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g„= —1.23+ 0.01.' Secondly, there may be situa-
tions in which one has a (1, 8) tensor along with
some knowledge of its coupling constants between
octet baryons. In this event, comparison with Eq.
(9) should be of some use in determining how much
the tensor in question "leaks" out of the baryon
octet and decuplet. Evidently this particular as-

pect has some relevance to the hadronic part of
the weak Hamiltonian -a matter which will be dis-
cussed in a future publication.
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Starting from the nonlinear 0 model it is shown that for large momentum transfer the pro-
ton charge form factor is approximately equal to (1+Q /Q p ), where the constant Q 0 is
related by a simple transcendental equation to the pion-nucleon coupling constant f and to a
constant f ~ related to the charged-pion decay rate. Using the experimental values of f and

f ~ we obtain Q0=800 MeV. The charge radius of the proton is calculated to be 0.85 F. Fur-
ther, it is shown that the "hard core" radius for nucleon-nucleon interactions should be
approximately equal to (2/Q 0) = 0.5 F; An interpretation of the most prominent pion-nucleon
resonances is also offered.

I. INTRODUCTION

The fact that the axial-vector coupling constant
for nucleon P decay does not differ too much from
the vector coupling constant has led to the hypoth-
esis that the strong interactions are approximate-
ly invariant under transformations which change
yarity but do maintain handedness, or chirality.
This hypothesis has, in turn, led to a number of
interesting relations between low-energy process-
es.' As yet, however, there have been very few
applications of chiral symmetry to intermediate-
and high-energy process. It has been shown' that
the consequences of chiral symmetry for low-en-
ergy processes can be obtained by applying lowest-
order perturbation theory to certain nonlinear
I agrangians. The question of whether these non-
linear Lagrangians can be applied to intermediate-
and high-energy phenomena has remained unan-
swered, due largely to the lack of understanding
of how to make calculations when one cannot use

perturbation theory. In this paper we will make
use of some simple-minded approximations to
show that a nonlinear chiral Lagrangian may be
useful even in situations where perturbation theo-
ry does not apply. In particular, we will show
that the nonlinear cr model of Gell-Mann and Levy'
can be used to explain the behavior of the electron-
proton elastic scattering form factor. We will
also suggest on the basis of the explanation given
for the form factor that a simple interpretation
can be given for the most prominent pion-nucleon
resonances.

In the nonlinear 0 model the Lagrangian density
for the pion field has the form

z, = —,'(e„y)'+ —,'(s„o)'+ p.'f„g,
where p. is the pion mass. The pion field P is re-
lated to o by

y2~o2 C2

where C is a constant. The divergence of the P-
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decay axial-vector current, P„, in this model is

This relation allows one to relate f, to the
charged-pion decay rate. ' In the unrenormalized
o model one has C=f, . However, it has been
claimed' that because of the presence of the axial-
vector A, meson the pion field is renormalized so
that Eq. (3) still holds but C = Zf, where Z= m„,/
m . According to Weinberg' m„, = v 2 m& so we
would have C= v 2 f, .

Since the Lagrangian must be a real function,
Eq. (2) implies that the magnitude of the pion field
satisfies jPj' «C'. From the physical point of
view we can regard this condition as resulting
from pion-pion interactions. That is, because of
pion-pion interactions the density of pions in any
region of space cannot exceed a certain value.
If we assume that the charge distribution of a pro-
ton is due to virtual pions and that the density of
pions is bounded then it follows immediately that
the form factor for elastic electron-proton scat-
tering must asymptotically decrease faster than
the square of the momentum transfer. In fact, it
can be shown' that if the charge density is bounded
then the form factor must decrease at least as
fast as the fourth power of the momentum transfer.
Experimentally, the form factor is observed to
decrease approximately as the fourth power of the
momentum transfer for large momentum trans-
fers —a fact that has been regarded as somewhat
of a mystery. In the next section we will show
that if one makes certain plausable assumptions,
then our condition j P'j «C' leads to a simple ex-
planation for the observed proton form factor.

II. PROTON CHARGE DISTRIBUTION

If we suppose that the virtual pions surrounding
a proton are emitted from a fixed point source and
do not interact with one another, then the pseudo-
scalar pion field P would be given by

(4)

where f = 1.0 is the pseudovector coupling constant
and 0 and, 7 are the Pauli matrices for spin and
isospin. Let us now turn on the pion-pion inter-
actions so that j gj' «C'. We see that the r ' fac-
tor in Eq. (4) must somehow be cut off as r-0.
A mathematically simple way to describe this be-
havior would be to set p =o Vf r where

Ic e "' yr r&a

Although the choice of the specific form for f(r)
given in Eq. (5) would appear to be completely ad

koc, the most important restriction involved in
the choice of this specific form is that the second
derivative of r jpj' with respect to r does not van-
ish as r-0. That is, any reasonable choice for
the function f(r) which has this property and sat-
isfies the condition j P' j «C would give about the
same behavior for the form factor. ' A possible
justification for assuming that the second deriva-
tive of r jPj' does not vanish as r O-is mentioned
at the end of this section in connection with a dis-
cussion of the quantum corrections to our theory.

If we impose the physically reasonable require-
ments that the charge density and its gradient be
continuous, then

(6)

and

A=/. + 1+

We see that the function f(r) depends on two con-
stants, C,. and a. Since the pion field must ap-
proach the form given in Eq. (4) as r becomes
large we have that C, =f/4v. The constant a can
be determined from the condition that as y-0 the
square norm of the pion field, P*P, will approach
its maximum value, i.e., C . This condition gives
C, =aC. Using this relation together with Eq. (6)
we find that a satisfies the equation

Substituting C = v 2 f, and using the experimental
values of f and f, gives a=0.85il '. Thus we find
that pion-pion interactions affect the distribution
of virtual pions when the distance to the center of
the proton is less than about 1 F.

The charge density due to virtual pions is pro-
portional to (Vf)2. The form factor for the charge
distribution can thus be found by taking the Fourier
transform of jVf(r)] . We find, therefore, that
the form factor for the charge distribution will be
proport'ional to the function

(Q2) -2 pa 1
1 -2uax sln{Qax)2 01

F =e + 8 (Q) XX

1 ' sin(Qax) dx
y,ax (Qa) x

'

(6)

The first term on the right-hand side can be eval-
uated explicitly. The second term can be eval-
uated for large Q' by integrating by parts. One
finds that for large Q' the function E(Q') is given

by



1326 GEORGE F e CHAP LINE
y

JR

2 e '"'
„„(1+Q'/4u')' (2na)'

e-2ua 4Q2x 1+ 3-, , cosQa . (9)
2o.a '+ 4o.'

Putting in the numerical values of a and n implied
by Eqs. (6) and (7) one finds that the numerical
value of the second term in the brackets is small
compared to 1. Thus for large Q' we find that the
form factor is approximately equal to
(1+Q'/4o. ') '. That the form factor for large Q'

can be approximately described by such an expres-
sion is, of course, a well-known experimental
fact. ' The value of 2n implied by Eqs. (6) and (7)
turns out to be 800 MeV, in remarkably good
agreement with the experimental value, 840 MeV.
In Fig. I we compare the experimental measure-
ments' of the magnetic form factor with the val-
ues of F(Q')/E(0) calculated directly from Eq. (8).
It can be seen that the over-all agreement is fair-
ly good, the difference being mainly due to the
fact that our calculated value of 2n is slightly
smaller than the experimental value. It is inter-
esting that Eq. (8) predicts that for large Q' the
form factor should oscillate about a value slightly
below the value predicted by the simple dipole
formula. This behavior is also observed experi-
mentally (cf. Fig. 2 of Ref. 8); however, the devi-

ations from the dipole formula predicted by Eq.
(8) are smaller than are observed experimentally.

If we had chosen the renormalization constant
Z= 1 instead of Z= v 2 we would have obtained 2o.
= 700 MeV instead of 800 MeV. Thus we can con-
clude that the qualitative nature of our results
does not depend on the exact value of Z (provided,
of course, it is not too different from 1). It is
also interesting to note that if we had used the
scalar-meson theory instead of the pseudoscalar-
meson theory [i.e., omit the o v in Eq. (4)] we
would have obtained 2n = 1500 MeV. Thus the
pseudoscalar-meson theory works much better
than the scalar-meson theory.

The root-mean-square charge radius of the
proton, ((r'))' ', will in our theory be approxi-
mately equal to W/o. . Using the value of o. im-
plied by Eqs. (6) and (7) we obtain

(10)

where the numerical constant c is the solution of
the transcendental equation

c= exp — 1+

and
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PEG. 1. The curve shows the function F (Q2)/E(0) where
P(Q ) is given by Eq. (8). The points show measurements
of the magnetic form factor as given in Ref. 8.

All the constants describing the strength of the
strong interactions are contained in c,. Although

f, refers to a weak decay we can explicitly ex-
hibit its dependence on the strong interactions by
making use of the Goldberger- Treiman" and
Adler-Weisberger' relations. Together, these
relations imply that f, = (1/2f, ) p, where f, =0.8.

is the vector coupling constant which describes
the strength of the low-energy s-wave pion-nucleon
interaction. Thus we have that

4m
0

which shows that the proton charge radius is re-
lated to the low-energy s-wave pion-nucleon inter-
action. If we use the experimental values of f,
and f we obtain ((r'))'~'=0. 85 F.

%e conclude this section with a comment on the
quantum corrections to our theory. In calculating
the form factor we have assumed that the quantity

(j)
' is a classical field. In reality, of course,

Q
' is subject to quantum fluctuations. In fact, it

has been shown by Yennie" that the quantum cor-
rections to a nonlinear meson theory become in-
creasingly important as the source strength is in-
creased. Yennie gave formulas for the first-order
quantum corrections to the energy and equation of
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motion when the nonlinear term in the Lagrangian
had the form A. P~. If we use Yennie's formulas
together with the coefficient of ) p)' in an expan-
sion of our Lagrangian in powers of ) P)' to esti-
mate the quantum corrections to our classical
theory, we find that the quantum corrections are
on the order of a few percent. Thus the quantum
corrections to our theory are not expected to be
very important. The basic reason why the quan-
tum corrections to a nonlinear meson theory in-
crease with increasing source strength is that the
classical field acts as a potential for the fluctuat-
ing field so that as the strength of this potential
increases, the zero-point energy of the fluctuating
field increases. This argument suggests that in
our theory where ) P)' is constrained to be less
than C', it would be energetically favorable for

) P)' to approach the limit C' as slowly as possi-
ble. In other words, we would expect that the de-
rivative of the charge density to be finite as z-0.
This, of course, would lead to the nonvanishing
of the second derivative of r )Q)' as r 0, a-s was
assumed in Eq. (5).
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Flo. 2. The curve shows L =qb —2 plotted as a function
of center-of-mass energy. The points are the positions
of the most prominent pion-nucleon resonances.

III. PION-NUCLEON RESONANCES

g& =L+ 2 (12)

where b is some length on the order of 1 F. The

According to our picture as one approaches the
center of a proton the density of virtual pions does
not become infinite but instead approaches a cer-
tain maximum value. Further we have found that
the density of virtual pions does not begin to fall
appreciably below the maximum value until one
reaches a radius r, =(2n) '. Consequently, we

expect that a pion introduced from the outside
would have a difficult time entering the region y

Thus if we bring two protons close together
we expect that a strong repulsion would set in
when the separation of the protons is less than

2'. Indeed, our calculated value for n gives 2rQ

=0.49 F, in good agreement with the experimental
value of the distance at which the nucleon-nucleon
force becomes strongly repulsive, as determined,
for example, from nucleon-nucleon scattering. "

Although a pion incident on a proton from the
outside would have a difficult time entering the
region r & ~„ it could move around in the region
r &xQ Further, we showed in the last section that
pion-pion interactions are important when r is
less than about 1 F but that the pion can propagate
freely at larger values of r. Therefore, as in the
case of motion around an impenetrable sphere we
would expect that a resonance in pion-proton
scattering would occur when the center-of-mass
momentum q of the pion satisfied

integer L in this formula represents the orbital
angular momentum of the resonance. In Fig. 2

we have plotted L as given by Eq. (12) as a func-
tion of the center-of-mass energy. In making this
plot we have chosen 6 = I F. On the same graph
we have shown the positions of the most prominent
pion-nucleon resonances. It can be seen that the
positions of these resonances roughly follow the
curve, which suggests that these resonances can
be interpreted as being due to pions orbiting about
an impenetrable region.

We should mention in this connection that
Walecka" has shown that one can qualitatively
understand the excitation of nucleon excited states
in electron scattering if one assumes that the pion
field in the excited states oscillates about an
equilibrium field somewhat similar in form to
that given in Eq. (5). In particular he assumes
that the pion field in the ground state does not be-
come infinite as one approaches the center of the
nucleon but instead levels off at a finite value.

IV. CONCLUSION

There are obviously a number of questions which
we have left unanswered. For example, what ef-
fect does nucleon recoil have on our calculation of
the proton charge form factor? Can one explain
the neutron charge distribution? Also can one ex-
plain inelastic electron proton scattering? Never-
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theless, the good agreement with experimental
results that we have obtained suggests that our
ideas concerning the structure of a proton have
some validity.
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Properties of a two-parameter Bose-type distribution have been investigated using data on
7t and E mesons of inclusive p-p collisions from 12 to 30 GeV/c. It is found that the tem-
perature 7' is characteristic of the particle emission: T~ &Tz, and T for m is about 5 MeV
higher than that of 7t+. The scaling behavior is found to hold for both x and K for incident lab
momentum above 20 GeV/c.

In a recent work on the inclusive P-P reactions, '
it has been found that the salient features of the
double-differential cross sections in terms of the
c.m. longitudinal, P~, and the transverse, I'~, mo-
mentum, can be accounted for by the following
Bose-type distribution:

The purpose of this paper is to investigate the
intrinsic properties of the two parameters T and

In particular, we propose to investigate the
scaling behavior according to (3).

We recall that the temperature T, as in the
Bose distribution, i.e., X = 1, is determined en-
tirely by the average of P~, and that the parame-
ter A. depends on the ratio of averages of P~ and
Pz. Referring to formula (33) of Ref. 4, we write

where T is the temperature, the Boltzmann con-
stant being set k=1, and & P,) /(P, ) =-', ~X . (4)

c(A) = (Pr'+ X'P~'+m')"',

m being the mass of the secondary meson. The
dimensionless parameter A. is related to the
scaling law, ' ' according to which we should ex-
pect

(2)
In the present work, we shall apply the distribu-

tion to the currently available data on m and K pro-
duction by P-P collisions. We begin with the in-
clusive reactions

P +P- m '+ anything

X -1/P,„,
P „being the maximum of the c.m. momentum of
the secondary meson. ' It should be mentioned
that another interpretation for A. is also possible. '

from the following experiments'. Berkeley, 'Brook-
haven, ' -Scandinavian Collaboration, ' and Day
et al." The parameters T and X are estimated by
fitting the experimental data with the distribution
(1), except the Berkeley data. In this case, the


