. However, the na-
ture and the characteristics of this KK object are
not yet completely established (see, for instance,
Ref. 19). It would thus be difficult to include it in
an actual numerical calculation.

To retain only the p and the K*, which are both
l= 1 resonances, allows at the same time a sim-
ilar treatment of the mern and KKm systems, as
would indeed be possible within the framework of
SU(3) symmetry. In both cases, by omitting many
of the indices and summations which now become
unnecessary, we can finally reduce the integral
equations to

a'(q) = a,'(q) + o.C(e)

TABLE I. The isospin coefficients C(8) of Eq. (3.3) ac-
cording to the value of 8, (a) in the ~~7t' case, (b) in the
KE7m case.

(a)
0 land 2

C(8) 1
2

(b)
0

C(8)

reversal invariance, and to take into account the
results deduced from reasonable dynamical models
of potential theory or of its relativistic generaliza-
tions. As an example, we briefly recall in the Ap-
pendix the amount of information that potential the-
ory can give. Many of the properties which are so
reviewed remain also valid in relativistic treat-
ments: They are found for instance within the equa-
tions of Blankenbecler and Sugar. ' ""

Let us begin with a review of some simple para-
metrizations of (2.10) having two-body unitarity
built in and which g Priori can be used in the prob-
lem.

The simplest one, which at the same time allows
us easily to fulfill the conditions (see Ref. 5 and

the Appendix)

x g ( ) jt dq', K, (q, q')B (q').
A'=p, y

g, (p)=0(p') as p-0,
g)(p)=O(p ' "'") as p----

(3.4)

(3.5)

(3.3)

The value of o. is -2G (G=-1) in the mmw case,
G in the KKm case; the difference comes, among
other reasons, from the neglect of the KK interac-
tion, which implies that B„"'identically vanishes
in the KKw case. The isospin coefficients C(8) are
quoted in Tables I(a) and I(b). The two-body energy
invariant a associated with the particle of impul-
sion q= (&o'-m')'" and mass m =m, or m~ is giv-
en as in Eq. (2.4).

B. Choice of the Two-Body Amplitude

To solve Eq. (3.3) we must first give the factors
g, (p) and D, (o) which enter the representation
(2.10) (for simplicity, the indices I and i are omit-
ted). In this connection, it is worthwhile to recall
that the experimental information that we possess
about nn and Kv amplitudes only concerns on- and

off-mass-shell quantities from which it is difficult
to extract in a nonambiguous way' the off-energy-
shell amplitudes. It seems therefore more con-
venient to represent these amplitudes by simple
parametrizations allowing one to satisfy general
principles such as two-body unitarity and time-

(r is a positive or null integer depending on the po-
tential), is obtained by writing

p"
gl ( p)

( p2 2)tl (3.6)

D, (o) = &exp
O —0, do'5, (o')

n „(,„)2 (o' —o)(o' —o,)

(3.'t)

[o, is some subtraction point. At infinity, D(o)

with n an integer and p,
' real (see Refs. 6 and 9).

Another similar representation is
n

P +Ah
h= I.

with Ah and p, „' real. In both cases, the function
D, (o') is given by a dispersion integral like (2.11).
Note also that the singularities of g, (P) as given
by Eq. (3.6) and (3.6') lie on the negative real p'
axis. This agrees with an analogy often suggested
between g, '(p) and the N function of the usual ND '
decomposition.

The same analogy is also transparent through
the representation"
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= O(1) or O(o) depending on whether 5, (v) tends to-
wa, rds 0 or w. ]

g, '(p( ) ) = D, (v)[e' ' ' sin 5, (v)]/p(v) . (3.8)

m, and m~ are the masses of the particles of the
two-body system which is considered; p(o) and
P(v) are given as in Eqs. (2.12) and (2.12'). The
constant e in (3.7) is suitably chosen equal to +I
in order that gP be positive. 5, (v) can be conve-
niently parametrized through an effective-range
formula of the type

p'(v) p(v) p', p'
cotb, (v) = a+b, + c

p„ p„ 7
(3.9)

with P„and p, the values of P(o) and p(v) at the two-
body resonance energy o„. The numerical integra-
tion of (3.7) gives D, (v) and then g, '(P). The re-
sult can be represented by rational fractions
through least- squares-fit techniques. The final
analytic form of g, '(P) looks like Eq. (3.6') but the
poles and the residues are generally complex, as
the analysis in the Appendix indeed suggests (see
also Ref. 11). A similar result is obtained in a.

simpler way with a slightly cha.nged effective-
range development deduced by replacing p(v) in the
left-hand side of Eq. (3.9) by p(v)/[v —(m. —m, )']'~'.
The main properties of 6,(v) in the two-body physi-
cal region are not greatly affected and the proce-
dure allows an analytic integration of Eq. (3.7).
The missing factor appears again in the final rep-
resentation of g, '( p), which reads

n

g, '(p) =[o —(m, —m, )'] '"p" Q & +~ch
h =1

(3.»)
with r,„and p, ,„' generally complex. (This factor
may be considered as simulating some sort of left-
hand cut. )

Now the question concerns the precise values of
the parameters involved in the above representa-
tions. Besides conditions (3.4) and (3.5), we have
to require first that D, (v) vanish on its second
sheet at a point v~ (v = Rev~) whose position is
well determined from the characteristic s of the
two-body resonance. As discussed in the Appen-
dix on the basis of rather reasonable two-body
interactions, other general constraints can be im-
posed on the analytic properties of the g, '(P), but
they still leave some freedom for determining this
function completely, unless some peculiar para-
metrizations are used. In this connection, it
seems equally natural either to assume that (2.10)
reduces to the on-shell amplitude for p' =p" = P',
or to impose instead the correct off-shell behavior
in the vicinity of the resonance pole. The simple

form (2.10) or (AB) does not enable one to fulfill
both properties simultaneously (see the Appendix).
Therefore the function g, (p), which in the three-
body equations best accounts for the effects of the
initial two-body amplitude, can only satisfy each of
these two assumptions in a more or less approxi-
mate way, according to the energy region.

Let us nevertheless assume for a time that the
second is fulfilled, which by the way is enabling
one to easily build up a framework for further dis-
cussions. As examined in the Appendix, the 5, (v)
function is then above all a convenient intermedi-
ate quantity whose relationship with the experi-
mental phase shift makes full sense only near o

=v„. Then only 6, (v} and its first derivative at v„
may be rea. sonably expected to equal the corre-
sponding experimental quantities, which are sim-
ply related to the position O„and the width I'„of
the two-body resonance. These two quantities en-
able one to fix two parameters of the problem,
which together with the a.symptotic behavior (3.5)
is sufficient to determine n and p.

' in (3.6) and

P(v) in (2.11), provided that the latter is a con-
stant. Some freedom remains, however, for the
other less rigid representations and the resulting
5, (o } functions, although very similar in the vicin-
ity of 0„, may differ largely elsewhere. This leads
us to consider the three main types of g, '(p(v))
and 5, (v) functions which are illustrated in Figs. 1
and 2 for the w~ case as an example [5,(o) is al-
ways assumed to vanish at threshold]. The three
types may be differentiated by the values of any
one of the parameters in Eq. (3.9). Here we have
chosen c which governs the deviations of Eq. (3.9)
from the usual scattering-length formula. Two
values of this para. meter appear of particular im-
portance, namely c = c, and c =0 with

co = -ao/(n —1), (3.11)

where ao= 4p„'/I „vv„ is the inverse of the scatter-
ing length obtained by fitting the mass of the two-
body resonance when c = 0 (see Ref. 23 for the mn

ca.se). Indeed just at c= co, the two-body scatter-
ing length is infinite (a =0), while at c = 0, the
three-body equations do not necessarily converge.
In this context type I corresponds to c &c„ type II
to c, & c &0, and type III to c &0.

The consideration of these three types as well
as continuous variations of the free parameter c
in (3.9) will allow one to understand better the in-
fluence in the model of the parameters related to
the two-body amplitude. Note that this can also en-
able one to compare our results with those of pre-
ceding works. Indeed, type I in Figs. 1(a) and 2(a)
is just that obtained with the simplest parametriza-
tion (3.6), used in Refs. 9 and 10. On another side,
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iI

II

I&

50

I

l (a)

b vr

2
60

(a) 7r

l0 /

.r

~r

(b)

The three types of g, 2 (p (o}) factors considered
in the 7l~z case. Curve (a) illustrates type I and is ob-
tained with the representation (3.6). Curves (b) and (c)
illustrate types II and III. They have been obtained with
the representation (3.10) with respectively c = —0.33 and

c = +0.33 in the corresponding pararnetrization (3.9) of
6)(0).

type II in Figs. 1(b) and 2(b) just corresponds to
the choice —the on-shell one —which is mainly used
in the dispersive on-shell model of Refs. 24 and 25.
(Other applications of the same type of model may
be found in Ref. 26.)

Owing to the discussion of the Appendix, let us
now look at the ability of each type to represent the
true two-body amplitude t~(p, o, p') needed in the
basic three-body equations.

Type I illustrated in Figs. 1(a) and 2(a) appears
in this context to exhibit several unpleasant fea-
tures: The more inconvenient concerns the singu-
larities of the g, '(p) which lie deeply inside the
analyticity parabola 6'(p,' = 4) introduced in the Ap-
pendix, Eq. (AV'). (Indeed, for c = c„ they lie near-
by the physical region and the two-body threshold. )
On the other hand, as the behavior of the associated
6, (o) function (negative scattering length) sug-
gests, this type might correspond to repulsive two-
body forces, "which seems somewhat unreason-
able for a resonant amplitude and does not agree
with the experimental information.

Type II [Figs. 1(b) and 2(b)], whose related 6, (o)
function almost coincides with the experimental
phase shift, appears much more realistic. In this
case, the relevant singularities lie outside analy-
ticity parabolas (P(g') corresponding to reasonable
ranges for the interaction.

FIG. 2. The 6&(0) functions corresponding to the three
g, 2 factors of Fig. 1. The left- and the right-hand ordin-
ate scales are associated, respectively, with curve (a)
and curves (b), (c).

Type III [Figs. 1(c) and 2(c)] seems less satis-
factory since the related singularities lie general-
ly just near or even slightly inside the parabola
6'(4). But in this case, one can argue that these
singularities, which concern a relatively hi.gh-
energy region, also simulate some inelastic cuts
lying on the positive real axis. On the other hand,
in the low-energy region the related 6, (a) function
agrees with the experimental phase shift, and this
type, like the preceding one, seems to be associ-
ated with rather reasonable attractive forces."

Let us remark for completeness that, whatever
the type of g, '(p), the functions [D,(o)] ' appear
well represented in the vicinity of 0 =O„by essen-
tially the same Breit-Wigner formula, except for
a normalization factor which depends on c. For
convenience we have imposed on all these func-
tions the condition

[D,(o„)] '= itm[ D( o)] '=i(p(o„)

[see Eq. (2.12) for the definition of p(o)], which
gives rise to the curves of Fig. 3. With this con-
vention all the g, '(p) satisfy g,s[p(o„)]= 1 [remem-
ber Eg. (3.8) with 6, (o.,) =+,'n] and ha—ve nearly the
same small derivative at o =0„, as is taken into
account in Figs. 1. Clearly the domain of 0 values
where these two properties remain valid is more
or less extended according to the position of the
singularities of g, '(p). So, the g, (p) of type II re-
main flat because these singularities are removed
far away from the physical region. Qn the con-
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values. At the same time,
~
ImX(v s ) ~

is small
and the product

a-rather good precision when the resonance is not
too broad.

[X(&s)] '= P&s —y, (3.12)

where P and y are two complex parameters. Cor-
respondingly, ~X)(v s)

~

' is rather well represented
by

where the constant A. stands for the contribution
of the smaller eigenvalues. The extrapolation of
the two formulas (3.12) and (3.13) enables one to
determine the position of the resonance poles with

0.5"

l2 ~s/m

/
/

/~J

(b)

12 ~s/m

0.5

js/m

[d ReX(&s)/dv s ] ImX(&s)

is positive.
It happens that in almost all the cases of inter-

est, the variations of X(v s ) present a typical dis-
persive form which enables one to fit the curve
[X(&s)] ' by the linear development

D. Influence of the Form Factors

The above procedure has been applied for differ-
ent 8~(JP) values and for different types of form
factors g, (p).

Let us first look at the variations of the results
with respect to the latter.

This can be conveniently studied by varying con-
tinuously the free parameter c in the expansion
(3.9). By so doing, we generally observe a close
relationship between the variations and the size of
the eigenvalues X(v s ) and ~$(v s ) ~

' and that of the

mean value of the factor gp(p), or g, '(p) =p "g,'(p),
This is already illustrated by the three curves of

Fig. 5 obtained in the 8~(J~) =0 (1 ) wwn case with

the g, '(p) shown 0 in Fig. 1. The fact is indeed not

very surprising for one might have expected a pri-
ori that the larger the magnitude of g, (p ) over the
integration domain (~D

~

' is nearly the same for
the different two-body amplitudes; see Fig. 3), the

larger the kernel of the three-body equations and

the larger the eigenvalues. (Note however that the

effects of other factors or constraints like unitari-

ty might have changed this assertion. ) This ex-
plains why eigenvalues of sufficiently large magni-

tude —that is here, whose real part is nearly equal

to unity (see Sec. III C) —are observed essentially
for c values near the points c= c, or c=0 where
the mean values of the g, '(p) become also suffi-
ciently large (see the end of Sec. III B).

Still starting from Eq. (3.9), we have also tried
to understand how the three-body results depend
on the detailed properties of the factors g, '(p), in
particular +ear the c values leading to large eigen-
values, and which therefore are the most interest-
ing ones for our purpose.

A first possibility is then to take c nearly equal
to co. In this case, a careful examination of the
expression (2.15) shows that the existence of a
sharp low-energy peak in gP or g, ' (this becomes
sharper and closer to the two-body threshold when

c tends towards c,) makes the diagonal elements
of the K matrix the most important. Moreover,
one can show that ReK(q', q') [ImK(q', q') is small-
er] presents a peak at small (nonrelativistic) q'
values, i.e. , near o=(Ws —m)2 [see Eq. (2.4)]. An

insight into the properties of the eigenvalues of the
kernel K/D is thus obtained by considering

FIG. 5. The plots of the largest eigenvalue X versus
Revs obtained with the three g& factors of Fig. 1 in the
J =1 (4=0) m7) case (Imps =0.4m ). The solid curve
is the real part, the dashed curve the imaginary part.

(vs -m)2 dq& 1
Tr(K/D) = dv', , K(q'(o'), q'(&') ) .

d(x' D(o')

(3.14)

The variations of this quantity with respect to Ws



MENNESSIER, PASQUIER, AND PASQUIER

can be estimated by looking at the relative position
of the peaks and zeros of Kdq'/do' and 1/D. In
particular, one can roughly predict that the imag-
inary pa.rt of Tr(K/D) becomes maximum (at the
same point the real part vanishes) when o =o„
with o (o„}the position of the maximum of
ReK(q', q') (Im[1/D(o')]}. As o„ lies near (Ws
—m)', one thus understands why the point M in
Fig. 5(a) lies near the particle + resonance thresh-
old (Ws =m + Wv„) as shown by the complete numer-
ical treatment. On the other hand, the numerical
calculations show that the positions of the three-
body resonances are rather stable with respect to
a cha.nge of n or c in Eg. (3.9) (the stability of
their widths is less satisfactory). This may be al-
so understood qualitatively by noticing that neither
the position of the peak of gP(p) or gP(p) [this
peak remains between the threshold and 0„; see
Fig. 1(a.)] nor the position of the corresponding
peak of K(q', q') in Tr(K/D) [Eg. (3.14)] dra, stically
changes. Thence the curve X(vs ) and the position
of the bump of ~S(&s) ~

' remain rather stable.
A second possibility for observing large eigen-

values is to take c nearly equal to zero in Eq.
(3.9). In this case, the largest contribution of the
kernel K(q', q') in Tr(K/D) [Eq. (3.14)] comes from
high (relativistic) values of q'. This enhancement
inK(q', q') is, however, generally much broader
than the peak observed for c near c„which makes
more difficult any interpretation of the main fea-
tures of Fig. 5(c) in terms of K and 1/D contribu-
tions. One can nevertheless argue that this en-
hancement is still again closely related to that of

g, (p). As the latter which can now vary between
O„and ~, the former is very sensitive to varia-
tions of the parameters n and c. This, with the
help of Eg. (3.14), explains why the three-body re-
sults are much less stable than in the preceding
case c = co. In particular, for a given n, the loca-
tion of the three-body resonances may be very de-
pendent on the value of c. The latter has therefore
to be chosen in order to fit one of the experimental-
ly best established three-body resonances, after
which predictions on the other 8 ~(J~) resonant
states can be made.

This discussion reveals that, besides the 1/D
resonance pole, the detailed properties of the

g, '(P) may play an important role in the types of
calculations performed here or in similar pre-
ceding works. " As the relevant peculiarities of
the g, '(p) either concern energy regions on which
we have little information or even appear unjusti-
fied, as, e.g. , the low-energy peak of the g, '(p)
of type I, the reliability of the corresponding three-
body results may be therefore somewhat doubtful.

This leads us naturally to return to the discus-
sion of Sec. III 8 about the ability of each type of

g, '(p) in Fig. 1 to represent the physical situation.
In this context, the apparently more realistic

two-body amplitudes to be used are of type II [Fig.
1(b)]. Unfortunately the corresponding three-body
results appear rather disappointing. First, large
eigenvalues with ReX(&s) = 1 can occur in this case
only if large contributions from the rather un-
known high-energy part of the integration are in-
cluded (n must be taken small or c &0 nearly equal
to zero). This is one negative a,spect, although
the possibility of such contributions is not exclud-
ed in the problem (a discussion about their possi-
ble significance is reported in Ref. 25). More incon-
venient is the fact that the variations and the signs
we then generally observe for ReX(~s) and ImX(&s)
are not compatible with the existence of three-body
resonant states of positive width [they are such
that the product 4 ReX(~s)/dWs. ImX(us ) is negative;
cf. Sec. III C). This result differs from that ob-
served elsewhere with a. dispersive on-shell model
in which the w, for instance, can be found under
these conditions. " This discrepancy might be due,
among other reasons, to the effects of the extra
singularity at vs = 0 encountered in the present
model. "

Finally, true three-body resonances have
been observed in the present calculations essen-
tially with type I (c s c,) and type III (c &0). Owing
to the discussions of Sec. IIIB, it seems natural
to consider as the more reasonable and the more
acceptable ones, the results obtained with the

g, '(p) of type III whose behavior above o„ further-
more provides a convenient cutoff in the high-
energy region. These will be mainly taken into ac-
count in what follows. Although their physical
meaning is more questionable, the results deduced
with choice I will be nevertheless also mentioned
for comparison. Indeed, the tables will show that
among the three-body resonances obtained in this
case, one series possesses the same quantum num-
bers as those observed with choice III. Taking into
account the above discussion of Tr(K/D), we see
that this mainly follows from a cert-ain symmetry
between the properties of the two-body amplitudes
of types I and III with respect to the two-body
resonant mass v„: According to the type, the peak
of the gP(p) and the point where 6, (v) crosses + ,'@-
again are encountered on one or the other side of
o„(see Fig. 1). This gives rise to a correspond-
ence between the signs and variations of ReX(vs)
and ImX(&s), which allows one to predict with
some accuracy in which quantum numbers three-
body resonances can occur for one type, once they
are known for the other. We shall take for granted
this mainly mathematical property in Sec. IV when
using the type-I amplitude which in other respects
allows the easiest calculations.
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gP

(a)

8=1 and 2

M r

0 500

1450
500

500

500

& 10P

150
100

& 100

150

1250
(1050)

500

1150
|'1050)
1300

(1050)
1200

(1150)

250
(200)
& 100

200
(150)
300

(200)
&300
(350)

TABLE II. Masses and widths in MeV of the reso-
nances obtained in the mm case. The quoted numbers
are rounded to 50 MeV and the too broad enhancements
are not reported. When they are sufficiently different,
two sets of values are reported for the main resonances
printed in italic in Table II(a): The first one is associ-
ated with the inverse squared Fredholm determinant,
the other (in parentheses) with the position of the true
resonance pole on the unphysical sheet, 0

1
1+

1350

1650
1150

1200

1300

1300

1200

100

&100
50

50

50

50

50

(a)

1650
1250

1550

1700
1600

150
&50

&100

&250
100

0
1
1+

2
2+

2200

1500
200

&50
1400

1450
1400
1950

&50

&50
&50
150

TABLE III. Masses and widths in MeV of the reso-
nances obtained in the 8 =OKK~ case. The conventions
are the same as in Table II.

0
1
1+

2
2+

850 &50
1050
2000

1050
1100
1400

&100
30p

150
150

&250

E. Comparison with Experiment

The results obtained with type I are given in
Tables II(a) (n~n case) and III(a) (KKn case) t the

quoted values" have been more precisely deduced
with the representation (3.6) and (3.6')]. Those ob-
served with type III are given in Tables 11(b)
and III(b). Table II(b) concerns the @encase an'd

has been obtained with the representation (3.10).
The free parameter c -the same for all J—ha, s
been chosen in the related representation (3.9) in
order to nearly give the masses of the better estab-
lished A mesons. Table III(b) concerns the KKw
case" and has been obtained by choosing c in order
to nearly fit the mass (1430 MeV) of the E meson. "

In what follows all the values quoted in these
tables are however not treated on an equal footing.
First, there are in Tables II(a) and III(a) low-mass
resonances which are related to the low-energy
part of the curves X(vs ) [i.e. , to the point y in Fig.
5(a)]. These, owing to the remarks of the preced-
ing section, are only quoted for completeness and

are printed in small roman type. " Similarly,
in Tables II(b) and III(b), there are high-mass
resonances which correspond to the high-energy
part of the curves X(Ws) in Fig. 5(c). Probably
several inelastic effects can change their charac-
teristics, and moreover the present numerical
treatment does not enable one to determine them

with a sufficient accuracy. The few which are re-
ported are therefore also printed in small roman
type.

Our attention has been mainly focused on the in-
termediate-energy resonances which are printed
in italic type in the tables: They correspond to the
highest-energy part of ReX(vs ) in Fig. 5(a,) and to
the lowest-energy part in Fig. 5(c) (i.e. , to the

point P in these figures). In Table II(a), they are
generally characterized by two sets of values.
The first one follows from the examination of ~S~ ';
the second one (in parentheses) gives the posi-
tion of the nearest resonance pole which can be
specified in this case by rotating the q' path in Eq.
(3.3) (only the first set is reported when the dif-
ference between the two is small, as is the case
for a sharp resonance). One may ask which of the
two sets can the most truly represent the experi-
mental information: Probably a thorough analysis
of the latter would also require the calculation of
the Fredholm numerator of Eq. (3.3), or at least
the calculation of the most important eigenfunctions.
In Tables II(b), III(a), and III(b), only information
deduced from the consideration of ~$(vs ) ~

' on the
real axis is reported with, if necessary, the help
of formula (3.13).

2. The Three-Pion System

Tpie g =2 and 5=2 resonances. The two isospin
states 8 = I, 2 are degenerate in the present model.
To break up this degeneracy it would be necessary
either to include other mm effects such as the low-
energy I= 0 enhancement, or the f„or to take ac-
count of other channels such as the KK or KZm sys-
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tems" (the latter is here studied independently). As
already noticed elsewhere, "the conservation laws
imply that many of these new effects do not con-
tribute to the g = 2 channel, to which our results
therefore mainly apply, for representing the true
mm7j s'ituation.

Tables II(a) and II(b) indicate resonances in the
J =0, 1', 2, and 2' states. " No experimental
report seems to concern the 8 = 1 (or 8 =2) 0 ob-
ject B.ut the 1' and 2 candidates (despite their
large widths) may be associated with the A, (1080
MeV) and the A, ,(1180 MeV) mesons whose exist-
ence seems compelled by works like those report-
ed in Ref. 19. The 2' peak might correspond as
well to the A, (1300 MeV) meson whose existence
seems now beyond any doubt, as to the eventual
1320-MeV 8 = 2 p n object. '4 However, we must
specify that the 2' enhancement appears as very
broad and scarcely distinguishable in the present
calculations. Perhaps the coupling with another
channel might reinforce this bump and explain its
possible splitting into narrower resonagces" "as
observed in several experiments. " The KK chan-
nel seems of particular importance in this respect:
First, the KK system is found in the decay prod-
ucts of the A„next, recent two-body calculations
give evidence for a KK resonance in the 1300-MeV
region. "

The 8 =0 resonances. With the form factors of
type I, small and ill-defined enhancements, which
are not mentioned in Table II(a), are observed in
the 1' and 2 states. Indeed in these two states,
the integral equations (3.3) are coupled, and gener-
ally several important eigenvalues are found. The
most important one gives rise to the above 8= 1, 2
resonances, and the second one to the 8=0 small
enhancements.

The 1 state deserves more attention. In addi-
tion to the 1450-MeV object of Table II(.) already
mentioned in Ref. 9, one indeed finds in Table II(b)
a resonance which possesses almost all the char-
acteristics of the & meson. ""Although near this
low-mass resonance the reliability of our calcula-
tions can be still more questionable than at higher
energies, " this agreement with experiment is
somewhat satisfactory since it happens in an 8 (J~)
state and in a region where our approximation of
keeping only one nw wave (I = 1, I =1) in the prob-
lem can be best justified.

Z. The KKp System

Remember that in the present approach, the
m7tn and KKv systems are both described by the
same type of integral equations (3.3). This means
that if we neglect in a first step the difference be-

tween the masses of the K and m particles and be-
tween the characteristics of the K* and p reso-
nances, we can as well examine the KKm reso-
nances with the help of the curves X(v s) drawn in
Figs. 5 for the ~mr case. The only new parameters
are then the coefficients oC(@). This is precisely
what we should have assumed in an SU(3)-invari-
ant formalism. Under these simplifying assump-
tions, a KKm resonance is thus expected every
time that a 7j.m7t resonance is observed, provided
that the coefficients nC(8) are nearly the same in

both cases. The vms and KKm 8 (J ) states which
can be so put into correspondence" are easily found

by comparing Tables I(a) and I(b). From the re-
sults of Tables II(a) and II(b), we can therefore
expect the KKm resonances to occur in the follow-
ing states: 0'(0 ), 0'(1'), 0'(2 ), 0'(2'), and
0 (1 ). Note moreover that the coefficients o.C(g)
corresponding to the isospin 8 = 1 are one-third
those corresponding to 8 =0. As a consequence,
with each ~ = 0 KKm resonance may be associated
an 8=1 object which may be expected to have a
larger width, to be less easily distinguishable and
displaced towards the maximum of ImX(&s) in
Figs. 5(a) and 5(c).

Now, we must superimpose on these predictions
the effects of the differences of masses and widths,
which can be thoroughly estimated only after the
complete numerical treatment of Eq. (3.3). This
yields the results quoted in Tables III(a) and III(b).
For simplicity, we have given only the 8 =0 reso-
nances in these tables, it being implicitly under-
stood, as just discussed above, that correspond-
ingly resonances may occur in the 8 =1 isospin.
Precisely, the experimental evidence for an 8 =1
(1540 MeV) K*K+K*K resonance (the F,) has been
reported. "

We observe that in both Tables III(a) and III(b)
all the KKm resonances predicted from the Yj7jv

case are present, but have a higher mass. At the
same time, the enhancements in the KK7j case are
much sharper and more easily distinguishable than
in the m7tm case. This seems mainly due to the
narrower width of the K* compared to the p.' "
Note also that because of parity and G-parity con-
servation the results in the G =+1, J =1- and 2'
and in the G = -1 [Eq. (3.2')] states cannot be af-
fected by the inclusion of the KK enhancement if
this as believed is I=1, l=0.

The G =+l resonances. Almost all the experi-
mentally observed KKm resonances have G=+1, as
the E(1420 MeV) and the D(1285 MeV) mesons.
Both Tables" III(a) and III(b) offer four candidates"
which have again J =0, 1', 2, and 2'. Remem-
ber that in Table III(b), the 0 enhancement has
been associated with the R meson by choosing c in
Eqs. (3.9)-(3.10) consequently. Note, however,
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that 1' does not seem completely excluded for this
resonance and that the neglected KK enhancement
is 50% observed in the E decay products 4o. Our
choice of c might thus not be the most adequate";
in fact, a displacement of the 0 peak could de-
crease the rather too great masses of the 1' and
2 candidates that we should have been tempted to
associate (especially the first) with the D meson.
But still more in this case the neglect of the KZ
interaction might be an irrelevant approximation
[the w(KK)~, decay mode of the D meson is pre-
dominant]. " Lastly, many of the difficulties which
were encountered in the 2' men case appear here
again when we try to compare the 2' candidate of
Table III(b) with the experimentally observed
f'(1515 MeV). But one can state that the two-body
KK decay mode of the f' is largely predominant and
that there is only a weak indication for a K*K+K*K
decay mode" (the f' is also found in the calculations
of Ref. 37).

The G =-1 resonances. These resonances may
a pro~i also decay into three pions and should be
therefore more thoroughly studied by considering
the two wry and KKm systems simultaneously (see
for instance Ref. 36). The only important reso-
nance which is obtained in the present model is a
1 object for which no experimental evidence
seems yet to have been noticed.

F. Further Remarks and Discussions

In Sec. III D, we began with a discussion about
the influence of the mean value of the form factor
g, (P) on the three-body results. As examined
elsewhere, "this indeed provides a particular
example of the effects of the strength of the pp
potential, which depends on the p-7tm coupling and

consequently on the mean value of the two-body
amplitude (see another example in footnote 39).

But of course these quantities alone are not suffi-
cient to explain all the observed results. An ex-
ample which shows that the detailed shape of the
two-body amplitude is also of some importance
appears by comparing Tables II(a) and II(b). In
both cases, large mean values of the g, '(p) and
thus large X(v s ) a,s well as three-body resonances
can be found in the 0 (1 ) state. However, in the
case of Table II(a) [type I of g, '(P)), it was not
possible to put the resonance mass in coincidence
with that of the co meson because of inconsistencies
with the sign of lmX(v s ). This sign is indeed
closely related to the two-body scattering length"
which is somewhat unrealistic for type I.

In other respects, it was also shown in Sec. IIID
that for some choices of the two-body amplitude
the bumps of the related g, '(p) may play an impor-
tant role. These indeed reveal the existence of

nearby singularities and one can now try to rein-
terpret many of the conclusions given in Sec. III 6
in terms of the effects they induce in the three-
body results.

More generally, one can ask which singularities
and which related mechanisms may be at the ori-
gin of the main features described above, for in-
stance the typical dispersive form of the curves
X(Ws) and S(vs ) [see Figs. 5(a) and 5(c)] for some
choices of the two-body amplitudes. We have two
sources of information for answering this question.

On the one hand, general considerations on the
analytic properties of the kernel K of Eq. (3.3) as
well as on its trace [Eq. (3.14)] can give an in-
sight into the main analytic structure of the eigen-
values and of $(Ws). Two sets of singularities
may then be expected to play a role in the problem.
First there are the three-body threshold, the par-
ticle+ resonance threshold, and the so-called
Peierls singularities ' induced by the singularities
of the Green's function and of the 1/D part of the
two-body amplitude. Next there are singularities
resulting from those of the form factors g~(p(o')).
A singularity 0, of the latter generates among oth-
ers an end point singularity in K(q', q') which by
pinching with the resonance pole of 1/D in Eq.
(3.14) yields singularities at

(3.15)

with

Vo
(d —m' 2m

or
j. 2200+m

(2o, +m')"'

(these formulas concern the three-pion case with
m =m, ). As one can verify, many of these singu-
larities can directly communicate with the physical
sheet, in contrast with the Peierls singularities
which are generally hidden by the resonance+par-
ticle cut. They can, moreover, lie near the phys-
ical boundary when the singularities of g, lie near
the physical region.

On the other hand, there are the results of the
present calculations which are well represented
through Eq. (3.13) and which show that at the end
of the numerical treatment all the expected singu-
larities are nearly equivalent to a single pole at
Ws = y/P.

The problem is then to disclose some relation-
ship between the equivalent pole and one particular
singularity which can thus be considered as pre-
dominant. This is in fact a difficult task because
several singularities can lie in the same neighbor-
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hood of the Riemann sheet and the weight of each
singularity (i.e., the discontinuity across the cor-
responding cut) generally depends on complicated
factors. A natural way to proceed is to vary a
parameter of the model on which only a few of the
main singularities can be reasonably assumed to
depend.

Among these parameters, there is the coefficient
c in (3.9}which affects the position of the singular-
ities induced by the g, (note that the other main
singularities do not —or scarcely —depend upon
this parameter, but their weights do). By varying
c, one can therefore hope to disclose the effects
of such singularities which may be expected to
play an important role according to the discussions
of Sec. IIID. By so doing, we find effectively that
over large domains of c values, the position of the
equivalent pole vs = y/P is essentially determined
by that of one of the singularities (3.15). Many of
the remarks in Sec. IIID about the dependence of the
curves X(vs ) on the details of g, (p) can even be re-
interpreted by simply identifying y/P with such a
singularity. [Predictions for ~u~

' are less easily
obtained since Eq. (3.13) depends moreover on the
weight of this singularity. ] This is especially true
for c nea. r co (i.e. , for g, factors of type I) in which
case one singularity (3.15) lies very near the reso-
nance+ particle threshold. A similar correspond-
ence is also found for g, (p) factors of type III hav-
ing singularities not too far from the physical re-
gloll.

These remarks confirm the importance and even
the dominance, for some choices of the two-body
amplitudes, of the effects induced by the factors
g, '(p). As discussed in Sec. III D, this can make
rather questionable the physical meaning of the
related three-body results, since the relevant
peculiarities often reveal some unrealistic or un-
reliable properties of the associated two-body
forces.

At the same time this seems to leave no possi-
bility for easily observing the effects of the reso-
nance-plus-particle threshold and of the Peierls
singularities. " Many results nevertheless show
that the former may play a role which, if not dom-
inant, is revealed by the fact that ImX(v s ) be-
comes mainly sizeable for s values greater than
(Wo„+m, ) . But no definite information has been
obtained concerning the latter. One might think
that both effects could be better analyzed with
form factors of type II [Fig. 1(b)], whose singulari-
ties lie far away from the physical region and thus
can be expected to induce small effects. But in
this case the present calculations show that the
eigenvalues are then generally small, unless the
convergence of the integral at infinity is decreased,
in which case they appear mainly dominated by a

slowly varying background associated with very-
high-ener gy contributions.

The mass of the two-body resonance provides
another parameter that can be conveniently varied,
as first done in Refs. 9 and 10 with the type-I
representation (3.6), which is completely deter-
mined from the characteristics of the two-body
resonance. Our results in this case indeed still
again disclose the dominance of one of the singu-
larities (3.15) which remains near the resonance-
plus-particle threshold and also behaves like We,
for large g„. The method is of less interest for
choice III of form factors because, in this case,
the result might be very dependent on how the
parameter c is simultaneously chosen (see Sec.
III D).

Also, for this reason, the procedure does not
enable one to clearly disclose any correspondence
between the masses of the resonances quoted in
Tables II(b) and III(b) and that corresponding to a
simultaneous overlap of the two-body resonant
bands in the Dalitz plot. "~' At this stage, tw'o

simple conclusions can nevertheless be drawn
about this subject:

(1}In the present approach, three-body reso-
nances can obviously be obtained when only two of
the three pairs of particles can resonate. This
is in fact what happens for the KE6r system, where
the neglect of. the KK interaction makes the notion
of the three-band intersection meaningless.

(2) However, had we neglected the effect of one
resonant pair of pions in the study of the mew sys-
tem, we should have cut the same curves ReX(Vs )
as before by the straight line [C(8)] ' instead of
[2C(8)] '. The peculiar dispersive forms of these
curves [Figs. 5(a) and 5(c)] show that the resulting
three-body resonances are shifted towards highest
ImX(vs ) values. As a consequence, their widths
become larger and the bumps in

~

I)
~

' less impor-
tant. In this case, the tkyee resonant Pairs inter-
fere thus constructiveLy. We cannot, however,
argue that this is a general feature for three-body
reactions. In the following section, the Kmm sys-
tem will indeed offer us simple examples of de-
st~ucti ve interferences.

IV. Em@ SYSTEM

A. Equations

The Kmw system" appears experimentally dom-
inated over a large domain of energy by the effects
of the p and the K*, two types of resonances which
have been considered separately in Sec. III. This
case provides thus the best field for a simple ex-
tension of the preceding results to three-body sys-
tems in which several types of two-body reso-
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BAI(q) ( )
l+I T~ T» BAI(q) (4.1)

nances are simultaneously involved. Note also
that because of parity conservation only the re-
sults in the J =1 and 2' states may be affected
by the coupling with the two-body K7t channel.

The integral equations follow from Eq. (2.15)
and from the symmetry conditions imposed by
Bose-Einstein statistics which read in this case

B„','(q, ) =—0 unless t, +I, even

with

l lg + 1
p

I Ig + 2P l3 lP 1
P I3 IP = 1

(4.1')

(the index 3 labels the TIKI channel). We can get rid
of the coupling through channel indices by one
iteration [B„'' is replaced by its integral expres-
sion in terms of BIA1I and BAI] Th.is leads finally
to

BA(q) =BA(q)+C„(8) Q dq' AKA (q, q')BA (q')
0A'-0 &

+2C„(8)C, ,(8') g dq', g dq,' AKA~(q, q,') A'KA (q,', q') BA (q'),Dg 0 D 0,'
A' =0,1

(4.2)

where the kernels, .K,. have the same expressions
as in Eq. (2.16). The isospin recoupling coeffi-
cients C«(8) and CII (8) = CI I(8) are given in Table
IV.

Because of the presence of the double integral
term, the numerical treatment of Eq. (4.2) is
more difficult and requires more computer time
than that of Eq. (3.3). For this reason, we have
limited ourselves to the form factors g, (P) given
by Eqs. (3.6) and (3.6') [Fig. 1(a)] enabling one to
easily rotate the path of integration and to deal
with not too large matrices. From the analysis
of Sec. III F, we may hope to obtain in this way
some insight into the 8~(J~) states in which the
most important three-body resonances can be ob-
served. The results regarding the positions and
the widths of these resonances are probably more
questionable.

Note moreover that the double integral term in
Eq. (4.2) is precisely the only one which involves
the 7tm interaction. By neglecting or including it,
we can thus estimate the relative importance of
the effects of the K* and of the p resonances.

B. Results

The largest eigenvalue A.(ls ) is shown in Fig. 6
for J = 1, 8= —,'. This curve exhibits a typical
double dispersive form and appears as a combina-
tion of two curves of the type illustrated in Fig. 5(a),

TABLE IV. The isospin coefficients CII(~) and CII (~)
3= CI I(8) of Eq. (4.2) according to the value of8.

one of them being associated with the K*m, the
other with the Kp threshold. Of course this is
only an example of the possible combinations of
two such curves. Other forms may arise, accord-
ing to the relative value and sign of the isospin
coefficients CI, (8') and CII,(8). These various
forms clearly illustrate the influence of differences
in the masses of the particles, which goes against
SU(3) symmetry.

The results regarding three-body resonances can
be obtained in two steps. First, we can neglect
the second integral term in Eq. (4.2). This ap-
proximation leads to a set of resonances which
can be put in close correspondence with the re-
sults of the w~w and KZ7t cases, according to the
sign and the magnitude of the coefficient C«(8).
[Note also that the same relationship does follow
from SU(3) symmetry). ] Without further lengthy
calculations, we can thus predict bumps in the ~
= —,', J~=O, 1', 2, and 2' as well as in the ~ = —,',
J =1 states, which is confirmed by a thorough
numerical treatment of the truncated Eq. (4.2).

Then the p resonance is included. This can give
rise to rather different effects according to the

0
K

CII3(@) I3I(~)

2

i
3

(2 )i/2

2

2
3

-(-)i i/2
6

FIG. 6. Plot of the largest eigenvalue A. versus v s
in the J =1 (&=2) Km7r case. The solid curve is the
real part, the dashed curve the imaginary part.



1366 MENNESSIER, PASQUIER, AND PASQUIER

magnitude and especially the sign of the isospin
coefficients. Destructive effects are clearly ob-
served in the II =-'„J~=0 and 2 states (see Fig.
7): The original large bump in l Sl ' finally re-
duces to small enhancements whose observation
would probably require many more refinements
in the experimental analysis. On the contrary,
new bumps appear in the 8 = -,', J = 1' and 2' states
and we can argue that in these states there are
sizeable three-body resonances only after the in-
sertion of the p.

The final results are reported in Table V. The
conventions are the same as in Table II(a): The
main resonances are written in italic type, and
the true resonance pole, when sufficiently differ-
ent from the position of the bump in l5) l

', is
mentioned in parentheses; the low-energy bumps,
associated with the lowest part of the eigenvalue
curve, are here again printed in small roman type.

The 8 = —,
' ~esonarsces. The experimental analy-

sis often shows a broad enhancement in the energy
region 1.2-1.5 GeV, which is probably due to a
combination of a background and of one, two, or
more true resonances4' [namely, the C(1240 MeV)
and the K„(1320MeV)]. Besides there is the
better-known K„(1420 MeV). Table V also offers
candidates in this energy region. Note however
that experimentally the decay products of the reso-
nances appear dominated by K*m states while the
present analysis indicates a greater influence of

lh
I i

/

I

j

j

I

l

l

j

j

the p in their production. " We must also empha-
size that the K„(J~=2') does not clearly follow
from our calculations: This time again we can ar-
gue that an important coupling with a two-body sys-
tem (the Ks system in this ca.se) might have been
neglected. [Note also that the K„(1420 MeV) is
found in the two-body model of Ref. 37.]

The 8 =-', resonances. The experimental evidence
of such resonances is not yet compelling. The
existences of a 1175- and a 1270-MeV meson have
been reported nevertheless in a few works. " Table
V also indicates three-body resonances in this
energy region but we have seen that the corre-
sponding bumps may be small because of destruc-
tive interference effects.

V. CONCLUSION

New predictions about three-body resonances
have been obtained within the framework of a rel-
ativistic extension of the Faddeev equations. Com-
pared to similar preceding works, ' "more elab-
orate numerical techniques as well as less rigid
parametrizations of the two-body amplitudes have
been used. This allowed for more realistic two-
body forces, resulting in a better agreement with
experiment which makes more encouraging the use
of the model as a tool for investigating the rela-
tivistic three-body problem [see Sec. III E and in
particular, Table II(b)]."

Of course many approximations still remain as-
sociated with this approach. On one hand, in the
three -body integral equations:

(i) Only the longest-range part of the resonance-
particle potential is retained, which can make
crossing poorly satisfied; moreover, the "reduc-

TABLE V. Masses and widths in MeV of the reso-
nances obtained in theK7|71 case. The conventions are
the same as in Table II(a). The ~$

~

~ bumps in 3 =2+
are small and broad, so that, correspondingly, no width
is given.

gP

g' f
Kp

+s/m

IO

FIG. 7. An example of the destructive interference
effects observed in the K7t7t case. The dashed curve is
~$~ versus vs for J =0 (S=2) when only the IC* res-
onance is taken into account. The solid curve is the final
result after the inclusion of the p resonance.
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tion procedure" which leads to our basic equations
allows one to keep only one part of this potential.

(ii) Three-body forces, in particular the pion
pole in the J =0 state, as well as couplings with
other channels are neglected.
On the other hand, as concerns more particularly
the two-body input amplitudes:

(i) Only a single wave, /=1, is retained in all J
states and over the whole range of energy integra-
tion.

(ii) A separable approximation with energy-inde-
pendent form factors is used, which is mainly
justified by simplicity requirements.

It remains that the complexity of the full three-
meson problem makes necessary the considera-
tion of such simplified approaches, each one tak-
ing into account only some particular aspects of
the question. Reasonably, from the comparison
of their results there mill emerge a more satis-
factory picture of the physical situation. In this
connection, no elements of comparison are avail-
able as concerns the KZm and Kwm cases. But it
is worthwhile to note that for the mme system many
features observed in the present work were also
found in an on-shell model based on dispersion
relations. ' " In the latter, three-body unitarity
can be only approximately fulfilled; however, the

pm potential is well as the analytic properties of
the three-body amplitudes could be represented in
a more satisfactory may. In both models indeed,
similar conclusions can be reached about the influ-
ence of the parameters related to

(i) the strength of the pw potential, and in partic-
ular the strength of the p-mp coupling which de-
pends on the mean value of the two-body input
amplitude;

(ii) the shape of the two-body interaction, name-
ly, its associated singularities, and on the other
hand the sign and size of the two-body scattering
length on which the characteristics of a low-mass
resonance like the w can be very dependent",

(iii) the contribution of the high-energy part of
the integrals.

For many of these parameters, especially in
the present approach, we however just possess
general information of plausibility (see, for in-
stance, the Appendix) which makes some choices
more or less realistic. In view of their sensitivity
to these rather unknown quantities, the predictions
concerning the detailed characteristics of the
three-body resonances may be therefore question-
able. Nevertheless, a rather good agreement be-
tween both models and experiment has been found
as concerns the quantum numbers of the states in
which the pp forces associated with the rescatter-
ing processes summed up in the equations are
"attractive" and in which a three-body resonance

I

can reasonably happen. These last results may
therefore be expected to remain valid in more
elaborate approaches to the pm system.
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APPENDIX

The equations satisfied by the two-body off-en-
ergy-shell amplitudes involved in the reduced
equations (2.1) may be considered as relativistic
generalizations of those encountered in nonrela-
tivistic potential theory: They indeed possess the
same general structure but also contain convenient
kinematic factors warranting relativistic covar-
iance. Correspondingly, the solutions of the two

types of equations exhibit similar features which
can be conveniently expressed in a given partial
wave in terms of analytic properties. For reasons
of simplicity, we examine below, "as an example,
the nonrelativistic case with the methods previ-
ously used by one of us" (for the complications
arising in the relativistic case, see for instance
Refs. 20 and 21). The basic potentials are chosen
of the Yukawa type" because of their close rela-
tion with exchange of mass processes usually con-
sidered in the relativistic case. This study en-
ables one to better understand the physical mean-
ing of the parameters introduced in Sec. III B.

1. Review of Some Results of Potential Theory

Remember first that it can be shown on rather
general grounds~' that the two-body off-shell par-
tial-wave amplitude t, (P, P, P') exhibits factoriza-
tion properties with respect to p and p' at the poles
in the "on-shell" variable P (here P, p, and p' de-
note magnitudes of momenta in the two-body c.m.
system4'). Since this amplitude indeed possesses in
the P plane all the poles (and no other) of t, (P')
= t&(P, P, P), it may be written as

t (P»P') =r (P, P)t, (P')r, (p', P)+r, (p, P, p'),

(Al)

where r, (p, P) and r, (p, P, p') have no poles in P.
The function r, (p, P) is therefore defined up to an
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arbitrary function which vanishes at the poles.
The choice in Ref. 12 was based on considerations
of analyticity. This led to taking simply

rI'~(P, P) =+ j,(P r)V(r) f, (r, P)r-dr,
0

(A2)

where j, is the spherical Bessel function and

f, (r, P) i-s the irregular solution of the Schro-
dinger equation behaving like expi(Pr+ lm/2) as

The potential"

OO e-nr
V(r) = v(n) doc, p, &0

y'
(AS)

is assumed analytic in the right-hand plane Rex&0
and well behaved at the origin and at infinity, i.e.,

V(r) =O(r ' '), e &1, as r-0
IV(r) 1&const r e "", ! &0, N real and finite,

as +~oO.
(AS ')

Equation (A2) provides the simplest expression
which can be built with the available potential-scat-
tering functions for the residue at the poles, but it
does not have certain other desirable properties
which may be wanted both for the decomposition
(A1) and for the corresponding r, (p, P). In particu-
lar the separable part should conveniently satisfy
by itself two-body unitarity, if it is expected to ap-
proximate. the full off-shell amplitude. This is the
case if r, (P, P) = 1 [then T, (P, P, P) =0] and if
r, (p, p) is real for real p and p The. se properties
are satisfied by the combination

r, (P, P)=, f ( P) j-,(Pr)V(r) f (r, P)r dr+( )"'f, (-P) j,(Pr)V(r) f, (r, P)r dr-
y 0 0

(A4)

pc oo

j,(Pr)V(r) cp, (r, P')r dr, (A5)

which differs from r~'!(p, P) by a term which vanishes at the poles in P. f, (P) is the Jost function and

N, (P') = ' . ' = -P j,(P-r)V(r)cp, (r, P')rdr.2' 0
(A5')

The function q, (r, P') is the regular solution of the Schrbdinger equation of energy P', behaving like r"'/
(2l+ 1)!!at the origin. As defined through (A5), p 'P 'r, (p, P) and thus r, '(p, P) are obviously even func-
tions both in P and P. Note that these functions are the same as those which were first introduced by
Noyes" and Kowalski. "

The principal interest of an integral representation like (A5) is to express in a simple way the form fac-
tors in terms of well-known functions of potential theory. ' By assuming the properties of these functions,
we can therefore easily deduce those of the form factors, especially with regard to the off-shell momen-
tum P.

In this connection, we note that the integral in (A5) a priori converges only for
~ Imp~ —p, +

~

ImP
~

& 0
(remember that p.

' is the range of the potential). For real values of P, this integral thus defines an ana-
lytic function in a strip of the P plane enclosing the real axis. Such a domain of analyticity can-be extended
both in p and P by rotating the contour of integration as done in Ref. 12. An additional extension is ob-
tained by performing the analytic continuation separately for the two integrals in (A4) and in another rep-
resentation of r, (P, P) which reads

r, (p, P)=-, h", ~(pr)V(r)cp, (r, P')r dr — hI'~(pr)V(r)rpc(r, P')r dr
2N, (P' 0

(A6)

and which is equivalent to (A5) at least in the vicin-
ity of P = 0 and P = 0 (h~'~ and h~'~ are the spherical
Hankel functions of the first and second kind).
One finds in this way that r, (P, P) is analytic, on
the one hand outside the dashed domain in Fig. 8(a)
and on the other hand outside the dashed domain
in Fig. 8(b). This shows that r, (P, P) may be con-
sidered as analytic everywhere in the p plane ex-
cept along four vertical cuts starting from" p
= aP+i g as shown in Fig. 9(a). [The related cuts

+P +P =SLED, q

P = -nip, /2,

P =gP -nip, ,

P =+P' —nip,
(A7)

of r, '(p', P) in the p' plane are shown in Fig. 9(b)
for real and positive P'. ]

Further branch points of r, (p, P), p = yP snip
(n integer) as well as the analyticity domain of the
function 7,(p, P, p') in (Al) or of the full amp! itude
tc(p, P, p') can be determined in a similar way. ~2

As concerns the latter, singularities are found at"
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(n integer ~ 1). All have the same physical origin
as the usual singularities P =+nip, /2 of the on-
shell amplitude. " Note that for real p and p',
t, (p, P, P') is free from singularity in the upper
half P plane. On the other hand, for the real and
positive P', P', and p" values involved in the
three-body equations in the scattering region, all
the branch points in the p' and p" planes lie out-
side the parabolas 6'(p,') defined by

P+nip,

, p+ip.

p' or p" =(x+ip)', x real (A I')
{a)

and shown in Fig. 10. These parabolas indeed
bind a domain of analyticity for t, (P', P, P")
=P 'P' 't, (P, P, P'). Clearly, the larger the p,
i.e., the shorter the range of the two-body forces,
the larger the extension of this domain and the
farther the singularities from the physical P and
P" positive values.

The threshold and asymptotic behaviors in p of
r, (p, P) and t, (p, P, p') are also easily derived from
the integral representation (A5) and from that
(2.12) of Ref. 12 [t,(r, P, p') in the latter has the

same relevant properties as y, (r, P')]. For both

functions, the threshold behavior can be deduced

by expanding the Bessel function at small p values
in these representations, which gives O(p ). In a
similar way, the asymptotic behavior is related to
the sine transform of V(y)rp, (r, P') or V(x)t, (x, P, P').
One gets O(p

' ') for e&0 in (AS' ), O(p ') for -2
&a&0, and so on, which shows that, as expected,
the asymptotic behavior depends on the shape of the
potential near y =0.

Lastly, let us remark that, instead of starting
as in Ref. 12, from previously known results of
potential theory, one can as well deduce all the
above properties from a direct analysis of the
Lippmann-Schwinger integral equation for t, (P, P, p').
This has been done in Refs. 20 and 21. By the way,
integral representations of t, (p, P, p') in the off-
shell variable p have been written down, the meth-
od used in Ref. 20 being more easily generalizable

FIG. 9. The resulting cuts and branch points (a) of
x, (p, P) in the P plane, (b) of x, (P, P) or P 'r, (P, P)
in the p plane.

to relativistic equations like the Bethe-Salpeter
ones. "

2. Comments on the Reliability of Some Simple

Separable Approximations

Now we may try'to take advantage of the above
results to get information on some separable ap-
proximations of the form

(A8)

which may be used in the three-body equations for
representing the true t, (P, P, P') amplitude asso-
ciated with (AS). The threshold and asymptotic
behaviors as well as two-body unitarity can be
easily introduced in (A8). Indeed, two-body uni-
tarity makes this representation almost deter-
mined once g, (p) =p'g, (p') is known [see Eq.
(2.11)]. Clearly, however, this single-variable
function alone cannot accurately account for all
the peculiarities of the three-variable amplitude

r 0ll p

(a) (b)

FIG. 8. Determination of the analyticity domain of the

form factors x&(p, P) in the p plane: (a) as deduced

from the representation (A4), {b) as deduced from the

representation (A6).

FIG. 10. The parabola 6'(p, ) defined in the p {orp' )
plane by Eq. (A.7') and outside of which lie the singu-
larities of the off-energy-shell two-body amplitude in-
volved in the three-body equations.
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t~(P, P, P'). One can nevertheless require that
the singularities and associated cuts of t, 2(p, P, p')
stand for some average of those of t, (p, P, p') in
the three-body integral equations. This means in
particular that

(i) in the P plane, D,(P') can only have singu-
larities in the lower half part, which is trivially
satisfied owing to Eq. (2.11);

(ii) in the P' plane, g, '(P) can only have singu-
larities outside the smallest analyticity parabola
6'(g'), that is, 4'(4) for the vv case.

This supplementary nontrivial condition, togeth-
er with the fact that, as assumed in the present
calculations, D, (o) ' has a well-defined resonance
pole on its second sheet, is not yet sufficient to
determine (A8) completely, unless some peculiar
parametrizations are used. Further assumptions
whose reliability is more doubtful must then be
ma, de:

(A) A first possibility is to assume, as many
authors do, that tf(P, P, p'), which indeed stands
for some average in the three-body equations of
the true t, (p, P, p') amplitude, also reduces for p'
=p"=P' to the on-shell one t&(P2) Then g,.(p)
= [N, (p )] ~', while according to (2.11) and to (3.7)
the related functions D, (v) and 5, (v) are, respec-
tively, the true on-shell D, (v) function of t, (P')
=N, (P')/D, (P') and the experimental phase shift.
But the above analyticity requirements associated
with the rather reasonable interaction (A3) are
then no longer necessarily satisfied, since theoreti-
cally N, ( p') may have singularities at p' = —g'/4,
which lie inside N(p2). [In practice, however, the
requirement of analyticity can be fulfilled by choos-
ing consequently the parametrization of N, (p'). ]
Simultaneously, the residue at the resonance (sec-
ond sheet) pole v~ = P+2 becomes proportional to
[N, (p')]"'[N, ( p")]"' instead of

It, (p, p ) = &(P.)","(P,P.)N, (P;)","(p,P,),

(A9)

which follows from (Al) [r~,'~(p, P„) r&(p, Pz)=—].
This means that the off-shell dependence in the
vicinity of the resonance pole cannot be the correct
one associated with (A3): Indeed, the analytic prop-
erties of N, (p') and rI'~(p, Pz) are different, the lat-
ter alone being automatically compatible with the
analyticity requirements.

(B) Contrarily, it is equally natural to assume
the correct off-shell behavior near the resonance
pole, that is, to take" [see Eq. (A9)]

a;(P) =[&(P.)]"r'"(P, P.)IN, (P ')]" (»0)
which does not give again, when inserted in (A8),
the true on-shell amplitude t, (P') for P'=P" =P'

g(P, P)g (P P)
t l'Lps Pt P ) D (P2) (A11)

with

g(P, P ) =[('(P,)]' 'r', "(P,P,) [N, (P,')]"
and

g, 2(P, P) =N, (P'),
that is, according to (2.11), D, (P') = D, (P'), which
means that the 5, function entering a representa-
tion like (3.7) for D, (P') would be identified with
the experimental phase shift. The choice g, (p, P)
= [N, (P')]'"r, (p, P) associated with the separable
part of (A1) satisfies these two constraints but, as
is well known, leads in the three-body equations
to difficulties due to the singularities of N&(P')
[among others, the trace of the kernels in (3.14)
would then not be real below the three-body thresh-
old; see, for instance, Ref. 9]. This does not,
nevertheless, preclude the possibility of finding
other two-variable functions g, ( p, P) which do not
possess this defect. Assuming, for instance, the
contributions of those singularities (A7) which de-
pend on both the initial and the final variables be-
ing negligible —this is mainly true near the reso-
nance pole'-we can indeed build functions having
only the two complex cuts of Fig. 9(b).

To conclude about the choice (A8), we can argue
that the functions g, (p) and D, (P'), which in the
three-body equations best represent the effects of
the true t, (p, P, p') amplitude, can only satisfy
each of the above assumptions (A) and (B) in a
more or less approximate way according to the
energy region. Therefore, in the calculations,
we have retained some aspects of both possibilities.

In other words, the procedure corresponds to just
keeping" the separable part of (A1) with the off-
shell dependence of the form factors at the pole. In-
deed (A8) is only truly valid near this point, which
moreover corresponds to the most conspicuous
feature introduced in the present three-body
model. In this case, the function D, (P') in (A8),
which is related to g, '(P) through Eq. (2.11), has
only to equal the on-shell function D, (P2) at P'=Ps'
where both indeed vanish. Therefore, the phase
5, (o) of 1/D, [see Eq. (3.7)] appears above all as
a convenient intermediate quantity and has no rea-
son to equal the experimental phase shift except
near the resonance energy [in fact, because Pz'
is complex, the condition D, (PR') =0 can be ex-
pressed in terms of conditions over 5, (o) and its
first derivative at o„=ReP~'].

To satisfy simultaneously the analyticity require-
ments and the basic assumptions retained in (A)
and (B) would necessitate considering energy-de-
pendent representations of the type
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First, we have kept an arbitrariness on the 5,
function as is found in (B), which allows us
among other things to easily relate our results
with preceding ones. On another side, we have re-

tained the reality properties of the g, (p), which
are easily warranted in (A) but would have re-
quired the consideration of at least two separable
terms with (B) (see footnote 53).

*This work has been the object of a communication at
the Birmingham Conference, 1969 [J ~ -Y. Pasquier and
H, . Pasquier in Three-Body Pxoblem in Nuclear and
Particle Physics, edited by J. S. C. McKee and P. M.
Rolph (North-Holland, Amsterdam, 1970)] .

)Laboratoires associes au Centre National de la
Recherche Scientifique.

f.The revised version was sent by the authors after an
extensive delay in the editorial processing.
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